亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        阻抗在細胞檢測中的應用進展

        2015-02-02 14:14:08胡清清何品剛
        化學傳感器 2015年4期
        關鍵詞:檢測

        胡清清,崔 垚,張 帆,何品剛

        (華東師范大學化學與分子工程學院,上海200241)

        阻抗在細胞檢測中的應用進展

        胡清清,崔 垚,張 帆*,何品剛*

        (華東師范大學化學與分子工程學院,上海200241)

        細胞阻抗傳感技術是細胞培養(yǎng)和阻抗技術的結合,將細胞培養(yǎng)在工作電極上,通過施加微小的電壓,收集流經(jīng)包括細胞在內(nèi)的整個系統(tǒng)的電流信號來檢測細胞的狀態(tài)。阻抗技術由于實時、連續(xù)、不破壞性、無需標記等優(yōu)點,已被廣泛應用于細胞性質(zhì)測定、癌細胞檢測和抗癌藥物篩選等方面。該文綜述了阻抗技術在細胞檢測中的應用和進展,包括:1、阻抗檢測電極的設計;2、阻抗監(jiān)測細胞生理狀態(tài);3、阻抗在細胞毒性和藥物篩選中的應用;4、阻抗區(qū)分正常細胞與癌細胞。

        阻抗;細胞檢測;綜述

        0 引言

        阻抗技術是一種以較小振幅正弦波電勢 (電流)作為擾動信號,使電極系統(tǒng)產(chǎn)生近似于線性關系響應、測量頻率很寬的阻抗值。由于電路中的物質(zhì)對電流的阻礙作用不同,導致檢測到的阻抗值不同,從而反映物質(zhì)的相關性質(zhì)。

        細胞阻抗傳感技術是將細胞培養(yǎng)和阻抗技術相結合,可在細胞培養(yǎng)的過程中對細胞的狀態(tài)進行實時、連續(xù)地監(jiān)測,能夠及早發(fā)現(xiàn)細胞狀態(tài)的變化,被認為是定量研究細胞行為最有前景的技術之一[1-2]。利用阻抗技術檢測細胞是將細胞培養(yǎng)在工作電極上,通過施加微小的電壓,收集流經(jīng)包括細胞在內(nèi)的整個系統(tǒng)的電流信號來檢測細胞的狀態(tài)。細胞被磷脂雙分子層構成的細胞膜包裹著,使得細胞成為電的不良導體,直流電會被旁路,當施加一定頻率的交流電時,電流流經(jīng)細胞就會受到一定阻礙,從而引起整個體系阻抗的變化。這種阻礙與細胞的性質(zhì)和狀態(tài)密切相關,通過收集到的電流信號就可以分析細胞信息。由于施加的電壓非常小,電流非常微弱,不會對細胞造成損傷,所以阻抗檢測可以貫穿細胞培養(yǎng)的整個過程[3-7]。細胞阻抗傳感技術由Giaever和Keese于1984年建立,他們將哺乳動物的成纖

        維細胞(fibroblasts)培養(yǎng)在培養(yǎng)皿中,培養(yǎng)皿底部有兩個共面的金電極,細胞在工作電極上生長,當施加4 kHz的正弦交流電場時,通過鎖相放大器獲得流經(jīng)細胞的電流信號,實驗結果表明粘附在電極上的細胞對電流有明顯的阻礙作用,并且隨時間發(fā)生變化[8]。該文綜述了阻抗技術近年來在細胞檢測中的應用進展。

        1 阻抗檢測電極的設計

        利用阻抗技術進行細胞檢測,第一步是要將細胞培養(yǎng)和阻抗檢測結合于一體,這就涉及到阻抗檢測裝置的構建,其中最關鍵的是培養(yǎng)基底要導電,通常是將細胞培養(yǎng)在導電的工作電極上,由培養(yǎng)液連接對電極,進行檢測。根據(jù)工作電極數(shù)目的不同,阻抗檢測裝置可以分為單電極體系和陣列電極體系。

        1.1 單電極

        單電極是指阻抗檢測體系只含有一個工作電極和一個對電極,如圖1。通常情況下,選用導電性好的、面積小的電極作為工作電極,面積大的電極作為對電極,兩個電極的面積比值往往小于0.01,這就保證了體系阻抗的變化主要取決于工作電極表面的改變[9]。單電極系統(tǒng)應用廣泛[10-14],工作電極材料可選用金、鉑、銦錫氧化物(ITO)等,而對電極則多采用鉑。

