侯笑云,宋 博,趙 爽,丁圣彥, 2, *,梁國(guó)付,董翠芳
1 河南大學(xué)環(huán)境與規(guī)劃學(xué)院,開(kāi)封 475004 2 河南大學(xué)生態(tài)科學(xué)與技術(shù)研究所,開(kāi)封 475004
農(nóng)業(yè)景觀動(dòng)態(tài)對(duì)林地地表節(jié)肢動(dòng)物多樣性的影響
侯笑云1,宋 博1,趙 爽1,丁圣彥1, 2, *,梁國(guó)付1,董翠芳1
1 河南大學(xué)環(huán)境與規(guī)劃學(xué)院,開(kāi)封 475004 2 河南大學(xué)生態(tài)科學(xué)與技術(shù)研究所,開(kāi)封 475004
以黃河下游典型農(nóng)區(qū)封丘縣為研究區(qū),在林地景觀中進(jìn)行地表節(jié)肢動(dòng)物的觀測(cè)。用物種豐富度和香農(nóng)多樣性指數(shù)代表物種多樣性,選擇代表景觀背景的5個(gè)競(jìng)爭(zhēng)模型:生境特性(H1, 2012)、基質(zhì)特性(H2, 2012)、生境變化(H3, 1984—2012)、基質(zhì)變化(H4, 1984—2012)和土壤-環(huán)境條件(H5, 2012)從4個(gè)空間尺度上(100, 250, 350和500m)進(jìn)行分析,通過(guò)運(yùn)用基于赤池信息量準(zhǔn)則(Akaike information criterion, AIC)的多模型推理(Multi-model Inference, MMI)方法,在R軟件里用廣義線性模型(Generalized Linear Models, GLM)探究了研究區(qū)近30年(1984—2012年)景觀背景變化對(duì)林地地表節(jié)肢動(dòng)物多樣性的影響。研究表明,不同景觀背景模型對(duì)地表節(jié)肢動(dòng)物多樣性的影響具有尺度依賴性。在100m的尺度下,生境特性(H1)最能夠解釋香農(nóng)多樣性和物種豐富度,但是隨著尺度的增加,生境特性變化(H3)在較大(250、350m和500m)的尺度對(duì)物種豐富度和香農(nóng)多樣性影響最大,而基質(zhì)特性和土壤-環(huán)境條件(H2和H5)的作用不顯著。景觀背景對(duì)地表節(jié)肢動(dòng)物多樣性的解釋量達(dá)到40%。在研究區(qū)域,生境特性是表征香農(nóng)多樣性指數(shù)和物種豐富度的指標(biāo)。
多模型推理;赤池信息量準(zhǔn)則;地表節(jié)肢動(dòng)物;生物多樣性;林地;農(nóng)業(yè)景觀
生物多樣性是制約生態(tài)系統(tǒng)服務(wù)發(fā)揮的關(guān)鍵因素之一[1-3]。農(nóng)業(yè)景觀生態(tài)系統(tǒng)的持續(xù)發(fā)展離不開(kāi)生物多樣性早已成為共識(shí)[4-5],相當(dāng)多非農(nóng)物種的生存離不開(kāi)農(nóng)業(yè)景觀所提供的食物和棲息地[6]。農(nóng)業(yè)景觀中的自然、半自然生境(如農(nóng)田邊界、林地、樹(shù)籬、小溪等)對(duì)于棲息于該生境內(nèi)的動(dòng)物有很重要的影響。景觀異質(zhì)性對(duì)生物多樣性的影響引起了國(guó)內(nèi)外學(xué)者廣泛關(guān)注,研究尺度從生境間、田塊間一直擴(kuò)展到區(qū)域,甚至跨國(guó)界的不同尺度上的比較研究[7-9]。地表節(jié)肢動(dòng)物是農(nóng)業(yè)景觀生態(tài)系統(tǒng)中食物網(wǎng)的重要組成部分,相關(guān)研究多集中在農(nóng)田[10-19]、草地[20-22]、森林[23-27]等不同生態(tài)系統(tǒng)類型的地表節(jié)肢動(dòng)物,發(fā)現(xiàn)景觀異質(zhì)性對(duì)地表節(jié)肢動(dòng)物的影響存在尺度效應(yīng),而且不同景觀類型對(duì)地表節(jié)肢動(dòng)物群落的影響也不同[10,28-31]。黃河下游地區(qū)是我國(guó)最重要的糧食主產(chǎn)區(qū)之一,對(duì)于保障國(guó)家糧食安全具有重要的戰(zhàn)略地位。封丘縣地處黃河下游黃淮海平原典型地區(qū),以農(nóng)業(yè)景觀生態(tài)系統(tǒng)為主,農(nóng)業(yè)景觀異質(zhì)性與生物多樣性的關(guān)系研究,對(duì)于區(qū)域生態(tài)系統(tǒng)服務(wù)的發(fā)揮和生態(tài)系統(tǒng)穩(wěn)定至關(guān)重要。近些年來(lái),區(qū)內(nèi)景觀異質(zhì)性、生物多樣性和生態(tài)系統(tǒng)服務(wù)等研究逐漸受到重視[32-33],但是對(duì)于地表節(jié)肢動(dòng)物的研究還比較少,特別是開(kāi)展林地景觀異質(zhì)性和地表節(jié)肢動(dòng)物多尺度關(guān)系的研究還很少。本研究以林地地表節(jié)肢動(dòng)物為研究對(duì)象,運(yùn)用多模型推理方法(MMI)[34],以期探究近30年(1984—2012年)景觀動(dòng)態(tài)變化對(duì)林地中地表節(jié)肢動(dòng)物多樣性的影響及其尺度效應(yīng),從而為該地區(qū)農(nóng)業(yè)景觀類型下林地中的生物多樣性保護(hù)提供理論支持,使生態(tài)系統(tǒng)服務(wù)更好的發(fā)揮。
