張逸飛,劉娟娟,孟 磊,鄧 歡,姜允斌,張金波,鐘文輝,*
1 南京師范大學(xué)地理科學(xué)學(xué)院,江蘇省環(huán)境演變與生態(tài)建設(shè)重點(diǎn)實(shí)驗(yàn)室, 南京 210046 2 南京化工職業(yè)技術(shù)學(xué)院, 南京 210048 3 海南大學(xué)農(nóng)學(xué)院, ???570228
農(nóng)業(yè)利用對海南省天然次生林土壤微生物的影響
張逸飛1,2,劉娟娟1,孟 磊3,鄧 歡1,姜允斌1,張金波1,鐘文輝1,*
1 南京師范大學(xué)地理科學(xué)學(xué)院,江蘇省環(huán)境演變與生態(tài)建設(shè)重點(diǎn)實(shí)驗(yàn)室, 南京 210046 2 南京化工職業(yè)技術(shù)學(xué)院, 南京 210048 3 海南大學(xué)農(nóng)學(xué)院, ???570228
為揭示天然次生林經(jīng)過長期農(nóng)業(yè)利用后土壤微生物學(xué)性質(zhì)以及土壤養(yǎng)分狀況的變異,采集了海南省天然次生林土壤以及由天然次生林經(jīng)農(nóng)業(yè)開墾轉(zhuǎn)變而成的香蕉、桉樹和橡膠林區(qū)表層土壤樣品,利用磷脂脂肪酸(PLFA)分析、變性梯度凝膠電泳(DGGE)、群落水平生理特征(CLPP)分析等方法探究天然次生林經(jīng)農(nóng)業(yè)利用對土壤微生物生物量、微生物活性、群落多樣性和功能多樣性的影響。研究結(jié)果顯示,天然次生林土壤總磷脂脂肪酸顯著高于經(jīng)農(nóng)業(yè)利用的土壤,分別是香蕉和橡膠林土壤的3倍和2倍。平均顏色變化率(AWCD)以及由PLFA、DGGE和CLPP分析獲得的土壤微生物群落多樣性和功能多樣性均顯示出天然次生林高于農(nóng)業(yè)利用的土壤。天然次生林土壤與農(nóng)業(yè)利用土壤的微生物群落結(jié)構(gòu)也存在明顯的分異。另外,天然次生林土壤pH值、有機(jī)碳、總氮、總磷、速效氮和速效鉀含量高于經(jīng)農(nóng)業(yè)利用的土壤。逐步回歸分析顯示土壤pH值、有機(jī)碳和速效氮是影響土壤微生物生物量、微生物活性、群落多樣性和功能多樣性的主要因素。研究結(jié)果表明,天然次生林經(jīng)農(nóng)業(yè)利用后,由于種植單一樹種和農(nóng)業(yè)管理措施可能造成土壤有機(jī)質(zhì)和養(yǎng)分含量下降,導(dǎo)致土壤酸化,對土壤微生物群落造成負(fù)面影響。
香蕉;桉樹;橡膠;土壤微生物;土壤養(yǎng)分
天然次生林向農(nóng)業(yè)利用轉(zhuǎn)變在發(fā)展中國家很普遍[1],在我國熱帶和亞熱帶地區(qū),天然次生林被砍伐、焚燒并種植單一作物如桉樹、香蕉、橡膠等[2]。天然次生林向農(nóng)業(yè)利用轉(zhuǎn)變可能使土壤生態(tài)系統(tǒng)承受巨大壓力甚至造成土壤嚴(yán)重退化[3],對天然次生林的農(nóng)業(yè)利用進(jìn)行生態(tài)影響評價顯得尤為重要。土壤微生物群落結(jié)構(gòu)、功能多樣性、微生物生物量以及活性是研究土地利用方式轉(zhuǎn)變的常用微生物指標(biāo),這些指標(biāo)反映的信息對于了解土壤健康和土壤質(zhì)量至關(guān)重要[4]。已有研究表明,在森林轉(zhuǎn)換為農(nóng)田或牧場過程中,耕作、施肥、灌溉、放牧、除草等管理措施易擾動土壤微生物并可能改變其多樣性[5-6],Jangid等人提出森林轉(zhuǎn)換對土壤微生物多樣性的影響取決于管理實(shí)踐的強(qiáng)度以及植物類型[7],其中植被類型決定了碳輸入的質(zhì)與量并影響土壤理化性質(zhì),從而影響土壤微生物群落[8]。在亞熱帶地區(qū),土地管理措施是影響土壤微生物的主要因素[9]。目前關(guān)于管理措施對亞熱帶地區(qū)農(nóng)田土壤微生物影響的研究較多[10-11]。天然次生林轉(zhuǎn)化為單一樹種如香蕉、桉樹和橡膠,其耕作強(qiáng)度低于農(nóng)田土壤,這種轉(zhuǎn)化對土壤微生物群落和功能多樣性、微生物生物量和活性將產(chǎn)生什么影響?目前關(guān)于這方面的研究報道比較少。