        圖1 單電極阻抗檢測體系Fig.1 ECIS with mono work electrode

        1.2 陣列電極

        陣列電極體系包含多個工作電極,其中可分為叉指電極和普通陣列電極。

        1.2.1 叉指電極

        叉指電極是陣列電極的一種特殊構型,是指具有梳狀的、面內(nèi)有周期性圖案的電極,由多組并列的條形電極組成,其特點是由一個共同的末端相連接,形成類似手指交叉的電極陣列結構。在叉指電極中,并列的條形電極大小一樣,材質(zhì)相同,因此電極的阻抗在總阻抗中所占的比例相等,不區(qū)分工作電極和對電極[15-17],如圖2。叉指電極易于微型化,但是無法進行單細胞分析。

        圖2 叉指電極示意圖[17]Fig.2 Sketch map showing the layout of the ECIS sensor electrodes

        1.2.2 普通陣列電極

        普通陣列電極體系含有多個通道,每一個通道含一個工作電極,這些工作電極是相互獨立的,共用一個對電極,即每一個獨立的電路都含一套完整的工作電極和對電極,利用開關可在工作電極間切換。Applied Biophysics(Troy,NY)公司采用光刻等技術,在基底上形成了由8個獨立的工作電極(0.057 mm2)和1個共用的對電極(7×46 mm2)組成的阻抗檢測體系,可進行多通道的同時測量[18-24],如圖3所示。

        圖3 陣列電極系統(tǒng)示意圖[20]Fig.3 Schematic diagram of the ECIS system

        2 阻抗監(jiān)測細胞生理狀態(tài)

        細胞阻抗技術可以實時、原位、長時間地反映電極表面細胞發(fā)生的變化,因此被廣泛應用于各種細胞研究,包括細胞粘附和鋪展[25-33]、細胞

        繁殖[34-38]、細胞遷移與修復[39-43]等。

        2.1 粘附和鋪展

        不同種類貼壁性細胞在電極表面的粘附能力不同,粘附所需時間也不一樣,不同的電極對細胞粘附的影響也有差異。對于不易粘附的電極,需要在電極表面附著一層粘附蛋白。Wegener等運用細胞阻抗技術檢測MDCK細胞在不同蛋白處理過的金電極表面的貼附情況,在他們的研究中提到,MDCK細胞在涂有粘附蛋白的電極表面更容易貼壁,并提出高頻電容是反映MDCK細胞早期粘附和鋪展最靈敏的參數(shù)[26]。Liu等利用多通道微陣列電極測定了細胞粘附和細胞形態(tài)的變化,他們將人類食道癌細胞(KYSE 30)培養(yǎng)在涂有粘連蛋白的電極表面,通過細胞粘附和鋪展引起的形態(tài)改變均可將阻抗值的變化體現(xiàn)出來,如圖4,細胞分別粘附在纖連蛋白預處理的和未處理的電極表面,當細胞粘附在電極表面時,阻抗值有增加[27]。Asphahani等在金電極表面進行小鼠成纖維細胞的圖案化,細胞通過lysinearginine-glycine-aspartic acid(KRGD)粘附肽固定在電極表面,這種粘附機理依賴于共價結合和物理吸附,結果表明單細胞圖案化能夠改進細胞傳感器的阻抗特性[30]。對于細胞粘附而導致的阻抗變化,Giaever和Keese認為有細胞時比沒細胞時體系阻抗之所以增大,是因為細胞粘附到電極表面后,導致空白電極面積減少,電子傳遞受阻,表現(xiàn)為阻抗增加[33]。

        圖4 微電極陣列單個通道中癌細胞分別在有無纖連蛋白時粘附的阻抗值隨時間的變化曲線,檢測頻率為1 kHz[27]Fig.4 One channel impedance detection of the microelectrode array for cancer cells adhesion.Time course of the impedance magnitude at a sampling frequency of 1 kHz for fibronectin(FN)modified and non-modified electrode surfaces