封丘縣位于河南省東北部,黃河北岸,是黃河下游農(nóng)業(yè)區(qū)的典型地區(qū)之一(圖1)。地處34°53′—35°14′ N,114°14′—114°46′ E之間,該區(qū)屬暖溫帶大陸性季風(fēng)氣候,年平均氣溫在13.5—14.5 ℃之間,年平均降水量615.1 mm,土壤類型以潮土為主。地貌為黃河沖積平原,形態(tài)復(fù)雜,沙崗、平原、洼地兼有。是全國(guó)100個(gè)商品糧生產(chǎn)縣之一。近年來(lái),隨著土地利用強(qiáng)度的加劇,景觀類型發(fā)生了很大的變化。該區(qū)的農(nóng)田是最主要的景觀類型,總面積達(dá)81367.9 hm2,約占全縣總面積的66.4%;居民點(diǎn)廣泛散落在區(qū)域內(nèi),大小不一,約占總面積的11.6%;林地多呈斑塊狀散布在農(nóng)田中和居民點(diǎn)周邊,以人工種植的楊樹(shù)(Populusspp.)林為主,間有極少量的混交林和次生林,總面積約8672.6 hm2[33]。
圖1 研究區(qū)采樣點(diǎn)分布示意圖Fig.1 Distribution map of sampling sites in study area
2.1 數(shù)據(jù)采集與處理
研究數(shù)據(jù)為1984年(1∶5萬(wàn))和2012年(1∶5萬(wàn))封丘縣土地利用現(xiàn)狀數(shù)據(jù)。數(shù)據(jù)的處理和分析主要采用ArcGIS 10.0等軟件,景觀指數(shù)的計(jì)算借助于Fragstats4.1等軟件。依據(jù)研究區(qū)實(shí)際情況,在野外調(diào)查的基礎(chǔ)上,將研究區(qū)分為:農(nóng)業(yè)用地、林地、道路、城鎮(zhèn)用地、農(nóng)村居民點(diǎn)、工礦用地、河流、濕地、坑塘、灘涂、溝渠和裸地,共12種景觀類型。
在研究區(qū)選擇一個(gè)典型樣帶,在該樣帶中選取了43片林地樣地(圖1),每片取樣林地選取5個(gè)典型樣點(diǎn),相鄰樣點(diǎn)之間至少間隔10m。研究選取的43片林地中,最大的林地面積為231039.41 m2,最小的林地面積為2870.44 m2,標(biāo)準(zhǔn)差為46363.45 m2。地表節(jié)肢動(dòng)物的調(diào)查采用陷阱捕獲法。陷阱的具體布設(shè)為:將PP塑料杯(口徑7.8 cm,底徑6 cm,深17.5 cm,容積500mL)埋入土壤中,杯口與地表齊平,在杯中放置150—200mL 20%濃度乙二醇和1滴洗滌劑。取樣時(shí)間為2013年5月16日至22日,在野外布設(shè)6 d后收回,立即將各陷阱中捕獲到的物種按對(duì)應(yīng)樣點(diǎn)編號(hào)放入含75%酒精的10mL帶蓋離心管中保存,并盡快在實(shí)驗(yàn)室進(jìn)行鑒定分類,物種的具體分類主要參照《中國(guó)土壤動(dòng)物檢索圖鑒》、《昆蟲(chóng)分類》等分類系統(tǒng)[35-36]。在對(duì)地表節(jié)肢動(dòng)物取樣的同時(shí),采集土壤分析樣品。在每個(gè)樣地內(nèi),按照蛇形采樣法隨機(jī)布設(shè)10個(gè)左右的采樣點(diǎn),每個(gè)樣點(diǎn)采集100g左右的表層土壤樣品(厚20cm),然后將其充分混合,按“四分法”舍棄多余土樣,保留1 kg左右的分析樣品。取回的土壤樣品先帶回實(shí)驗(yàn)室進(jìn)行風(fēng)干,挑出植物殘?bào)w和磚瓦塊,用研缽磨碎,全部通過(guò)孔徑1 mm的土壤篩后備用。同時(shí)在每個(gè)樣地對(duì)植被進(jìn)行群落調(diào)查。
表1 競(jìng)爭(zhēng)模型的相關(guān)解釋變量
Table 1 Model set with the competing models under related predictors
模型景觀因子解釋變量時(shí)間特征ModelLandscapefactorsPredictorsTemporalcharacteristicsH1生境特性林地面積靜態(tài)歐式最近鄰近距離H2基質(zhì)特性農(nóng)田面積靜態(tài)辛普森多樣性指數(shù)H3生境變化林地面積變化動(dòng)態(tài)H4基質(zhì)變化歐式最近鄰近距離變化動(dòng)態(tài)辛普森多樣性指數(shù) 連接度變化H5土壤-環(huán)境因子全氮含量靜態(tài)有機(jī)質(zhì)pH值 活性碳 香農(nóng)多樣性指數(shù) 植被覆蓋度 路距
2.2 數(shù)據(jù)分析方法
2.2.1 多模型推理方法
研究采用多個(gè)假定的模型來(lái)代表生物的狀態(tài)和進(jìn)程,基于赤池信息量準(zhǔn)則(AIC)的多模型推理(MMI)方法,對(duì)模型中每一個(gè)相關(guān)數(shù)據(jù)的強(qiáng)度進(jìn)行評(píng)價(jià)[34]。MMI方法允許用戶比較和排列多個(gè)競(jìng)爭(zhēng)模型,定義最接近真實(shí)生態(tài)過(guò)程的模型,同時(shí)可以對(duì)所選模型進(jìn)行定量分析[37-38]。MMI需要先定義一個(gè)多重假定競(jìng)爭(zhēng)模型[34,38-39],假定競(jìng)爭(zhēng)模型選取以下五個(gè)景觀特性:生境特征(H1)、基質(zhì)特性(H2)、生境變化(H3)、基質(zhì)變化(H4)和土壤-環(huán)境條件(H5),每個(gè)景觀特性均通過(guò)相對(duì)應(yīng)的解釋變量來(lái)代表一個(gè)特定的競(jìng)爭(zhēng)模型(表1)。
