俎 明,徐 雪,周煒洵,費(fèi)貴軍,吳 晰,姚 方,李 媛,程書鈞,陸星華
中國(guó)醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院 1消化內(nèi)科 2病理科,北京 100730
3中國(guó)醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 腫瘤研究所分子腫瘤學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100021
?
伴癌與非伴癌胃高級(jí)別上皮內(nèi)瘤變?nèi)虮磉_(dá)譜的比較
俎明1,徐雪1,周煒洵2,費(fèi)貴軍1,吳晰1,姚方1,李媛2,程書鈞3,陸星華1
中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院北京協(xié)和醫(yī)院1消化內(nèi)科2病理科,北京 100730
3中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院腫瘤研究所分子腫瘤學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100021
摘要:目的比較伴癌患者的胃高級(jí)別上皮內(nèi)瘤變(HGIN)與非伴癌患者的胃HGIN組織全基因表達(dá)譜的差異。方法收集北京協(xié)和醫(yī)院2010年3月至2013年5月間行放大染色胃鏡檢查的21例患者的標(biāo)本,胃鏡活檢組織病理均為HGIN。21例患者均行內(nèi)鏡黏膜下剝離術(shù),病理示10例為HGIN,11例為HGIN伴部分癌變。采用4×44K人全基因表達(dá)譜芯片,用非配對(duì)t檢驗(yàn)和Benjamini-Hochberg假發(fā)現(xiàn)率(FDR)校正篩選差異基因,采用GeneSpring GX 12.6進(jìn)行基因本體(GO)富集分析。結(jié)果伴癌HGIN與非伴癌HGIN組織的全基因表達(dá)譜比較,共有差異基因470個(gè)(P<0.05,倍數(shù)變化>2),其中表達(dá)上調(diào)的基因180個(gè),表達(dá)下調(diào)的基因290個(gè)。上調(diào)基因GO富集主要與三酰甘油合成、甘油酯合成、中性脂質(zhì)合成、甘油醚代謝、有機(jī)醚代謝及甘油酯類代謝有關(guān)。結(jié)論脂質(zhì)代謝改變可能是胃癌發(fā)生的早期事件。
關(guān)鍵詞:胃高級(jí)別上皮內(nèi)瘤變;胃癌;全基因表達(dá)譜微陣列
Whole Genome Expression Profiling of Gastric High-grade Intraepithelial Neoplasia with or without Cancer
ActaAcadMedSin,2015,37(1):23-29
我國(guó)胃癌的發(fā)病率及死亡率長(zhǎng)期排在世界前列,2012年新發(fā)胃癌約40.5萬例,居惡性腫瘤第2位;胃癌死亡病例約32.5萬例,居惡性腫瘤第3位[1]。Lauren分型將胃癌分為腸型和彌漫型,兩者各有特異的病理形態(tài)及免疫表型[2]。腸型胃癌有經(jīng)典的Correa癌變模式:萎縮性胃炎——腸上皮化生——異型增生(上皮內(nèi)瘤變)——癌[3- 4]。目前一致認(rèn)為胃高級(jí)別上皮內(nèi)瘤變(high-grade intraepithelial neoplasia,HGIN)是癌前病變,與胃癌發(fā)生密切相關(guān)[5],但胃癌發(fā)病的分子機(jī)制目前尚不清楚。研究胃HGIN組織的表達(dá)譜可將胃癌的防治研究提前至癌前病變階段,在實(shí)現(xiàn)胃癌的早期防治方面具有重要意義。本研究采用全基因表達(dá)譜芯片技術(shù),尋找伴癌HGIN組織與非伴癌HGIN組織的差異基因,為胃癌的早期診斷和胃癌發(fā)生的分子機(jī)制提供實(shí)驗(yàn)依據(jù)。
材料和方法
