蘇 萍,李邦興
(重慶理工大學(xué) 光電信息學(xué)院,重慶 400054)
?
摻雜Nd3+離子CsCdBr3晶體光譜的理論分析
蘇 萍,李邦興
(重慶理工大學(xué) 光電信息學(xué)院,重慶 400054)
運(yùn)用稀土自由離子理論和晶體場(chǎng)理論,通過(guò)對(duì)摻雜Nd3+離子的CsCdBr3晶體的發(fā)光光譜的計(jì)算分析,分別擬合了實(shí)驗(yàn)光譜數(shù)據(jù)中的28、47和65條能級(jí),得出理論晶場(chǎng)能級(jí)與實(shí)驗(yàn)值的標(biāo)準(zhǔn)差分別為3.83,12.367和25.852 cm-1。該結(jié)果比已有的擬合結(jié)果小得多,表明此計(jì)算結(jié)果與實(shí)驗(yàn)光譜吻合得較好,說(shuō)明擬合過(guò)程和方法是合理的。同時(shí)得到了合理的自由離子參量和晶場(chǎng)參量,為進(jìn)一步研究稀土離子在晶體材料中受到晶體場(chǎng)作用的各種物理機(jī)制打下基礎(chǔ)。
CsCdBr3;Nd3+;晶場(chǎng)能級(jí);擬合
摻雜稀土離子的CsCdBr3晶體是廣泛應(yīng)用的發(fā)光和激光材料[1-2],研究CsCdBr3晶場(chǎng)中稀土離子光譜特性對(duì)光學(xué)材料和相關(guān)器件的開(kāi)發(fā)應(yīng)用具有重要意義。本文對(duì)CsCdBr3晶場(chǎng)中摻雜3價(jià)稀土釹離子(Nd3+)的發(fā)光光譜進(jìn)行了計(jì)算分析,得到與實(shí)驗(yàn)光譜數(shù)據(jù)符合較好的理論晶場(chǎng)能級(jí)結(jié)果和相關(guān)擬合參量,并對(duì)計(jì)算結(jié)果進(jìn)行了分析。
晶體中稀土離子的4fN組態(tài)的能級(jí)分裂是稀土自由離子內(nèi)部作用Hf和晶體場(chǎng)作用HCF共同作用的結(jié)果,總的有效算符哈密頓量可表示為
(1)
其中Hf是稀土自由離子本身復(fù)雜的電子構(gòu)型引起的各種相互作用的總和[3-4],即
(2)
式中:Fk(k=2,4,6)代表庫(kù)侖相互作用;ζ是自旋-軌道相互作用參數(shù);α,β,γ代表二體作用;Tm(m=2,3,4,6,7,8)代表三體相互作用參數(shù);Pk表示靜電相互作用和自旋-軌道相互作用耦合;Mj(j=0,2,4)為徑向積分,包含了軌道之間、自旋之間、自旋和其他軌道之間的相互作用。
晶場(chǎng)作用HCF主要由摻雜Nd3+離子和在CsCdBr3晶場(chǎng)中Cd2+位置的C3v點(diǎn)群對(duì)稱(chēng)決定[5-8]:
(3)
式中:Ckq為球張量算符;Bkq為需要擬合的晶場(chǎng)參量。
根據(jù)以上光譜理論建立完全能量矩陣,通過(guò)對(duì)角化,采用Yeung[9]編寫(xiě)的fshell程序?qū)sCdBr3晶體中Nd3+的的晶場(chǎng)能級(jí)重新進(jìn)行理論擬合。擬合參數(shù)和28條晶場(chǎng)能級(jí)分別如表1、2所示[5-6]。
標(biāo)準(zhǔn)差σ公式為[3,10-11]:σ=[∑ (Eobs-Ecalc)2/N]1/2,其中:N表示擬合能級(jí)數(shù)目;Eobs和Ecalc分別代表實(shí)驗(yàn)?zāi)芗?jí)和計(jì)算結(jié)果。擬合時(shí)采用了合理的經(jīng)典比例[11-12]:M2=0.56M0,M4=0.38M0,P4=0.75P2,P6=0.50P2。表1中A,B,C分別表示擬合CsCdBr3晶場(chǎng)中Nd3+離子的能量最低的28、47、65條能級(jí)所得的擬合參量。
表1 CsCdBr3晶體中Nd3+的自由離子和晶場(chǎng)能級(jí) cm-1
表2 CsCdBr3晶體中Nd3+離子的65條晶場(chǎng)能級(jí)
續(xù)表
多重態(tài)實(shí)驗(yàn)?zāi)芗?jí)計(jì)算能級(jí)ΔE4I13/238593844.414.638613856.174.83238623856.415.59440134015.92-2.92240204036.47-16.4740364046.62-10.6240754075.95-0.9494I15/258185797.3520.6558275811.8615.1458655863.391.60560606065.27-5.2760686073.27-5.26960876110.58-23.5861356134.830.16761566156.21-0.2114F3/21123211222.429.5771126911275.35-6.3484F5/21222612212.4313.571229112303