群落水平生理特征(CLPP)分析、磷脂脂肪酸(PLFA)分析和變性梯度凝膠電泳(DGGE)是評價土壤微生物多樣性常用方法。CLPP用于表征微生物功能多樣性,而PLFA和DGGE用于表征群落多樣性。土壤微生物的總體活性可以通過CLPP測定中獲得的平均顏色變化率(AWCD)表示[12],總PLFA量被認(rèn)為是微生物總生物量的一個指標(biāo)[13]。PLFA分析相對比較敏感但分辨率低;DGGE結(jié)合測序方法可以確定微生物種類,但會因PCR(Polymerase Chain Reaction)技術(shù)的缺陷而產(chǎn)生偏差。因此,將3種方法結(jié)合起來可較為全面地評價土壤微生物學(xué)性質(zhì),包括微生物生物量、活性、群落多樣性和功能多樣性。在本研究中,采集位于海南省熱帶地區(qū)的天然次生林和由天然次生林轉(zhuǎn)換而來的香蕉、桉樹和橡膠林土壤,通過CLPP,PLFA和DGGE方法研究土壤微生物群落多樣性、功能多樣性、微生物生物量以及活性,以評價天然次生林向農(nóng)業(yè)利用轉(zhuǎn)變對土壤微生物的影響。
1.1 采樣地點(diǎn)描述和土壤取樣
采樣地位于海南省儋州市的中國熱帶農(nóng)業(yè)科學(xué)院實(shí)驗(yàn)場內(nèi),天然次生林自原始林在20世紀(jì)60年代破壞后發(fā)育而來,育林時間約50a。該地區(qū)屬于熱帶海洋季風(fēng)氣候,海拔260—455 m,年平均氣溫23.2 ℃,年降水量1815 mm,年平均蒸發(fā)量1628 mm。土壤類型均為花崗巖發(fā)育而來的磚紅壤。20世紀(jì)80年代中期一些地區(qū)的天然次生林地轉(zhuǎn)為農(nóng)用,用于栽種橡膠;20世紀(jì)90年代末另一些地區(qū)的天然次生林轉(zhuǎn)變?yōu)橄憬读趾丸駱淞?。天然次生林與農(nóng)業(yè)利用區(qū)相距約3 km,香蕉林、桉樹林和橡膠林相距1—2 km。天然次生林的優(yōu)勢種主要是美葉菜豆樹 (RadermacherafrondosaChun et How)、中平樹(Macarangadenticulata) 和橄欖 (Canariumalbum)。桉樹林、天然次生林和人工橡膠林下的灌木草本植物主要是矛葉藎草(Arthraxonlanceolatus)、香澤蘭(Eupatoriumodoratum)、盾蕨(Neolepisorusovatus)、益智 (AlpiniaoxyphyllaMiq) 和九節(jié)木 (Psychotriarubra) 等。天然次生林和桉樹林未施肥,橡膠林、香蕉主要以施化肥為主,橡膠林年施肥量為90 kg N/hm2,30 kg P2O5/hm2,40 kg K2O/hm2香蕉年施肥量為528 kg N/hm2, 190 kg P2O5/hm2,1300 kg K2O/hm2。
本研究選擇上述天然次生林以及由其轉(zhuǎn)化而來的香蕉林、桉樹林和橡膠林土壤進(jìn)行研究。土壤樣品采集于2010年3月。采集土壤樣品前,在每種利用方式土地中,選取3個相鄰小區(qū),每個小區(qū)面積約為100 m2(10 m × 10 m)。在每個小區(qū)按照S形采集10 個樣點(diǎn)土壤并混合代表該小區(qū)。每個樣點(diǎn)面積0.25 m2(0.5 m × 0.5 m),用鐵鍬取表層土壤 (0—20 cm),土壤樣品用2 mm篩網(wǎng)過篩。用于PLFA和CLPP測定的土壤樣品4 ℃保存,1周內(nèi)測定;-70 ℃保存用于DNA提取;自然干燥后土壤樣品用于化學(xué)分析。
1.2 土壤化學(xué)分析
土壤化學(xué)分析采用常規(guī)的方法[14]。土壤pH值采用pH玻璃電極測定,土水質(zhì)量體積比1∶2.5。土壤有機(jī)碳采用重鉻酸鉀氧化法測定,總氮用凱氏定氮法測定,速效氮采用堿解擴(kuò)散法測定,總磷采用磷鉬藍(lán)法測定,速效磷采用HCl-NH4F萃取再用分光光度法測定,速效鉀采用醋酸銨提取再用原子吸收光譜法測定。
1.3 磷脂脂肪酸(PLFA)分析
采用Bligh Dyer方法進(jìn)行脂類提取和磷酸酯脂肪酸分析[15],土樣用15 mL Bligh Dyer提取液 (0.1 mol/L檸檬酸緩沖液∶氯仿∶甲醇=0.8∶1∶2) 提取,提取液用硅酸鍵合固相抽提柱(SPE-SI)層析,分別用氯仿、丙酮和無水甲醇洗脫,將含磷脂的洗脫液用氮?dú)獯蹈?,然后用堿性甲醇水解和皂化 (甲基化) 得到磷酯脂肪酸甲基酯 (FAME),用Sherlock微生物鑒定系統(tǒng) (MIDI,Newark,DE) 確定PLFA種類和量,其中PLFA定量采用19∶0FAM內(nèi)標(biāo)法。根據(jù)結(jié)構(gòu)不同,不同的特征脂肪酸對應(yīng)不同的微生物,如細(xì)菌、真菌,細(xì)菌又可分為革蘭氏陽性菌、革蘭氏陰性菌、放線菌。本研究中分離獲得的PLFA見表1。
表1 土壤微生物PLFA生物標(biāo)記物[16-17]Table 1 Phospholipid fatty acids (PLFA) signatures of soil micro-organisms[16-17]
1.4 群落水平生理特征 (CLPP) 分析[18]