樣本來源選取2010年3月至2013年5月在北京協(xié)和醫(yī)院接受放大染色胃鏡檢查并行內(nèi)鏡黏膜下剝離術(shù)的21例患者。入選標(biāo)準(zhǔn):無胃癌以外的惡性腫瘤;取樣前未經(jīng)放療、化療或生物治療;臨床病理資料完整。胃鏡活檢標(biāo)本病理均為HGIN;內(nèi)鏡黏膜下剝離標(biāo)本病理10例為HGIN,11例為HGIN伴部分癌變。非伴癌HGIN組患者年齡(66.40±9.41)歲,伴癌HGIN組患者年齡(61.18±8.07)歲。病理診斷依據(jù)消化系統(tǒng)腫瘤WHO標(biāo)準(zhǔn)(2010版)[6],經(jīng)2名病理醫(yī)師獨(dú)立診斷。胃鏡檢查時(shí)對(duì)可疑胃黏膜用活檢鉗平行取病變組織2塊,其中1塊行病理學(xué)檢查,另1塊置入含組織儲(chǔ)存試劑(RNAlater,美國(guó)Life Technologies公司)的離心管內(nèi),4 ℃過夜,-80 ℃冰箱保存?zhèn)溆谩?/p>
研究方案通過北京協(xié)和醫(yī)院倫理委員會(huì)審查,入選患者均簽署知情同意書。
試劑和器材RNA抽提采用RNeasy mini Kit(德國(guó)Qiagen公司);芯片采用人全基因組表達(dá)譜芯片(Whole Human Genome microarray Kit,4×44K,美國(guó)Agilent公司),單色熒光少量快速擴(kuò)增標(biāo)記試劑盒(Low Input Quick Amp Labeling Kit,One-Color,美國(guó)Agilent公司),單色熒光RNA加標(biāo)試劑盒(RNA Spike-in Kit One-color,美國(guó)Agilent公司),基因表達(dá)譜雜交試劑盒(Gene Expression Hybridization Kit,美國(guó)Agilent公司)。主要器材包括紫外分光光度儀(Nanodrop ND- 1000,美國(guó)NanoDrop公司),生物分析儀(Agilent 2100),雜交爐(G2545A,美國(guó)Agilent公司)和芯片掃描儀(G2505BA,美國(guó)Agilent公司)。
總RNA提取與質(zhì)量檢測(cè)將組織塊從離心管中轉(zhuǎn)移至裝有600 μl RLT(含1% β-ME)的離心管中,吹打混勻,至組織充分裂解。將全部液體加到離心絞碎柱(QIA shredder spin column,德國(guó)Qiagen公司)內(nèi),13 000×g 4 ℃離心2 min,將收集管內(nèi)液體移入1.5 ml離心管內(nèi),按照RNeasy mini Kit的說明書進(jìn)行總RNA提取,20 μl無核酸酶水溶解RNA,經(jīng)紫外分光光度儀和生物分析儀檢測(cè)RNA的純度及完整性,-80 ℃冰箱分裝保存。
基因芯片的雜交和掃描芯片雜交步驟參照單色熒光標(biāo)記表達(dá)譜芯片研究說明書(Version 6.5,美國(guó)Agilent公司)。配制單色Spike-in 混合物,取100 ng總RNA,反轉(zhuǎn)錄合成cDNA,以NTPs(摻入以Cy3標(biāo)記的CTP)為原料合成cRNA,RNeasy mini柱純化cRNA,測(cè)定cRNA的濃度和標(biāo)記效率,cRNA片段化,采用人全基因組表達(dá)譜芯片,雜交爐內(nèi)65 ℃ 10 r/min 17 h,洗滌芯片,采用芯片掃描儀掃描芯片雜交圖像。