2.2.2 解釋變量
本文采用五個(gè)競(jìng)爭(zhēng)模型相關(guān)的15個(gè)解釋變量來(lái)分析與地表節(jié)肢動(dòng)物的關(guān)系(表1)。根據(jù)地表節(jié)肢動(dòng)物的生活習(xí)性,以每片林地采樣點(diǎn)為中心,分別設(shè)置100、250、350m和500m等4個(gè)不同半徑的緩沖區(qū),從中提取出所需的景觀指數(shù)。
其中,歐式最近鄰近距離變異系數(shù)(Euclidean Nearest Neighbor Distance-Coefficient of Variation, ENN_CV)表征林地斑塊之間平均最近相鄰距離的變量系數(shù),較大的變量系數(shù)指示林地斑塊呈不規(guī)律和不均勻的分布。Simpson′s多樣性指數(shù)(Simpson′s Diversity Index, SIDI)是用來(lái)表征景觀多樣性的指數(shù),它的取值范圍在0—1之間,越接近1表明研究區(qū)的景觀多樣性越高。
用1984年和2012年間景觀指數(shù)的變化來(lái)計(jì)算生境變化和基質(zhì)特性變化中的解釋變量。其中,ENN_CV變化測(cè)定從1984到2012年間斑塊分布的變化,這可能影響基質(zhì)的特性。它代表了在景觀水平上(包括所有土地覆蓋類型)ENN_CV指數(shù)(ENN_CV2012—ENN_CV1984)的不同。若為負(fù)值指示后期景觀中的斑塊(土地覆蓋類型)是低異質(zhì)的或者不均衡的分布。路距是取樣點(diǎn)和當(dāng)?shù)刂鞲傻乐g的距離,距離的遠(yuǎn)近一定程度上代表了人類干擾的強(qiáng)弱。從取樣點(diǎn)周圍獲得的土壤主要因子包括:全氮含量、有機(jī)質(zhì)含量、pH值和活性碳(AOC)含量。用樣點(diǎn)附近植物的Shannon′s多樣性指數(shù)(SHDI)和覆蓋度來(lái)代表植物的多樣性。
2.2.3 響應(yīng)變量
選取地表節(jié)肢動(dòng)物群落物種豐富度和Shannon′s多樣性指數(shù)作為響應(yīng)變量。
物種豐富度指數(shù)
S=(R-1)/lnN
(1)
式中,R為群落的物種數(shù)目,N為群落所有物種個(gè)體數(shù)之和。
Shannon′s多樣性指數(shù):
(2)
式中,S為樣方內(nèi)物種數(shù)目,Pi為屬于種i的個(gè)體在全部個(gè)體中的比例。
2.2.4 統(tǒng)計(jì)分析
本文對(duì)每個(gè)競(jìng)爭(zhēng)模型中所有的解釋變量分別進(jìn)行了標(biāo)準(zhǔn)化,并用多元線性對(duì)解釋變量之間進(jìn)行Pearson相關(guān)性檢驗(yàn),每列變量的相關(guān)性檢驗(yàn)結(jié)果都小于0.5。通過(guò)廣義線性模型(GLM)來(lái)分析解釋變量和響應(yīng)變量之間的關(guān)系。物種豐富度采用Poisson誤差分布和一個(gè)對(duì)數(shù)連接函數(shù)來(lái)對(duì)解釋變量和響應(yīng)變量的關(guān)系進(jìn)行估算。對(duì)于香農(nóng)多樣性指數(shù)選用Gaussian誤差分布和恒等連接函數(shù)來(lái)對(duì)解釋變量和響應(yīng)變量的關(guān)系進(jìn)行估算。然后基于已定義的模型集合(表1),在每個(gè)空間尺度(100、250、350m和500m)用線性指示變量(沒(méi)有考慮轉(zhuǎn)換或者相互作用)來(lái)完成模型擬合。由于樣本量較少,故使用修正后的AIC,即AICc來(lái)比較和排列模型。以上操作是在R統(tǒng)計(jì)軟件中進(jìn)行的[40]。
3.1 林地中地表節(jié)肢動(dòng)物多樣性分布格局
通過(guò)調(diào)查,研究區(qū)地表節(jié)肢動(dòng)物共包括17個(gè)目、58個(gè)科,個(gè)體數(shù)量為2776頭(圖2)。膜翅目(Hymenoptera)、鞘翅目(Coleoptera)、端足目(Amphipoda)、蜘蛛目(Araneae)、圓馬陸目(Sphaerotheiida)、等足目(Isopoda)、雙翅目(Diptera)和半翅目(Hemiptera)的個(gè)體數(shù)量較多,分別占捕獲的地表節(jié)肢動(dòng)物總體個(gè)數(shù)的36%、16%、11%、10%、10%、8%、3%和2%,為研究區(qū)的優(yōu)勢(shì)和常見(jiàn)類群。同翅目(Homoptera)、蚰蜒目(Scutigeromorpha)、蜚蠊目(Blattaria)、直翅目(Orthoptera)、蜱螨目(Acarina)、彈尾目(Collembola)、石蜈蚣目(Lithobiomorpha)、地蜈蚣目(Geophilomorpha)和蜈蚣目(Scolopendromorpha)的個(gè)體數(shù)量均小于總體個(gè)數(shù)的1%,為該地區(qū)的稀有類群。圖2顯示了研究區(qū)林地景觀中的優(yōu)勢(shì)和常見(jiàn)類群的多度和研究區(qū)林地景觀中的稀有類群(多度小于總數(shù)1%的類群)的多度。物種豐富度和香農(nóng)多樣性指數(shù)呈顯著的正相關(guān)(r= 0.51,P< 0.001)。