將10 g新鮮土壤樣品加入到100 mL無菌磷酸鹽緩沖液 (0.05 mol/L,pH值 7.0),搖床震蕩30 min,取1 mL土壤懸浮液于9 mL無菌磷酸鹽緩沖液 (0.05 mol/L,pH值 7.0),混勻,制得10-2土壤懸浮液。取150 μL該10-2土壤懸浮液接種于BIOLOG Eco微平板孔中 (Biolog,Hayward,CA) 置25 °C培養(yǎng),用自動快速菌類鑒定系統(tǒng) (Biolog,Hayward,CA) 每隔12 h測定590 nm波長處的吸光值。采用培養(yǎng)96 h數(shù)據(jù)分析為每孔平均顏色變化率 (AWCD)、Shannon指數(shù) (H′)、主成分 (PCA) 分析。
1.5 DNA提取和PCR擴(kuò)增
土壤總DNA提取方法依照土壤DNA快速提取試劑盒 (Bio 101)制造商提供的說明書。DNA濃度采用微量紫外分光光度計ND-1000 (NanoDrop Technologies Inc.,Wilmington,DE) 測定,提取的DNA置-70 °C存儲。
細(xì)菌16S rRNA基因擴(kuò)增采用引物338F-GC (5′-ACT CCT ACG GGA GGC AGC AG CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG G-3′) 和518R (5′-ATT ACC GCG GCT GCT G-3′)[19]。50 μL反應(yīng)體系含有:1.25 U聚合酶(TaKaRa Bio Inc., Shiga, Japan),每種引物均為25 pmol,每種核苷酸為10 nmol,5 μL 10×緩沖液和0.1 μmol MgCl2,1 μL提取的DNA為模板。PCR反應(yīng)在iCycler thermocycler (Bio-Rad Laboratories Inc., CA) 上進(jìn)行。反應(yīng)程序?yàn)椋侯A(yù)變性94 ℃4 min,35個循環(huán)包括94 ℃變性30 s,55 ℃退火30 s,72 ℃延伸90 s,最后72 ℃延伸5 min。
真菌18S rRNA基因擴(kuò)增采用引物NS26 (5′-CTG CCC TAT CAA CTT TCG A-3′) 和518R-GC (5′-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG GAT TAC CGC GGC TGC TGG-3′)[20]。50 μL反應(yīng)體系含有:1.25 U聚合酶(TaKaRa Bio Inc., Shiga, Japan),每種引物均為25 pmol,每種核苷酸為10 nmol,5 μL 10×緩沖液和0.1 μmol MgCl2,1 μL提取的DNA為模板。PCR反應(yīng)在iCycler thermocycler (Bio-Rad Laboratories Inc., CA) 上進(jìn)行。反應(yīng)程序?yàn)椋侯A(yù)變性94 ℃4 min,30個循環(huán)包括95 ℃變性30 s,55 ℃退火30 s,72 ℃延伸90 s,最后72 ℃延伸5 min。
1.6 DGGE
本研究采用Dcode (BIO RAD Laboratories, Hercules, CA)系統(tǒng)分析細(xì)菌16S rRNA、真菌18S rRNA基因的DGGE (deneaturant gradient gel electrophoresis) 分子指紋圖譜。細(xì)菌及真菌PCR產(chǎn)物在8%聚丙烯酰胺凝膠中電泳,變性梯度范圍35%—70% (其中100%的變性劑含有7 mol/L尿素和40%甲酰胺),電泳緩沖液為0.5×TAE,電泳溫度60 ℃。電泳結(jié)束,將凝膠置于SYBR Green I染液 (1∶10000體積分?jǐn)?shù),Invitrogen Probe產(chǎn)品) 中染色30 min,用分子成像器FX (Bio-Rad Laboratories Inc. Hercules, CA) 掃描。DGGE圖像用Quantity One軟件進(jìn)行分析。
1.7 數(shù)據(jù)分析
不同土地利用類型之間的顯著差異采用單因素方差分析 (Analysis of Variance,ANOVA) 來確定,顯著性水平為P< 0.05。對PLFA、CLPP和DGGE圖譜計算Shannon多樣性指數(shù) (H′) 并進(jìn)行主成分分析 (PCA)。采用多元逐步回歸分析確定土壤pH、有機(jī)碳以及養(yǎng)分含量中影響土壤微生物生物量、活性、微生物群落多樣性及功能多樣性的主要變量,所有的統(tǒng)計分析采用SPSS 16進(jìn)行。
2.1 土壤pH值和養(yǎng)分含量
天然次生林土壤pH值、有機(jī)碳、總氮、總磷、速效氮和速效鉀含量顯著高于農(nóng)用利用土壤 (表2)。香蕉林由于施磷肥較多,土壤中速效磷含量最高。橡膠林土壤中pH值、總磷、速效磷和速效鉀含量最低。
2.2 DGGE圖譜分析