統(tǒng)計(jì)學(xué)處理采用Feature Extraction version 10.5.1.1(美國(guó)Agilent公司)進(jìn)行圖像信號(hào)的處理分析和表達(dá)數(shù)據(jù)提取,GeneSpring(GX12.6,美國(guó)Agilent公司)對(duì)所有樣本芯片結(jié)果進(jìn)行質(zhì)控分析,并采用第75百分位數(shù)移位(75th percentile shift)進(jìn)行標(biāo)準(zhǔn)化,用每個(gè)基因在所有樣本中的表達(dá)中位數(shù)進(jìn)行基線校正;篩選表達(dá)基因的條件為Detected 及Not Detected,且至少在1種表型(伴癌HGIN或非伴癌HGIN)全部樣本中滿足上述條件。采用GeneSpring完成主成分分析、差異基因篩選及基因本體(gene ontology,GO)富集分析。組間數(shù)據(jù)比較采用非配對(duì)t檢驗(yàn),原始P值經(jīng)Benjamini-Hochberg方法校正,顯著性水平為0.05,同時(shí)滿足倍數(shù)變化(fold change,F(xiàn)C)>2篩選差異表達(dá)基因;GO富集以P<0.05為差異有統(tǒng)計(jì)學(xué)意義;非監(jiān)督聚類分析采用開放性平臺(tái)R繪制熱圖;信號(hào)通路分析采用DAVID分析平臺(tái),通過京都基因與基因組百科全書(Kyoto Encyclopedia of Gene and Genomics,KEGG)進(jìn)行信號(hào)通路富集分析。
結(jié)果
總RNA質(zhì)量檢驗(yàn)總RNA濃度為(181.5±134.2)ng/μl,吸光度(absorbance,A)260/A280為2.05±0.04,A260/A230 為1.94±0.12。RNA完整性為8.61±0.57(圖1),質(zhì)量符合基因芯片雜交要求。
芯片雜交結(jié)果21例樣本的所有質(zhì)控指標(biāo)均在合理范圍內(nèi),芯片數(shù)據(jù)可靠。經(jīng)過篩選共有41 033條探針納入分析,數(shù)據(jù)歸一化處理后的箱式圖顯示各樣本數(shù)據(jù)分布基本一致,樣本之間的數(shù)據(jù)具有可比性(圖2)。
HGIN:高級(jí)別上皮內(nèi)瘤變
HGIN:high-grade intraepithelial neoplasia
圖 1非伴癌HGIN組織(1~6)及伴癌HGIN組織(7~12)的RNA質(zhì)量圖
Fig 1The quality of RNA in HGIN without cancer(1- 6)and in HGIN with cancer(7- 12)
主成分分析對(duì)所有樣本的全基因表達(dá)譜進(jìn)行的主成分分析顯示伴癌HGIN及非伴癌HGIN的組內(nèi)樣本有一定的聚集傾向(圖3)。
差異基因與非伴癌HGIN比較,伴癌HGIN共有470個(gè)差異基因(圖4),其中表達(dá)上調(diào)的基因180個(gè),表達(dá)下調(diào)的基因290個(gè)。與非伴癌HGIN比較,在伴癌HGIN中表達(dá)上調(diào)及下調(diào)的前20位基因見表1。
聚類分析結(jié)果根據(jù)表達(dá)上調(diào)的180個(gè)差異基因?qū)λ袠颖具M(jìn)行非監(jiān)督聚類分析,可將伴癌HGIN與非伴癌HGIN區(qū)分,總體正確聚類效率為90.5%(圖5)。
GO富集分析GO富集分析結(jié)果顯示,表達(dá)上調(diào)的180個(gè)基因主要參與三酰甘油合成、甘油酯合成、中性脂質(zhì)合成、甘油醚代謝、有機(jī)醚代謝及甘油酯類代謝(表2)。表達(dá)下調(diào)的基因無GO條目通過顯著性檢驗(yàn)。
信號(hào)通路分析采用KEGG對(duì)上調(diào)的180個(gè)差異表達(dá)基因進(jìn)行分析,發(fā)現(xiàn)甘油酯類代謝、精氨酸及脯氨酸代謝、PPAR信號(hào)通路顯著富集(表3)。
圖 2數(shù)據(jù)歸一化處理后的箱式圖
Fig 2Boxplots after normalization
藍(lán)色:非伴癌HGIN;紅色:伴癌HGIN
Blue:HGIN without cancer;red:HGIN with cancer
圖 3主成分分析
Fig 3Principal components analysis
表 1 與非伴癌HGIN比較,在伴癌HGIN中表達(dá)上調(diào)或下調(diào)的前20位基因
HGIN:高級(jí)別上皮內(nèi)瘤變