圖2 地表節(jié)肢動(dòng)物多度Fig.2 Abundance of ground arthropod
3.2 1984年到2012年間景觀格局的變化
生境和基質(zhì)特性從1984年到2012年發(fā)生了很大的變化(圖3)。樣點(diǎn)周圍林地面積大幅度增加。研究表明,近30年間該區(qū)ENN_CV值的增加,代表了采樣點(diǎn)附近的斑塊異質(zhì)性程度提高。在100m尺度上,1984年的ENN_CV值大部分都為0,因?yàn)樵?984年采樣點(diǎn)周圍100m的范圍內(nèi)主要是大面積的農(nóng)田景觀,而2012年的ENN_CV值則普遍在30—50之間,說(shuō)明研究區(qū)斑塊的異質(zhì)性顯著提高。在100m范圍內(nèi)SIDI值呈現(xiàn)顯著增加,原因是樣點(diǎn)附近的景觀在人類干擾下,大面積的農(nóng)田轉(zhuǎn)化為林地或者其他景觀類型,其中林地面積大幅度增加。連接度(CONNECT)變化在100m尺度上的平均值在50左右,說(shuō)明在該尺度斑塊之間的連接度發(fā)生了很大的變化。而且隨著尺度的增加,CONNECT變化的平均值逐漸減少。說(shuō)明在較小的尺度范圍內(nèi)連接度受到的波動(dòng)較大,隨著尺度范圍的增加,在較大的尺度范圍內(nèi)連接度受到的波動(dòng)則較小。
圖3 每個(gè)競(jìng)爭(zhēng)模型在4個(gè)空間尺度相對(duì)應(yīng)的解釋變量Fig.3 The predictors associated to each competing models at four spatial extents模型:生境特性(H1, 2012);基質(zhì)特性(H2, 2012);生境變化(H3, 1984—2012);基質(zhì)變化(H4, 1984—2012)和土壤-環(huán)境條件(H5, 2012);尺度范圍:100, 250, 350和500m Models:Habitat quality (H1, 2012); matrix quality (H2, 2012); habitat quality change (H3, 1984—2012); matrix quality change (H4, 1984—2012); soil-environmental conditions (H5, 2012); Spatial extents:100, 250, 350和500m
3.3 景觀背景變化對(duì)林地地表節(jié)肢動(dòng)物的影響
3.3.1 最優(yōu)模型中景觀背景對(duì)香農(nóng)多樣性指數(shù)和物種豐富度的影響
香農(nóng)多樣性指數(shù)和物種豐富度對(duì)景觀背景的響應(yīng)基本一致。生境特性(H1)是最能解釋香農(nóng)多樣性和物種豐富度的,但是生境特性變化(H3)的影響也很明顯。土壤-環(huán)境條件和基質(zhì)特性(H5和H2)對(duì)地表節(jié)肢動(dòng)物的解釋量很小。
AICc模型選擇的結(jié)果顯示,在100m的空間尺度上,生境特性模型是解釋香農(nóng)多樣性指數(shù)的最優(yōu)模型(表2和表3中加粗顯示的模型即為在每個(gè)空間尺度上的最優(yōu)模型)(H1,AICc = 47.74,ΔAICc=0,R2= 0.32)(表2)。在該尺度上,能夠解釋物種豐富度的最優(yōu)模型同樣是生境特性模型(H1)(H1,AICc = 240.67,Δ AICc = 0,R2= 0.23)(表3)。
表2 在不同尺度用信息理論模型選擇和多模型推理解釋香農(nóng)多樣性指數(shù)的結(jié)果
Table 2 Results of information theoretic model selection and multi-model inference explaining Shannon diversity index at different spatial extents
空間尺度/mSpatialExtent模型ModelsloglikKAICcΔAICcR2100H1-19.34447.740.000.32H4-19.86551.353.610.28H3-28.56363.7416.00<0.01H2-27.69464.4416.700.04H5-25.41973.0525.310.11250H3-27.80362.220.000.03H1-26.96462.970.750.07H2-27.41463.861.640.05H4-27.40566.424.200.05H5-25.41973.0510.830.11350H3-25.00459.050.000.15H1-27.72362.053.000.04H4-25.63562.883.830.06H2-28.31465.676.620.01H5-25.41973.0514.000.11500H3-28.40363.400.000.01H2-28.43465.922.52<0.01H1-28.52466.092.69<0.01H4-28.36568.354.950.01H5-25.41973.059.650.11
Loglik:對(duì)數(shù)似然函數(shù)值(log-likelihood),K:變量個(gè)數(shù),AICc:赤池信息量準(zhǔn)則值A(chǔ)kaike Information Criterion value,ΔAICc:每個(gè)模型的AICc值與該尺度最優(yōu)AICc值之差,R2:調(diào)整后的擬合程度; 表中加粗顯示的模型即為在每個(gè)空間尺度上的最優(yōu)模型