細(xì)菌16S rRNA基因和真菌18S rRNA基因的DGGE圖譜用來分析不同土地利用類型對細(xì)菌群落 (圖1a) 和真菌群落的影響 (圖1b)。天然次生林、香蕉、桉樹林和橡膠林的細(xì)菌16S rRNA基因的DGGE平均條
表2 4種不同土地利用類型土壤pH值和養(yǎng)分含量Table 2 Soil pH and nutrient content under the four land use types
同列相同英文小寫字母表示差異不顯著 (P> 0.05)
圖1 四種利用類型土壤 16S rRNA基因DGGE圖譜(a)和4種利用類型土壤18S rRNA基因DGGE圖譜(b)Fig.1 The DGGE pattern of 16S rRNA gene fragment from soils under the four land use types (a) The DGGE pattern of 18S rRNA gene fragment from soils under the four land use types (b)#1、#2、#3代表4種利用類型的3個小區(qū)土壤樣品
帶數(shù)分別為78、70、76、72條 (以條帶亮度大于所在泳道條帶總亮度1%的條帶計);真菌18S rRNA基因的DGGE平均條帶數(shù)分別為39、30、26、34條。天然次生林土壤16S rRNA 基因的H′最高,香蕉、橡膠林明顯較低 (圖2)。18S rRNA基因的H′也表現(xiàn)出相似的模式:天然次生林>橡膠林>香蕉>桉樹林。其中,天然次生林顯著高于桉樹和香蕉林 (P<0.05)。PCA分析(圖3)顯示天然次生林,橡膠林、香蕉林和桉樹林在PC1和PC2方向上存在明顯分異,表明土地利用方式是影響細(xì)菌和真菌群落結(jié)構(gòu)的重要因素。
2.3 磷脂脂肪酸多樣性分析
從4種不同利用類型土壤中共檢測出58種脂肪酸,其中含量大于1%的有38種(表1)。土地利用類型顯著影響土壤微生物PLFA量(表3)。天然次生林中總磷脂脂肪酸以及細(xì)菌、革蘭氏陽性菌、革蘭氏陰性菌、放線菌和真菌的磷脂脂肪酸最高,香蕉林土壤中上述指標(biāo)含量最少。
圖2 4種利用類型土壤中微生物群落多樣性和功能多樣性指數(shù)(H′) Fig.2 The Shannon diversity (H′) of soil microbial diversity and functional diversity from the four land use types. Means with the same letter are not significantly different具有相同字母者表示差異不顯著 (P > 0.05,鄧肯測驗(yàn),n=3),短豎代表的標(biāo)準(zhǔn)誤差
4種土地利用方式下PLFA圖譜分析表明,香蕉林H′顯著低于其他3種土地利用類型 (圖2) (P<0.05)。對4種土地利用類型的PLFA分析結(jié)果進(jìn)行PCA分析顯示,其PC1的方差貢獻(xiàn)率為63%,PC2的方差貢獻(xiàn)率為13% (圖3)。4種土地利用類型在PC2方向上彼此分離。包括真菌和放線菌在內(nèi)的26種磷脂脂肪酸沿著沿PC1 (圖3) 有較高方差貢獻(xiàn)率 (> 0.60),11種磷脂脂肪酸沿PC2有較高方差貢獻(xiàn)率 (> 0.60) (圖4)。
2.4 CLPP多樣性分析
不同土地利用方式對土壤微生物活性和功能多樣性存在顯著影響。天然次生林土壤的AWCD顯著高于農(nóng)用利用土壤,而桉樹林、橡膠林和香蕉土壤之間沒有顯著差異 (表3)。對4種土地利用類型的CLPP圖譜進(jìn)行PCA分析的結(jié)果顯示 (圖3),天然次生林和農(nóng)業(yè)利用區(qū)分異明顯,桉樹林與橡膠林無明顯分異,但都與橡膠林存在明顯分異。BIOLOG Eco微平板的碳源可分為6類,由于胺類和酚類混合物的碳源數(shù)目較少,各為2種,故分別與氨基酸類和聚合物類合并成4大類,分別為聚合物、碳水化合物、羥酸和胺/氨基酸[21]。吐溫80,吐溫40,α-環(huán)糊精和糖原等4種聚合物沿PC1和PC2具有較高的方差貢獻(xiàn)率 (> 0.60,圖5),7種碳水合物沿PC1和PC2具有方差貢獻(xiàn)率 (> 0.60),4種胺/氨基酸、2種羧酸沿PC1和PC2具有較高的方差貢獻(xiàn)率 (> 0.60)。
2.5 逐步回歸分析
逐步回歸分析表明,土壤微生物活性、生物量和多樣性受土壤pH值和養(yǎng)分含量的影響顯著 (表4)。速效氮顯著影響細(xì)菌DGGE和PLFA的H′指數(shù)??侾LFA,細(xì)菌、放線菌的PLFA,CLPP的H′指數(shù)與速效磷和土壤pH顯著相關(guān)。AWCD、真菌DGGE圖譜和真菌PLFA的H′指數(shù)與有機(jī)碳顯著相關(guān)。