HGIN:high-grade intraepithelial neoplasia
圖 4火山圖篩選伴癌HGIN與非伴癌HGIN的差異基因(紅色方點(diǎn)為P<0.05,倍數(shù)變化>2的差異基因)
Fig 4Volcano plot for screening the differentially expressed genes(the red squares withP<0.05 and fold change>2)in HGIN with cancer compared with HGIN without cancer
每1縱列代表1個(gè)樣本,每1橫列代表1個(gè)基因,顏色由綠色到紅色代表基因的表達(dá)豐度由低到高
Each column represents a sample and each row represents a transcript,the expression abundance from low level to high level is shown by the color spectrum from green to red
圖 5基于180個(gè)上調(diào)基因?qū)Ψ前榘〩GIN和伴癌HGIN組織的非監(jiān)督聚類分析
Fig 5Unsupervised cluster analysis of HGIN without cancer and HGIN with cancer with the 180 up-regulated genes
表 2 基于180個(gè)上調(diào)基因的GO富集分析
GO:基因本體;MOGAT2:?jiǎn)熙8视蚈-?;D(zhuǎn)移酶2;DGAT1:二酰甘油O-?;D(zhuǎn)移酶同源物1;APOC2:載脂蛋白C-Ⅱ;CPS1:氨基甲酰磷酸合成酶1;GPD1:甘油三磷酸脫氫酶1;AGPAT2:1-甘油酯-3磷酸O-酰基轉(zhuǎn)移酶2
GO:gene ontology;MOGAT2:monoacylglycerol O-acyltransferase 2;DGAT1:diacylglycerol O-acyltransferase homolog 1;APOC2:apolipoprotein C-Ⅱ;CPS1:carbamoyl-phosphate synthetase 1;GPD1:glycerol- 3-phosphate dehydrogenase 1;AGPAT2:1-acylglycerol- 3-phosphate O-acyltransferase 2
討論
研究發(fā)現(xiàn)胃HGIN的癌變率為4.8%~100%[7],但目前在臨床上尚無可靠的分子標(biāo)記來預(yù)測(cè)胃HGIN的癌變。本研究以胃鏡下取得的組織樣本為研究材料,采用cDNA微陣列技術(shù)首次分析了伴癌胃HGIN與非伴癌胃HGIN組織的基因表達(dá)譜差異,篩選出了胃HGIN向胃癌轉(zhuǎn)變的相關(guān)基因,不僅有利于胃癌的早期診斷和早期治療,也增進(jìn)了對(duì)胃癌發(fā)病分子機(jī)制的了解。
伴癌HGIN與非伴癌HGIN共篩選出470個(gè)差異基因,與非伴癌HGIN比較,伴癌HGIN有180個(gè)基因表達(dá)上調(diào),290個(gè)基因表達(dá)下調(diào)。根據(jù)表達(dá)上調(diào)的180個(gè)差異基因進(jìn)行非監(jiān)督聚類分析,兩組樣本總體正確聚類效率為90.5%,兩組樣本組織在基因水平上具有組內(nèi)的相似性和組間的差異性,說明兩組的基因表達(dá)水平差異有統(tǒng)計(jì)學(xué)意義。通過對(duì)上調(diào)的180個(gè)基因行GO富集及KEGG通路分析,筆者發(fā)現(xiàn)差異基因主要與脂類代謝有關(guān),提示在胃細(xì)胞向惡性細(xì)胞轉(zhuǎn)化過程中,脂類代謝改變可能起到重要作用。
表 3 京都基因與基因組百科全書信號(hào)通路分析結(jié)果