表3 在不同尺度用信息理論模型選擇和多模型推理解釋物種豐富度的結(jié)果Table 3 Results of information theoretic model selection and multi-model inference explaining species richness at different spatial extents
3.3.2 景觀背景對(duì)物種豐富度和Shannon′s多樣性影響的尺度效應(yīng)
物種豐富度和Shannon′s多樣性對(duì)景觀背景的響應(yīng)均具有強(qiáng)烈的尺度依賴性。AICc值顯示了在100m的空間尺度生境特性(H1)對(duì)Shannon′s多樣性指數(shù)和物種豐富度的影響均是最顯著的(表2)。在該尺度基質(zhì)變化(H4)的影響也是很明顯的。但是隨著尺度的增加,在250m(H3,AICc = 254.40,ΔAICc = 0)、350m(H3,AICc = 254.32,ΔAICc = 0)和500m(H3,AICc = 254.26,ΔAICc = 0)的尺度范圍內(nèi)均是生境變化(H3)對(duì)物種豐富度的影響最明顯。同樣的,隨著尺度的增加,在250m(H3,AICc = 62.22,ΔAICc = 0)、350m(H3,AICc = 59.05,ΔAICc = 0)和500m(H3,AICc = 63.40,ΔAICc = 0)的尺度范圍內(nèi)也均是生境變化(H3)對(duì)Shannon′s多樣性的影響最明顯。
景觀背景對(duì)物種豐富度和Shannon′s多樣性指數(shù)的影響具有很強(qiáng)的尺度依賴性,在100m的尺度范圍內(nèi)地表節(jié)肢動(dòng)物的物種豐富度和Shannon′s多樣性指數(shù)受景觀背景的影響最大,在較大的尺度(250、350m和500m)物種豐富度和Shannon′s多樣性指數(shù)受生境變化(H3)的影響最明顯。
研究表明,在100m尺度范圍,生境特性(H1)對(duì)林地地表節(jié)肢動(dòng)物的物種豐富度和Shannon′s多樣性指數(shù)的影響最大,主要原因是生境特性包括林地面積和ENN_CV值,研究區(qū)林地面積的大面積增加和較大的ENN_CV值顯示了該區(qū)斑塊異質(zhì)性的增加。生境異質(zhì)性假說(shuō)認(rèn)為大的島嶼或斑塊擁有更多的生境斑塊因而容納更多的物種,特別是生境特化種,斑塊面積的大小是生境異質(zhì)性高低的一個(gè)表征指標(biāo)。林地生境的增加和景觀多樣性的提高對(duì)林地中地表節(jié)肢動(dòng)物的影響最大。基質(zhì)變化(H4)對(duì)地表節(jié)肢動(dòng)物多樣性的影響只在100m的尺度上比較明顯,在其他尺度上則是相對(duì)薄弱的。
景觀背景對(duì)于林地中地表節(jié)肢動(dòng)物的多樣性有重要的影響,同時(shí)也說(shuō)明了從時(shí)間動(dòng)態(tài)角度出發(fā)可能更好的理解景觀背景和林地中地表節(jié)肢動(dòng)物之間的相互作用。與傳統(tǒng)的零假設(shè)測(cè)定相比,運(yùn)用MMI模型來(lái)評(píng)價(jià)生物多樣性和景觀背景的相互關(guān)系比較新穎,該方法在動(dòng)物多樣性方面研究較少,分析時(shí)需要認(rèn)真對(duì)待。
(1)景觀背景對(duì)Shannon′s多樣性和物種豐富度的影響存在著明顯的尺度效應(yīng)。Shannon′s多樣性和物種豐富度均在100m的尺度范圍內(nèi)對(duì)生境特性(H1)的響應(yīng)最明顯。但隨著尺度的增加,生境變化(H3)的重要性明顯增加,且在250、350m和500m的范圍均是生境變化(H3)對(duì)Shannon′s多樣性和物種豐富度的影響最明顯。這說(shuō)明在不同尺度景觀背景對(duì)地表節(jié)肢動(dòng)物多樣性的影響是不同的。在不同的尺度上,林地地表節(jié)肢動(dòng)物對(duì)不同的景觀特性響應(yīng)不同。在較小尺度(100m)上,林地中地表節(jié)肢動(dòng)物的物種豐富度和Shannon′s多樣性對(duì)生境特性(H1)響應(yīng)最明顯,說(shuō)明在小尺度上,地表節(jié)肢動(dòng)物對(duì)其棲息地特征非常敏感;但是在較大尺度(250、350m和500m)上,地表節(jié)肢動(dòng)物對(duì)生境變化(H3)響應(yīng)最大,說(shuō)明在較大尺度上,地表節(jié)肢動(dòng)物對(duì)其棲息地的變化響應(yīng)更加敏感。
(2)地表節(jié)肢動(dòng)物的物種豐富度和Shannon′s多樣性對(duì)景觀背景的響應(yīng)基本一致,均是生境特性在100m的特征尺度對(duì)其有最明顯的響應(yīng)。植物多樣性的相關(guān)研究[34]顯示,地形-環(huán)境條件在125 m的尺度對(duì)植物物種豐富度響應(yīng)最大,隨著尺度的增加,生境變化的重要性也隨之增強(qiáng)。但是基質(zhì)變化在所有尺度對(duì)植物Shannon′s多樣性的影響都很明顯,在500m的范圍內(nèi)影響達(dá)到最高。相比之下,之所以植物的物種豐富度和Shannon′s多樣性對(duì)景觀背景的響應(yīng)不同,而本研究中地表節(jié)肢動(dòng)物的物種豐富度和Shannon′s多樣性對(duì)景觀背景的響應(yīng)基本一致,是因?yàn)榈乇砉?jié)肢動(dòng)物的物種豐富度和Shannon′s多樣性呈顯著的正相關(guān)。