表3 4種土地利用類型下的磷脂脂肪酸 (PLFA) 總量,細(xì)菌、革蘭氏陽性菌、革蘭氏陰性菌、真菌、放線菌的磷脂脂肪酸總量和每孔平均顏色變化率 (AWCD)
Table 3 The amounts of total PLFAs, bacterial, Gram-positive bacterial, Gram-negative bacterial, fungal and actinobacterial PLFAs and the average color development (AWCD) under four land use types
土地利用類型Landusetype天然次生林Naturalsecondaryforest香蕉Banana桉樹Eucalyptus橡膠Rubber總磷脂脂肪酸TotalPLFA/(nmol/g干重)48.90a15.92c40.33b24.54bc細(xì)菌磷脂脂肪酸BacterialPLFA/(nmol/g干重)41.14a13.19b36.20a19.60b革蘭氏陽性菌/革蘭氏陰性菌G+/G-2.11b3.15a1.50c3.02a真菌磷脂脂肪酸FungalPLFA/(nmol/g干重)7.76a2.73c4.13b4.94b放線菌磷脂脂肪酸ActinobacterialPLFA/(nmol/g干重)2.33a1.09c1.17c1.74b平均顏色變化率AWCD1.02a0.69b0.75b0.88ab
同一行內(nèi)英文小寫字母相同表示差異不顯著(P> 0.05)
圖4 土壤中單獨(dú)磷脂脂肪酸沿主成分1和2的負(fù)荷Fig.4 Loadings of the individual PLFAs from the PCA of the PLFAs data along principal components 1 and 2
本研究中,綜合采用PLFA,DGGE和CLPP分析等方法較為全面地評價了天然次生林與由天然次生林轉(zhuǎn)換而來的香蕉、桉樹和橡膠林土壤微生物群落多樣性、功能多樣性、活性和微生物生物量的差異。結(jié)果表明,與天然次生林土壤相比,農(nóng)業(yè)利用之后土壤微生物活性(AWCD)、微生物生物量(PLFA)和功能多樣性(CLPP)顯著降低,微生物群落多樣性也降低,且天然次生林土壤與農(nóng)業(yè)利用土壤之間、不同農(nóng)業(yè)利用土壤之間微生物群落結(jié)構(gòu)有顯著差異。
圖5 CLPP測定過程中的31種碳源利用率沿主成分1和2負(fù)荷 Fig.5 Loadings of the 31 carbon sources from the PCA of the CLPP along principal components 1 and 2具有相同字母者表示差異不顯著 (P > 0.05,鄧肯測驗(yàn),n=3),短豎代表的標(biāo)準(zhǔn)誤差
天然次生林的農(nóng)業(yè)利用對土壤微生物群落的負(fù)面影響很大程度上歸因于管理措施。管理過程中的人為擾動和植被類型都可能對土壤微生物群落產(chǎn)生負(fù)面影響[22]。經(jīng)農(nóng)業(yè)利用的土壤比天然次生林土壤受到更多的人為干擾,如耕作和清掃凋落物會導(dǎo)致土壤碳和養(yǎng)分的減少[23]。pH值對于微生物的多樣性、活性和生物量具有重要影響[24-25],通常偏離中性條件對微生物群落產(chǎn)生脅迫,在本研究中,橡膠林和香蕉林土壤比天然次生林土壤pH值低,可能是由于氮肥輸入增強(qiáng)硝化作用導(dǎo)致土壤酸化[26];另外,不同土地利用方式下,凋落物和根系分泌物有機(jī)碳輸入的差異造成土壤有機(jī)碳的數(shù)量及質(zhì)量的差異,并進(jìn)而導(dǎo)致不同土壤pH,因此施肥和碳輸入可能是本研究中經(jīng)農(nóng)業(yè)利用的林區(qū)pH值顯著低于天然次生林的主要原因,這與Deekor等人的研究結(jié)果相似[27]。
以往的研究表明,天然次生林土壤轉(zhuǎn)換為栽種香蕉后,碳輸入的減少并導(dǎo)致土壤有機(jī)碳減少[28],而橡膠樹和桉樹凋落物中木質(zhì)素與氮的比例較高,因而凋落物的可分解性較差[29-30]。因此本研究中3種經(jīng)農(nóng)業(yè)利用的土壤有機(jī)碳的減少也可能是由于碳輸入的減少。土壤有機(jī)質(zhì)為生物反應(yīng)和生命活動提供了良好基質(zhì),因此經(jīng)農(nóng)業(yè)利用的土壤中有機(jī)碳含量的減少導(dǎo)致了微生物生物量、活性以及群落多樣性和功能多樣性的降低[8,31]。
表4 由4種利用類型土壤中微生物指標(biāo)及其相關(guān)變量得到的的逐步回歸分析 Table 4 The microbial indicators or indices and their correlated variables obtained by stepwise regression analysis in the soils under four land use types