腫瘤細(xì)胞的一大特征為能量代謝的變化[8],表現(xiàn)為糖酵解過度活躍,而線粒體有氧代謝減弱,被稱為“Warburg效應(yīng)”[9]。研究表明,腫瘤細(xì)胞內(nèi)還存在脂類代謝異常,在能量代謝、細(xì)胞膜骨架形成、腫瘤信號(hào)傳導(dǎo)、轉(zhuǎn)錄后蛋白修飾方面有著重要影響[10]。越來越多研究發(fā)現(xiàn),肥胖是食管癌、結(jié)腸癌、肝癌、胰腺癌等腫瘤的危險(xiǎn)因素[11- 12],致病機(jī)制可能與胰島素和胰島素樣生長(zhǎng)因子- 1信號(hào)通路、瘦素、性激素、肥胖相關(guān)炎癥反應(yīng)有關(guān)[13]。研究表明,腫瘤細(xì)胞中脂肪酸合成增加,內(nèi)源性合成的脂肪酸可以在線粒體內(nèi)經(jīng)脂肪酸β氧化途徑進(jìn)行氧化代謝,而脂肪酸β氧化可能是前列腺癌細(xì)胞的主要能量來源[14]。一項(xiàng)全基因表達(dá)譜的乳腺癌代謝模型顯示,脂肪酸合成代謝異常是乳腺癌發(fā)生的早期特征[15]。另有研究指出,高脂飲食可加速致瘤性K-ras驅(qū)動(dòng)的胰腺上皮瘤變[16]。有兩項(xiàng)研究通過高分辨率魔角旋轉(zhuǎn)核磁共振技術(shù)發(fā)現(xiàn)胃癌組織中三酰甘油含量顯著高于正常胃黏膜[17- 18],從另一方面支持了本研究的發(fā)現(xiàn)。
本研究發(fā)現(xiàn)的在伴癌HGIN組織上調(diào)的前20位基因中,OLFM4、HOXA13、HOXA10、CDH17在胃癌中研究較多。有研究顯示,OLFM4在胃癌組織中表達(dá)高于正常組織,并與轉(zhuǎn)移及預(yù)后相關(guān)[19]。利用小分子干擾RNA干擾胃癌細(xì)胞系SGC7901及MKN45中OLFM4的表達(dá),可抑制腫瘤的增殖[20]。有學(xué)者采用全基因表達(dá)譜芯片發(fā)現(xiàn)HOXA13、HOXA10在胃癌組織中高表達(dá)[21]。Han等[22]也發(fā)現(xiàn),HOXA13在胃癌中高表達(dá),并與不良預(yù)后相關(guān)。CDH17在胃癌組織中顯著高表達(dá),且與浸潤(rùn)深度、腫瘤分期、淋巴結(jié)轉(zhuǎn)移相關(guān),高表達(dá)者預(yù)后較差[23]。CDH17在胃癌細(xì)胞系MKN- 45中可激活NF-κB信號(hào)通路,從而促進(jìn)腫瘤生成及淋巴結(jié)轉(zhuǎn)移[24]。CDH17還可以通過調(diào)節(jié)Ras/Raf/MEK/ERK信號(hào)通路來促進(jìn)癌細(xì)胞增殖[25]。
綜上,本研究篩選出了470個(gè)可能與胃HGIN向胃癌轉(zhuǎn)變相關(guān)的基因,發(fā)現(xiàn)脂質(zhì)代謝改變可能是胃癌發(fā)生的早期事件,有助于從分子水平理解胃癌的病因,為胃癌的早期診斷和治療提供了深入研究的新思路。
參考文獻(xiàn)
[1]Ferlay J,Soerjomataram I,Ervik M,et al. GLOBOCAN 2012 v1.0,cancer incidence and mortality worldwide:IARC cancer base No.11 [EB/OL]. [2014- 09- 15]. http://globocan.iarc.fr.
[2]Lauren P. The two histological main types of gastric carcinoma:diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification [J]. Acta Pathol Microbiol Scand,1965,64:31- 49.
[3]Correa P. Human gastric carcinogenesis:a multistep and multifactorial process-First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention [J]. Cancer Res,1992,52(24):6735- 6740.