.94-12.941231212312.01-0.0072H(2)9/21236312414.49-51.491246612451.0114.991247612463.8912.111251812523-4.9981254012543.96-3.9614F7/21320913203.235.771324013235.734.2671326413283.9-19.91335813320.2937.714S3/21334613353.99-7.991334613359.2-13.24F9/21444614453.05-7.0511449114493.76-2.7631450214499.722.2761463314616.616.41465314664.93-11.932H(2)11/21569815758.33-60.331570015772.89-72.891572315776.16-53.161585015789.5160.491585415798.1955.811587315800.6972.31
續(xù)表
多重態(tài)實(shí)驗(yàn)?zāi)芗?jí)計(jì)算能級(jí)ΔE4G5/21657316597.64-24.641680416812.14-8.1351682016822.97-2.972G7/21694616988.56-42.561708717030.0256.981711117066.7944.211712017102.5617.444G7/21858618568.0117.991868818692.65-4.6471869618702.5-6.5041875518795.29-40.292P1/22292722916.6410.36
本文對(duì)CsCdBr3晶體中Nd3+光譜進(jìn)行計(jì)算分析時(shí)考慮了自旋-自旋相互作用Hss會(huì)影響晶場(chǎng)理論中的二體作用,由此對(duì)晶場(chǎng)能級(jí)分裂造成影響[9]。從表1中的擬合參量可以看出,分別擬合實(shí)驗(yàn)光譜數(shù)據(jù)中的28條、47條和65條能級(jí),得出的理論晶場(chǎng)能級(jí)與實(shí)驗(yàn)值的標(biāo)準(zhǔn)差σ分別為3.83,12.367和25.852 cm-1。相比Barthem[5]的研究成果(6.6,15和31 cm-1),以及李彩云[6]所得擬合的65條能級(jí)的σ=29.27 cm-1,本文得出的σ有了明顯的減小,意味著本文中的晶場(chǎng)能級(jí)的理論值與實(shí)驗(yàn)譜數(shù)據(jù)吻合得更好,擬合結(jié)果更為理想,表明Hss對(duì)晶體中稀土離子的晶場(chǎng)作用的貢獻(xiàn)是不可忽略的。
表2中顯示的晶場(chǎng)能級(jí)擬合結(jié)果顯示出某些多重態(tài)的能級(jí)與實(shí)驗(yàn)值偏差較大,如2H11/2(見(jiàn)表2)。這個(gè)結(jié)果與已有的其他基質(zhì)晶體中的4f3離子Nd3+的2H11/2多重態(tài)擬合偏差較大的結(jié)論一致[13-14]。在進(jìn)一步研究晶體中Nd3+離子的晶場(chǎng)能級(jí)時(shí),可考慮加入關(guān)聯(lián)晶場(chǎng)的作用以得到與實(shí)驗(yàn)光譜數(shù)據(jù)更為一致的結(jié)果。
為了更好地?cái)M合晶體中稀土離子的光譜數(shù)據(jù),并得出能真切反映稀土離子在晶體中受到晶場(chǎng)作用的晶場(chǎng)參量,在運(yùn)用晶體場(chǎng)理論分析晶場(chǎng)能級(jí)時(shí)需加入Hss和關(guān)聯(lián)晶場(chǎng)的作用。由于晶場(chǎng)參量與材料的結(jié)構(gòu)對(duì)稱(chēng)有關(guān),因此采用從頭計(jì)算材料結(jié)構(gòu)的方法來(lái)獲得晶場(chǎng)參量的值成為可能,進(jìn)而通過(guò)掌握摻雜稀土離子的材料的能級(jí)劈裂而了解其光譜性質(zhì),從而可對(duì)相關(guān)材料的發(fā)光光譜進(jìn)行解釋?zhuān)⒃谝欢ǔ潭壬蠈?duì)其他尚未有實(shí)驗(yàn)數(shù)據(jù)報(bào)道的稀土新材料的光譜進(jìn)行預(yù)測(cè),以期為稀土發(fā)光材料的應(yīng)用提供理論支持,并對(duì)高新技術(shù)材料的開(kāi)發(fā)發(fā)揮理論指導(dǎo)作用。
[1] Redmond S M,Rand S C.Intrinsic chromatic switching of visible luminescence inYb3+,Er3+:CsCdBr3[J].Optics Letters,2003,28(3):173-174.