因變量Dependents相關(guān)變量CorrelatedR2平均顏色變化率AWCD有機(jī)碳0.854**細(xì)菌DGGE圖譜的H'指數(shù)H'ofbacterialDGGE速效氮0.605**真菌DGGE圖譜的H'指數(shù)H'offungalDGGE有機(jī)碳0.511*磷脂脂肪酸的H'指數(shù)H'ofPLFA速效氮0.685**CLPP圖譜的H'指數(shù)H'ofCLPP速效磷,pH0.894**,0.995***總磷脂脂肪酸TotalPLFApH,速效氮0.904***,0.782**細(xì)菌磷脂脂肪酸BacterialPLFA速效氮0.941***放線菌磷脂脂肪酸ActinobacterialPLFA總氮0.785**真菌磷脂脂肪酸FungalPLFA速效氮,有機(jī)碳0.917***,0.915***
微生物群落多樣性和功能多樣性還與植物的類型有關(guān)[32],天然次生林比單一樹種擁有更加多樣的植物,這會使得次生林碳輸入的種類更加多樣,有助于提高土壤中微生物的多樣性和功能多樣性。CLPP圖譜顯示出的微生物群落結(jié)構(gòu)在不同利用方式土壤間的差異,很有可能由于不同植被下的碳輸入種類不同,導(dǎo)致了土壤微生物利用碳源的差異。另外,逐步回歸分析表明,細(xì)菌多樣性和包括革蘭氏陽性菌、革蘭氏陰性菌、放線菌在內(nèi)的細(xì)菌PLFA含量在很大程度上受速效氮影響,而真菌多樣性及生物量主要受到有機(jī)碳的影響,以往的研究結(jié)果顯示細(xì)菌生物量增長卻更依賴氮[33],真菌生物量的增加更多的依賴有機(jī)碳[34,35]。通常細(xì)菌生物體內(nèi)C/N比約為3—6,而真菌生物體中的C/N比約為5—15[36],本研究的結(jié)果能與已有的研究結(jié)論相互印證。
本研究顯示經(jīng)農(nóng)業(yè)利用后土壤中真菌和放線菌PLFA總量低于天然次生林。以往的研究也顯示農(nóng)業(yè)活動如耕作、土壤壓實(shí)會破壞放線菌菌絲體以及真菌菌絲體從而導(dǎo)致生物量的減少[37-38]。表明真菌和放線菌對土地利用變化較為敏感。革蘭氏陽性菌與陰性菌的比例變化可以反映土壤微生物群落所受到的脅迫[25]。本研究中香蕉、橡膠林土壤中革蘭氏陽性菌與陰性菌的比例明顯高于次生林土壤。與革蘭氏陽性菌相比,革蘭氏陰性細(xì)菌外膜存在額外的穩(wěn)定層以抵抗?jié)B透壓[39],不施肥的天然次生林土壤的N、P、K含量最高,其含鹽量較高,可能造成革蘭氏陽性菌與陰性菌的比例較低。另一方面,本研究中顯示桉樹林土壤中革蘭氏陽性菌與陰性菌的比例明顯低于次生林及其它農(nóng)業(yè)利用土壤,這可能是桉樹的落葉產(chǎn)生的抑菌作用引起的,楊東升等人的研究表明桉葉浸提物對部分革蘭氏陽性菌有抑菌作用, 而對革蘭氏陰性菌無抑菌作用[40]。
[1] Smith C K, de Assis Oliveira F, Gholz Hl, Baima A. Soil carbon stocks after forest conversion to tree plantations in lowland Amazonia, Brazil. Forest Ecology and Management, 2002, 164(1/3): 257- 263.
[2] Zhang P C, Shao G F, Zhao G, Le Master D C, Parker G R, Dunning J B Jr, Li Q L. China′s forest policy for the 21st century. Science, 2000, 288(5474): 2135- 2136.
[3] Venkatesan S, Senthurpandian V K. Comparison of enzyme activity with depth under tea plantations and forested sites in south India. Geoderma, 2006, 137(1/2): 212- 216.
[4] Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441(7093): 629- 632.
[5] Levine U Y, Teal T K, Robertson G P, Schmidt T M. Agriculture′s impact on microbial diversity and associated fluxes of carbon dioxide and methane. The ISME Journal, 2011, 5(10): 1683- 1691.