[4]Meining A,Morgner A,Miehlke S,et al. Atrophy-metaplasia-dysplasia-carcinoma sequence in the stomach:a reality or merely an hypothesis [J]. Best Pract Res Clin Gastroenterol,2001,15(6):983- 998.
[5]Dinis-Ribeiro M,Areia M,de Vries AC,et al. Management of precancerous conditions and lesions in the stomach(MAPS):guideline from the European Society of Gastrointestinal Endoscopy(ESGE),European Helicobacter Study Group(EHSG),European Society of Pathology(ESP),and the Sociedade Portuguesa de Endoscopia Digestiva(SPED)[J]. Endoscopy,2012,44(1):74- 94.
[6]Bosman FT,Carneiro F,Hruban RH,et al. WHO classification of tumours of the digestive system [M]. 4th ed. Lyon:International Agency for Research on Cancer,2010:46- 48.
[7]Raftopoulos SC,Kumarasinghe P,de Boer B,et al. Gastric intraepithelial neoplasia in a Western population[J]. Eur J Gastroenterol Hepatol,2012,24(1):48- 54.
[8]Hanahan D,Weinberg RA. Hallmarks of cancer:the next generation [J]. Cell,2011,144(5):646- 674.
[9]Koppenol WH,Bounds PL,Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism [J]. Nat Rev Cancer,2011,11(5):325- 337.
[10]Baenke F,Peck B,Miess H,et al. Hooked on fat:the role of lipid synthesis in cancer metabolism and tumour development [J]. Dis Model Mech,2013,6(6):1353- 1363.
[11]Renehan AG,Tyson M,Egger M,et al. Body-mass index and incidence of cancer:a systematic review and meta-analysis of prospective observational studies [J]. Lancet,2008,371(9612):569- 578.
[12]Bhaskaran K,Douglas I,F(xiàn)orbes H,et al. Body-mass index and risk of 22 specific cancers:a population-based cohort study of 5.24 million UK adults [J]. Lancet,2014,384(9945):755- 765.
[13]Alemán JO,Eusebi LH,Ricciardiello L,et al. Mechanisms of obesity-induced gastrointestinal neoplasia [J]. Gastroenterology,2014,146(2):357- 373.
[14]Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer [J]. Prostate Cancer Prostatic Dis,2006,9(3):230- 234.
[15]Jerby L,Wolf L,Denkert C,et al. Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer [J]. Cancer Res,2012,72(22):5712- 5720.
[16]Khasawneh J,Schulz MD,Walch A,et al. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion [J]. Proc Natl Acad Sci USA,2009,106(9):3354- 3359.
[17]Calabrese C,Pisi A,Di Febo G,et al. Biochemical alterations from normal mucosa to gastric cancer byexvivomagnetic resonance spectroscopy [J]. Cancer Epidemiol Biomarkers Prev,2008,17(6):1386- 1395.
[18]Tugnoli V,Mucci A,Schenetti L,et al.ExvivoHR-MAS Magnetic Resonance Spectroscopy of human gastric adenocarcinomas:a comparison with healthy gastric mucosa [J]. Oncol Rep,2006,16(3):543- 553.
[19]Luo Z,Zhang Q,Zhao Z,et al. OLFM4 is associated with lymph node metastasis and poor prognosis in patients with gastric cancer [J]. J Cancer Res Clin Oncol,2011,137(11):1713- 1720.
[20]Liu RH,Yang MH,Xiang H,et al. Depletion of OLFM4 gene inhibits cell growth and increases sensitization to hydrogen peroxide and tumor necrosis factor-alpha induced-apoptosis in gastric cancer cells [J/OL]. J Biomed Sci,2012,19:38. [2014- 09- 15]. http://www.jbiomedsci.com/content/19/1/38.
[21]周崇治,韓楊,凃威偉,等.同源盒基因家族在胃癌中差異表達(dá)的研究[J]. 中華實(shí)驗(yàn)外科雜志,2013,30(7):1507- 1510.