另外,對(duì)植物多樣性研究的結(jié)果顯示基質(zhì)變化在所有尺度對(duì)植物的Shannon′s多樣性的影響都很明顯,在500m的范圍內(nèi)達(dá)到最大,但是本研究中生境的特性在100m的尺度范圍對(duì)林地地表節(jié)肢動(dòng)物的Shannon′s多樣性影響最大。這可能是因?yàn)閷?duì)于植物來(lái)說(shuō),主要是依靠風(fēng)力或者動(dòng)物進(jìn)行種子的傳播,其傳播范圍較大,相比之下,地表節(jié)肢動(dòng)物具有捕食、棲息和繁殖的生活需要,故其活動(dòng)范圍相對(duì)較小,主要在其棲息地附近活動(dòng),同時(shí)其自身的遷移能力也較弱,故在一個(gè)較小的尺度上研究相對(duì)合適。而且在該尺度上生境的特性對(duì)其影響最大。同時(shí),由于本研究選取的特征尺度只局限于500m以內(nèi),在這個(gè)范圍內(nèi)發(fā)現(xiàn)生境特性對(duì)林地地表節(jié)肢動(dòng)物的影響最大,沒(méi)有發(fā)現(xiàn)景觀指數(shù)對(duì)其的明顯影響,在今后的研究中是否可考慮在更大的尺度上進(jìn)行分析,來(lái)進(jìn)一步的分析景觀指數(shù)對(duì)地表節(jié)肢動(dòng)物的影響。
在研究區(qū)域景觀背景對(duì)地表節(jié)肢動(dòng)物多樣性的解釋量達(dá)到40%。建議今后的研究中可以進(jìn)行其他競(jìng)爭(zhēng)模型的構(gòu)想,能夠更好的解釋景觀背景對(duì)地表節(jié)肢動(dòng)物多樣性的影響。
[1] Hooper D U, Chapin III F S, Ewel J J, Hector A, Inchausti P, Lavorel S, Lawton J H, Lodge D M, Loreau M, Naeem S, Schmid B, Set?l? H, Symstad A J, Vandermeer J, Wardle D A. Effects of biodiversity on ecosystem functioning:a consensus of current knowledge. Ecological Monographs, 2005, 75(1):3- 35.
[2] Mace G M, Norris K, Fitter A H. Biodiversity and ecosystem services:a multilayered relationship. Trends in Ecology and Evolution, 2012, 27(1):19- 26.
[3] Midgley G F. Biodiversity and ecosystem function. Science, 2012, 335(6065):174- 175.
[4] Altieri M A. The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment, 1999, 74(1- 3):19- 31.
[5] Marshall E J P, Brown V K, Boatman N D, Lutman P J W, Squire G R, Ward L K. The role of weeds in supporting biological diversity within crop fields. Weed Research, 2003, 43(2):77- 89.
[6] Tscharntke T, Klein A M, Kruess A, Steffan-Dewenter I, Thies C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecology Letters, 2005, 8(8):857- 874.
[7] Ekroos J, Kuussaari M, Tiainen J, Heli?l? J, Seimola T, Helenius J. Correlations in species richness between taxa depend on habitat, scale and landscape context. Ecological Indicators, 2013, 34:528- 535.
[8] Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F, Cerny M, Blust G D, Cock R D, Diek?tter T, Dietz H, Dirksen J, Dormann C, Durka W, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Coeur D L, Maelfait J P, Opdam P, Roubalova M, Schermann A, Schermann N, Schmidt T, Schweiger O, Smulders M J M, Speelmans M, Simova P, Verboom J, Van Wingerden W K R E, Zobel M, Edwards P J. Indicators for biodiversity in agricultural landscapes:a pan-European study. Journal of Applied Ecology, 2008, 45(1):141- 150.