[6] Upchurch R, Chiu C Y, Everett K, Dyszynski G, Coleman D C, Whitman W B. Differences in the composition and diversity of bacterial communities from agricultural and forest soils. Soil Biology and Biochemistry, 2008, 40(6): 1294- 1305.
[7] Jangid K, Williams M A, Franzluebbers A J, Sanderlin J S, Reeves J H, Jenkins M B, Endale D M, Coleman D C, Whitman W B. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry, 2008, 40(11): 2843- 2853.
[8] Deng H, Zhang B, Yin R, Wang H L, Mitchell S M, Griffiths B S, Daniell T J. Long-term effect of re-vegetation on the microbial community of a severely eroded soil in sub-tropical China. Plant and Soil, 2010, 328(1/2): 447- 458.
[9] Bossio D A, Girvan M S, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow K M, Ball A S, Pretty J N, Osborn A M. Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microbial Ecology, 2005, 49(1): 50- 62.
[10] Zhong W H, Gu T, Wang W, Zhang B, Lin X G, Huang Q R, Shen W S. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 2010, 326(1- 2): 511- 522.
[11] Chu H Y, Lin X G, Fujii T, Morimoto S, Yagi K, Hu J L, Zhang J B. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 2007, 39(11): 2971- 2976.
[12] Loranger-Merciris G, Barthes L, Gastine A, Leadley P. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology and Biochemistry, 2006, 38(8): 2336- 2343.
[13] Thoms C, Gattinger A, Jacob M, Thomas F M, Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology and Biochemistry, 2010, 42(9): 1558- 1565.
[14] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京: 中國農(nóng)業(yè)科技出版社, 2000.
[15] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911- 917.
[16] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 1999, 29(2): 111- 129.
[17] Buyer J S, Teasdale J R, Roberts D P, Zasada I A, Maul J E. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biology and Biochemistry, 2010, 42(5): 831- 841.
[18] Campbell C D, Grayston S J, Hirst D J. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods, 1997, 30(1): 33- 41.
[19] Muyzer G, de Waal E, Uitterlinden A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695- 700.
[20] Schabereiter-Gurtner C, Piar G, Lubitz W, R?lleke S. Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. Journal of Microbiological Methods, 2001, 47(3): 345- 354.
[21] Choi K H, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. Journal of Microbiological Methods, 1999, 36(3): 203- 213.
[22] Steenwerth K L, Jackson L E, Calderon F J, Stromberg M R, Scow K M. Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biology and Biochemistry, 2002, 34(11): 1599- 1611.
[23] Doran J W, Zeiss M R. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 2000, 15(1): 3- 11.
[24] B??th E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry, 2003, 35(7): 955- 963.
[25] Deng H, Li X F, Cheng W D, Zhu Y G. Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. FEMS Microbiology Ecology, 2009, 70(2): 293- 304.
[26] Brown T T, Koenig R T, Huggins D R, Harsh J B, Rossi R E. Lime effects on soil acidity, crop yield, and aluminum chemistry in direct-seeded cropping systems. Soil Science Society of America Journal, 2008, 72(3): 634- 640.
[27] Deekor T N, Iwara A I, Ogundele F O, Amiolemen S O, Ita A E. Changes in soil properties under different land use covers in parts of Odukpani, Cross River State, Nigeria. Journal of Environment and Ecology, 2012, 3(1): 86- 99.
[28] Powers J S. Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica. Ecosystems, 2004, 7(2): 134- 146.
[29] Guo L B, Sims R E H. Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests. Agriculture, Ecosystems & Environment, 1999, 75(1/2): 133- 140.
[30] Maulin S P, Reddy G V, Banerjee R, Ravindra Babu P, Kothari I L. Microbial degradation of banana waste under solid state bioprocessing using two lignocellulolytic fungi (Phylostictaspp. MPS-001 andAspergillusspp. MSP-002). Process Biochemistry, 2005, 40(1): 445- 451.
[31] Yin R, Deng H, Wang H L, Zhang B. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. CATENA, 2014, 115: 96- 103.
[32] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceeding of the National Academy of Science of the United States of America, 2006, 103(3): 626- 631.
[33] Carney K M, Hungate B A, Drake B G, Megonigal J P. Altered soil microbial community at elevated CO2leads to loss of soil carbon. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12): 4990- 4995.
[34] de Vries F T, Hoffland E, van Eekeren N, Brussaard L, Bloem J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 2006, 38(8): 2092- 2103.
[35] Güsewell S, Gessner M O. N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 2009, 23(1): 211- 219.
[36] Strickland M S, Rousk J. Considering fungal: bacterial dominance in soils-methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 2010, 42(9): 1385- 1395.
[37] Vargas-Gil S, Pedelini R, Oddino C, Zuza M, Marinelli A, March G J. The role of potential biocontrol agents in the management of peanut root rot in Argentina. Journal of Plant Pathology, 2008, 90(1): 35- 41.