[22]Han Y,Tu WW,Wen YG,et al. Identification and validation that up-expression of HOXA13 is a novel independent prognostic marker of a worse outcome in gastric cancer based on immunohistochemistry [J/OL]. Med Oncol,2013,30(2):564. [2014- 09- 15]. http://link.springer.com/article/10.1007%2Fs12032- 013- 0564- 1.
[23]Ge J,Chen Z,Wu S,et al. A clinicopathological study on the expression of cadherin- 17 and caudal-related homeobox transcription factor(CDX2)in human gastric carcinoma [J]. Clin Oncol(R Coll Radiol),2008,20(4):275- 283.
[24]Wang J,Kang WM,Yu JC,et al. Cadherin- 17 induces tumorigenesis and lymphatic metastasis in gastric cancer through activation of NFκB signaling pathway [J]. Cancer Biol Ther,2013,14(3):262- 270.
[25]Lin Z,Zhang C,Zhang M,et al. Targeting cadherin- 17 inactivates Ras/Raf/MEK/ERK signaling and inhibits cell proliferation in gastric cancer [J/OL]. PLoS One,2014,9(1):e85296. [2014- 09- 15]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0085296.
·論著·
ZU Ming1,XU Xue1,ZHOU Wei-xun2,F(xiàn)EI Gui-Jun1,WU Xi1,YAO Fang1,LI Yuan2,CHENG Shu-jun3,LU Xing-hua1
1Department of Gastroenterology,2Department of Pathology,PUMC Hospital,
CAMS and PUMC,Beijing 100730,China
3State Key Laboratory of Molecular Oncology,Cancer Institute Hospital,CAMS and PUMC,Beijing 100021,China
Corresponding author:LU Xing-huaTel:010- 69155770,E-mail:Lxhbj2000@aliyun.com
ABSTRACT:ObjectiveTo investigate the whole genome expression profiles between gastric high-grade intraepithelial neoplasia(HGIN)tissues with cancer and HGIN tissues without cancer. MethodsGastric specimens from an upper magnifying chromoendoscopic targeted biopsy were collected at Peking Union Medical College Hospital from March 2010 to May 2013. Each of the forceps biopsies from the 21 patients was HGIN,but there were 10 HGIN and 11 HGIN with cancer after the endoscopic submucosal dissection. The whole genome expression profiling was performed on 10 HGIN samples and 11 HGIN with cancer samples using Agilent 4 × 44K Whole Human Genome microarrays. Differentially expressed genes between different types of lesions were identified using an unpaired t-test and corrected with the Benjamini and Hochberg false discovery rate algorithm. A gene ontology(GO)enrichment analysis was performed using the GeneSpring software GX 12.6. ResultsThe gene expression patterns were different between HGIN tissues with cancer and HGIN tissues without cancer. There were 470 significantly differentially expressed transcripts between them(P<0.05,F(xiàn)old Change>2),with 180 up-regulated genes and 290 down-regulated genes in HGIN tissues with cancer. A GO enrichment analysis demonstrated that the most striking over-expressed transcripts in HGIN with cancer were in the category of triglyceride biosynthetic process,acylglycerol biosynthetic process,neutral lipid biosynthetic process,glycerol ether metabolic process,organic ether metabolic process,and glycerolipid metabolic process. ConclusionThe change of lipid metabolism may contribute to the pathogenesis of gastric cancer at an early stage.
Key words:gastric high-grade intraepithelial neoplasia;gastric cancer;whole genome expression microarray
收稿日期:(2014- 09- 30)
DOI:10.3881/j.issn.1000- 503X.2015.01.005
中圖分類號(hào):R735.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000- 503X(2015)01- 0023- 07
通信作者:陸星華電話:010- 69155770,電子郵件:Lxhbj2000@aliyun.com
基金項(xiàng)目:衛(wèi)生部衛(wèi)生公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(200902002-3)Supported by the Specific Grants of Public-Funded Projects in the Health Industry(200902002- 3)
中國(guó)醫(yī)學(xué)科學(xué)院學(xué)報(bào)2015年1期