[9] 高俊峰, 馬克明, 馮宗煒. 景觀組成、結(jié)構(gòu)和梯度格局對(duì)植物多樣性的影響. 生態(tài)學(xué)雜志, 2006, 25(9):1087- 1094.
[10] Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement L W, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales M B, Oate J J, P?rt T, Weisser W W, Winqvist C, Thies C, Tscharntke T. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecological Applications, 2011, 21(5):1772- 1781.
[11] Fournier E, Loreau M. Respective roles of recent hedges and forest patch remnants in the maintenance of ground-beetle (Coleoptera:Carabidae) diversity in an agricultural landscape. Landscape Ecology, 2001, 16(1):17- 32.
[12] Aviron S, Burel F, Baudry J, Schermann N. Carabid assemblages in agricultural landscapes:impacts of habitat features, landscape context at different spatial scales and farming intensity. Agriculture, Ecosystems and Environment, 2005, 108(3):205- 217.
[13] Hendrickx F, Maelfait J P, Wingerden W V, Schweiger O, Speelmans M, Aviron S, Augenstein I, Billeter R, Bailey D, Bukacek R, Burel F, Diek?tter T, Dirksen J, Herzog F, Liira J, Roubalova M, Vandomme V, Bugter R. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. Journal of Applied Ecology, 2007, 44(2):340- 351.
[14] Zhu Y Y, Chen H R, Fang J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406(6797):718- 722.
[15] Zhang F, Shen J, Li L, Liu X. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China. Plant and Soil, 2004, 260(1- 2):89- 99.
[16] Li L, Tang C, Rengel Z, Zhang F S. Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant and Soil, 2004, 261(1- 2):29- 37.
[17] Fahrig L, Baudry J, Brotons L, Burel F G, Crist T O, Fuller R J, Sirami C, Siriwardena G M, Martin J L. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 2011, 14(2):101- 112.
[18] Gurr G M, Wratten S D, Luna J M. Multi-function agricultural biodiversity:pest management and other benefits. Basic and Applied Ecology, 2003, 4(2):107- 116.
[19] Diek?tter T, Wamser S, Wolters V, Birkhofer K. Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agriculture, Ecosystems and Environment, 2010, 137(1- 2):108- 112.
[20] Louzada J, Lima A P, Matavelli R, Zambaldi L, Barlow J. Community structure of dung beetles in Amazonian savannas:role of fire disturbance, vegetation and landscape structure. Landscape Ecology, 2010, 25(4):631- 641.
[21] Maharning A R, Mils A A S, Adl S M. Soil community changes during secondary succession to naturalized grassland. Applied Soil Ecology, 2009, 41(2):137- 147.
[22] De Deyn G B, Raaijmakers C E, Zoomer H R, Berg M P, de Ruiter P C, Verhoef H A, Bezemer T M, van der Putten W H. Soil invertebrate fauna enhances grassland succession and diversity. Nature, 2003, 422(6933):711- 713.
[23] Heiniger C, Barot S, Ponge J F, Salmon S, Botton-Divet L, Carmignac D, Dubs F. Effect of habitat spatiotemporal structure on collembolan diversity. Pedobiologia, 2014, 57(2):103- 117.
[24] Bird S, Coulson R N, Crossley D A Jr. Impacts of silvicultural practices on soil and litter arthropod diversity in a Texas pine plantation. Forest Ecology and Management, 2000, 131(1- 3):65- 80.
[25] Huhta V. The role of soil fauna in ecosystems:A historical review. Pedobiologia, 2007, 50(6):489- 495.
[26] Lavelle P, Deca?ns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi J P. Soil invertebrates and ecosystem services. European Journal of Soil Biology, 2006, 42(S1):S3- S15.
[27] Conzúlez G, Seastedt T R. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology, 2001, 82(4):955- 964.
[28] 劉云慧, 宇振榮, 劉云. 北京東北旺農(nóng)田景觀步甲群落結(jié)構(gòu)的時(shí)空動(dòng)態(tài)比較. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(1):85- 90.
[29] 常虹, 張旭珠, 段美春, 宇振榮, 劉云慧. 北京密云農(nóng)業(yè)景觀步甲群落空間分布格局. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(6):1545- 1550.
[30] 張旭珠, 常虹, 張?chǎng)? 段美春, 李驍, 宇振榮, 劉云慧. 農(nóng)業(yè)景觀步甲多樣性時(shí)間格局及其與景觀結(jié)構(gòu)的關(guān)系. 生態(tài)學(xué)雜志, 2012, 31(12):3127- 3132.
[31] 黎健龍, 唐勁馳, 趙超藝, 唐顥, 黎秀娣, 黎華壽. 不同景觀斑塊結(jié)構(gòu)對(duì)茶園節(jié)肢動(dòng)物多樣性的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(5):1305- 1312.
[32] Tang Q, Liang G F, Lu X L, Ding S Y. Effects of corridor networks on plant species composition and diversity in an intensive agriculture landscape. Chinese Geographical Science, 2014, 24(1):93- 103.
[33] 盧訓(xùn)令, 梁國(guó)付, 湯茜, 丁圣彥, 李乾璽, 張曉青. 黃河下游平原農(nóng)業(yè)景觀中非農(nóng)生境植物多樣性. 生態(tài)學(xué)報(bào), 2014, 34(4):789- 797.
[34] Monteiro A T, Fava F, Gon?alves J, Huete A, Gusmeroli F, Parolo G, Spano D, Bocchi S. Landscape context determinants to plant diversity in the permanent meadows of Southern European Alps. Biodiversity and Conservation, 2013, 22(4):937- 958.