[38] Perez-Brandán C, Arzeno J L, Huidobro J, Grümberg B, Conforto C, Hilton S, Bending G D, Meriles J M, Vargas-Gil S. Long-term effect of tillage systems on soil microbiological, chemical and physical parameters and the incidence of charcoal rot byMacrophominaphaseolina(Tassi) Goid in soybean. Crop Protection, 2012, 40: 73- 82.
[39] Silhavy T J, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2010, 2(5): a000414.
[40] 楊東升, 張青苗, 謝曉紅, 羅先群. 海南桉葉浸提物的抗菌及降解雙酚A研究. 化學(xué)與生物工程, 2007, 24(11): 35- 37.
Agricultural use of natural secondary forests affects soil microorganisms in Hainan Province, China
ZHANG Yifei1,2, LIU Juanjuan1, MENG Lei3, DENG Huan1, JIANG Yunbin1, ZHANG Jinbo1, ZHONG Wenhui1,*
1JiangsuKeyLaboratoryofEnvironmentalChange&EcologicalConstruction,SchoolofGeographyScience,NanjingNormalUniversity,Nanjing210046,China
2NanjingCollegeofChemicalTechnology,Nanjing210048,China
3CollageofAgriculture,HainanUniversity,Haikou570228,China
Natural forests tend to be converted into agricultural lands in developing countries for economic development. In the subtropical regions of China, natural secondary forests are generally converted to banana, rubber, and eucalyptus plantations. Unlike natural forests, agricultural lands are mainly characterized by mono-plantations, tillage, fertilization, and litter removal. These practices may have unfavorable consequences on the soil ecosystem. Moreover, the soil in the subtropical regions of China is classied as Ultisol, which is vulnerable to erosion and degradation under improper soil management. Yet, knowledge about the effects of the conversion of natural forests to agricultural lands on soil quality in these regions remains scarce. Soil microorganisms are critical for organic matter conversion and nutrient cycling, in addition to being sensitive to environmental changes. Thus, soil microbial parameters such as microbial biomass, activity, biodiversity, and composition are considered as reliable indicators of soil quality. To understand the effect of forest conversion to agricultural lands on soil microbial parameters, as well as soil chemical properties, we collected soil samples from a well-conserved natural secondary forest, in addition to transformed banana, eucalyptus, and rubber forests. Phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE), and community-level physiological profiles (CLPP) were used to investigate various microbial parameters, including microbial biomass, activity, community diversity, and functional diversity. Microbial diversity was expressed as Shannon diversity (H′). Principal component analysis (PCA) was performed to analyze the soil microbial structure based on PLFA, CLPP, and DGGE data. In addition, soil chemical properties were determined, including pH, organic carbon, available nitrogen, total phosphorus, available phosphorus, and available potassium. Stepwise multiple regression analysis was used to determine the main soil properties that influenced soil microbial parameters. The results showed that the natural secondary forest had the highest total PLFA, which was 3 and 2 times higher than that recorded for the banana and rubber forests, respectively. The average color development (AWCD), community diversity, and functional diversity determined from the PLFA, DGGE, and CLPP profiles were also highest in the natural secondary forest. Soil microbial community structure differed between the natural secondary forest and agricultural lands, as well as between the vegetation types. In addition, soil pH, organic carbon, total nitrogen, total phosphorus, available nitrogen, and available potassium were higher in the natural secondary forest compared to the agricultural lands. The stepwise analysis showed that soil pH and available phosphorus affected H′ and CLPP values, while organic carbon affected AWCD,H′ of fungal DGGE, and fungal biomass values. Total nitrogen and available nitrogen generally affected microbial biomass (total, bacterial, and fungal PLFAs) and community diversity (H′ of DGGE and PLFA data). Our results indicate that the conversion of natural secondary forests to agricultural lands leads to soil acidification and a significant decrease in soil organic carbon and nutrient content. Furthermore, conversion decreases microbial biomass, activity, diversity, and functional diversity, causing shifts in soil microbial community structure. The adverse effects of this conversion on soil chemical and microbial properties may be due to the agricultural management practices being followed at local sites.
banana; eucalyptus; rubber; soil microorganisms; soil nutrient
國家自然科學(xué)基金資助項(xiàng)目(41271255,41222005); 江蘇省高校自然科學(xué)研究重大項(xiàng)目(12KJA170001); 江蘇省高校優(yōu)勢學(xué)科建設(shè)工程項(xiàng)目(164320H101)
2013- 10- 19;
日期:2015- 04- 14
10.5846/stxb201310192525
*通訊作者Corresponding author.E-mail: zhongwenhui@njnu.edu.cn
張逸飛,劉娟娟,孟磊,鄧歡,姜允斌,張金波.鐘文輝.農(nóng)業(yè)利用對海南省天然次生林土壤微生物的影響.生態(tài)學(xué)報,2015,35(21):6983- 6992.
Zhang Y F, Liu J J, Meng L, Deng H, Jiang Y B, Zhang J B, Zhong W H. Agricultural use of natural secondary forests affects soil microorganisms in Hainan Province, China.Acta Ecologica Sinica,2015,35(21):6983- 6992.