[2] Neukum J,Bodenschatz N,Heber J.Spectroscopy and up-conversion of CsCdBr3:Pr3+[J].Phys Rev,1994,B50(6):3536-3546.
[3] Crosswhite H M,Crosswhite H.Parametric model for f-shell configurations I.The effective-operator Hamiltonian [J].J Opt Soc Am B,1984,1(2):246-254.
[4] Carnall W T,Goodman G L,Rajnak K,et al.A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3[J].J Chem Phys,1989,90(7):3443-3457.
[5] Barthem R B,Buisson R.Spectroscopic analysis of Nd3+pairs in CsCdBr3[J].J Chem Phys,1989,91(2):627-632.
[6] 李彩云,王永明,楊勤.CsCdBr3晶體中Nd3+離子的晶體場(chǎng)能級(jí)計(jì)算 [J].分子科學(xué)學(xué)報(bào),2009,25(4):273-277.
[7] Elisabeth Antic-Fidancev,Miche1e Lemaitre-Blaise,Jean-Pierre Chaminade, et al.Crystal-field effect in CsCdBr3:Pr3+[J].J Alloys Compd,1995,225(1):95-98.
[8] John R Q,Nigel J C,Kevin E G,et al.Optical characterization and electronic energy-level structure of Er3+-doped CsCdBr3[J].J Chem Phys,1996,105 (22):9812-9822.
[9] Yau Yuen Yeung,Peter A T.New analyses of energy level datasets for LaCl3:Ln3+(Ln=Pr,Nd,Er) [J].J Alloys Compd,2013,575:54-60.
[10]Liu G K,Jacquier B.Spectroscopic Properties of Rare Earths in Optical Materials [M].Beijing:Springer and Tsinghua University Press,2005.
[11]Carnall W T,Crosswhite H.Further interpretation of the spectra of Pr3+-LaF3and Tm3+-LaF3[J].J Less-Common Metals,1983,93:127-135.
[12]Carnall W T,Fields P R,Morrison J,et al.Absorption Spectrum of Tm3+:LaF3[J].J Chem Phys,1970,52:4054-4059.
[13]Rukmini E,Jayasankar C K,Reid M F.Correlation-crystal-field analysis of Nd3+(4f3) energy level structures in variance crystal hosts [J].J Phys:Condens,Matter,1994,6:5919-5936.
[14]Fancher M,Garcia D,Caro P,et al.The anomalous crystal field splittings of2H11/2(Nd3+,4f3) [J].J Phys,1989,50:219-243.
(責(zé)任編輯 劉 舸)
Theoretical Analysis of Spectra for Nd3+Ions in CsCdBr3Crystals
SU Ping, LI Bang-xing
(College of Optical and Electronic Information,Chongqing University of Technology, Chongqing 400054, China)
The optical spectra of Nd3+in CsCdBr3were calculated by using the free rare earth ion theory and crystal field theory. Respectively, 28, 47, 65 experimental crystal field levels were fitted, with the standard deviations of 3.83 cm-1, 12.367 cm-1, 25.852 cm-1. These deviations are significantly smaller than those in previous work. The calculated energy levels fit better with the experimental data, which shows that the calculation process and the method are reasonable. Through this fitting procedure, the reasonable free-ion and crystal-field parameters have been obtained. It is beneficial for further research on the physical mechanisms of crystal field of rare earth ions in crystals.
CsCdBr3; Nd3+; crystal field levels; fitting
2014-11-15 基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(11347172);重慶市基礎(chǔ)與前沿研究計(jì)劃一般項(xiàng)目(cstc2013jcyjA0688)
蘇萍(1985—), 女,博士, 講師, 主要從事稀土摻雜材料光譜特性相關(guān)研究。
蘇萍,李邦興.摻雜Nd3+離子CsCdBr3晶體光譜的理論分析[J].重慶理工大學(xué)學(xué)報(bào):自然科學(xué)版,2015(3):21-24.
format:SU Ping, LI Bang-xing.Theoretical Analysis of Spectra for Nd3+Ions in CsCdBr3Crystals [J].Journal of Chongqing University of Technology:Natural Science,2015(3):21-24.
10.3969/j.issn.1674-8425(z).2015.03.005
O562.3+1
A
1674-8425(2015)03-0021-04
重慶理工大學(xué)學(xué)報(bào)(自然科學(xué))2015年3期