[35] 尹文英. 中國(guó)土壤動(dòng)物檢索圖鑒. 北京:科學(xué)出版社, 1998.
[36] 鄭樂(lè)怡, 歸鴻. 昆蟲(chóng)分類. 南京:南京師范大學(xué)出版社, 1999.
[37] Grueber C E, Nakagawa S, Laws R J, Jamieson I G. Multimodel inference in ecology and evolution:challenges and solutions. Journal of Evolutionary Biology, 2011, 24(4):699- 711.
[38] Burnham K P, Anderson D R, Huyvaert K P. AIC model selection and multimodel inference in behavioral ecology:some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 2011, 65(1):23- 35.
[39] Dochtermann N A, Jenkins S H. Developing multiple hypotheses in behavioral ecology. Behavioral Ecology and Sociobiology, 2011, 65(1):37- 45.
[40] R Development Core Team. R:A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012.
Effects of agricultural landscape dynamics on the species diversity of ground arthropods in woodlands
HOU Xiaoyun1, SONG Bo1, ZHAO Shuang1, DING Shengyan1, 2, *, LIANG Guofu1, DONG Cuifang1
1CollegeofEnvironmentandPlanning,HenanUniversity,Kaifeng475004,China;2InstituteofEcologicalScienceandTechnology,HenanUniversity,Kaifeng475004,China
Biodiversity is one of the most limiting factors for ecosystem services. It is well known that there are very close connections between agricultural ecosystems and species diversity. Large numbers of non-agricultural wildlife rely on the food and habitats provided by the agricultural landscape. Natural and semi-natural habitats (such as farmland boundaries, woodland, hedges, and creeks) in agro-landscapes have very important effects on ground arthropods inhabiting these microenvironments. The lower reaches of the Yellow River, China, is a major grain producing areas in China, and is important for the security of the national food supply. It is crucial to study the relationships between regional agro-landscape heterogeneity and biodiversity to maximize ecosystem services and to maintain ecosystem stability. In this study, Fengqiu County in Henan Province, which is a typical agricultural region in the lower reaches of the Yellow River, was selected to investigate the effects of agricultural landscape dynamics on the species diversity of ground arthropods in woodlands. The Shannon diversity index and species richness were applied to explore the relationships between landscape changes and arthropod diversity from 1984 to 2012. The role of the landscape context on ground arthropod diversity in woodlands was evaluated by a multi-model inference (MMI) based on the Akaike information criterion (AIC). Five competing models of landscape context were used to analyze how it impacts arthropods. These models included habitat quality (H1, 2012), matrix quality (H2, 2012), habitat change (H3, 1984—2012), matrix quality change (H4, 1984—2012), and soil-environmental conditions (H5, 2012). All of these models were measured respectively at four spatial scales (100, 250, 350, and 500m) to examine how spatial scales impact ground arthropod diversity. The relationship between the response variables and the predictor variables was analyzed by Generalized Linear Models (GLM) in R statistical software. From 1984 to 2013 in the study area, woodland area increased significantly, while agricultural landscape heterogeneity increased substantially. The dominant groups of ground arthropods included Hymenoptera, Coleoptera, Amphipoda, and Araneae. The impacts of landscape context on ground arthropod diversity in woodlands were significantly scale-dependent. Habitat quality (H1) was the highest supported model for explaining Shannon diversity index and species richness of the ground arthropod community at a small scale (100m). As the spatial scale increased, the Shannon diversity index and species richness responded mostly to habitat change quality (H3) in the broader surroundings (250, 350, and 500m). No significant correlation was observed between matrix quality and soil-environmental conditions (H2 and H5). The responses to landscape context of ground arthropod species richness and Shannon diversity index were fairly consistent, significantly responding to habitat quality. Approximately 40%of variation in ground arthropod diversity was explained by the landscape context. In the study area, habitat quality (H1) may represent a good indicator for the Shannon diversity index and species richness. The analytical results showed that historic landscape change also has a predominant influence on the present features of ground arthropod diversity in woodlands; thus, the temporal dynamics of the landscape context may help towards improving our understanding about the interactions between landscape context change and ground arthropod diversity in woodlands. To enhance the explanation for the effects of landscape context on ground arthropods, further studies should consider additional landscape competing models and multi-scale spatiotemporal analysis.
multi-model inference; Akaike information criterion; ground arthropods; biodiversity; woodlands; agricultural landscape
國(guó)家自然科學(xué)基金資助項(xiàng)目(41071118, 41371195)
2014- 05- 15; < class="emphasis_bold">網(wǎng)絡(luò)出版日期:
日期:2015- 05- 19
10.5846/stxb201405150993
*通訊作者Corresponding author.E-mail:syding@henu.edu.cn
侯笑云,宋博,趙爽,丁圣彥,梁國(guó)付,董翠芳.農(nóng)業(yè)景觀動(dòng)態(tài)對(duì)林地地表節(jié)肢動(dòng)物多樣性的影響.生態(tài)學(xué)報(bào),2015,35(23):7659- 7668.
Hou X Y, Song B, Zhao S, Ding S Y, Liang G F, Dong C F.Effects of agricultural landscape dynamics on the species diversity of ground arthropods in woodlands.Acta Ecologica Sinica,2015,35(23):7659- 7668.