        2.2 細胞繁殖

        細胞在電極上繁殖會導致阻抗增大,因此可根據(jù)阻抗的變化間接檢測細胞數(shù)目的變化[34]。Shih等利用自制的數(shù)字微流控系統(tǒng)對HeLa、NIH-3T3、CHO-K1等三種細胞進行了4天的阻抗檢測,分析得到了細胞的繁殖速率,這種方法使分析試劑用量減少近1000倍[35]。Brischwein等將小鼠成纖維細胞(L929)培養(yǎng)在阻抗傳感器上,檢測細胞引起的阻抗改變,結果表明,細胞增殖導致阻抗顯著增大,在一定培養(yǎng)時間內(nèi),阻抗隨時間逐漸增大[37]。

        2.3 細胞遷移與修復

        Keese等將細胞培養(yǎng)在金薄膜電極表面,正常模式下,1 μA,4 kHz的交流阻抗測試電流不會對細胞造成影響,當施加2.5 V,40 kHz高壓脈沖時,細胞產(chǎn)生控制性損害,從電極上脫落,引起阻抗的下降,然后隨著細胞的遷移和修復,阻抗又恢復到融匯時的水平,文章優(yōu)化了脈沖作用時間、電極面積和細胞的種類對損傷再生測試的影響[39]。Wang等通過自組裝單層膜(selfassembled monolayers,SAMs)的脫落以使得細胞脫離電極表面,模擬細胞損傷,并對比了不同細胞的遷移差異[40]。Stolwijk等利用原位電穿孔技術 (In situ electroporation,ISE)對細胞進行損傷后,再施加藥物,研究細胞修復程度。當施加損傷信號時,細胞膜被電穿孔破壞后導致細胞死亡。損傷電流施加時間不同會引起細胞損傷程度以及細胞再生過程的差異,這些均可通過細胞不同時期的阻抗值反映出來[41]。

        3 阻抗在細胞毒性和藥物篩選中的應用

        細胞的生長過程是動態(tài)的,并且對周圍環(huán)境十分敏感,尤其是毒物。阻抗技術可做到實時表征細胞對周圍環(huán)境的反應,細胞培養(yǎng)在電極上,體系中加入毒物作用以后,阻抗值下降,且毒物濃度越高,作用時間越長,阻抗值下降越明顯。根據(jù)藥物作用對象的不同,研究可分為兩類:毒物對正常細胞的毒性[44-47]和抗癌藥物對癌細胞的

        作用[48-54]。

        3.1 毒物對正常細胞的毒性

        通過傳統(tǒng)的生物化學測定方法,如基于細胞膜通透性改變的臺盼藍染色法[55-56]、對細胞核染色的碘化丙啶法[57]、測定細胞酶活性的 MTT法[58-61]、外加標記物等[62],確定細胞的存活率,通常會破壞細胞的連續(xù)培養(yǎng),難以實現(xiàn)實時分析。阻抗技術則突破了這些技術的局限,能夠在細胞的培養(yǎng)過程中,進行動態(tài)觀察和原位檢測,記錄毒物作用的整個過程。Xiao等將氯化鎘(CdCl2),苯扎氯銨(BAK),砷酸鈉(Na2HAsO4)三種物質(zhì)作用于中國倉鼠肺細胞(V79),利用阻抗技術測定這些物質(zhì)對細胞的毒性,如圖5,當施加毒性物質(zhì)作用后,細胞的阻抗值明顯下降,其結果與中性紅標準方法的結果一致[44]。這個課題組又將上述三種物質(zhì)以及氯化汞(HgCl2)和三硝基苯(TNB)作用于V79,前四種物質(zhì)作為急性毒物的代表,而TNB作為長期慢性毒物的代表,利用阻抗技術檢測毒物濃度和作用時間對V79細胞的影響,為細胞對毒物的動態(tài)反應提供了信息[45]。其他課題組也做了很多相關研究,如用阻抗方法評估鎘[46],Triton X-100[47]對細胞的影響等。

        圖5 三種毒物(氯化鎘、苯扎氯銨和砷酸鈉)對成纖維V79細胞的影響[44]Fig.5 Responses(Ω per cell)of fibroblastic V79 cells to three cytotoxic chemicals(μmol/L):cadmium chloride,(a) 2.9,(b)4.6,(c)6.2,and(d)8.1;benzalkonium chloride,(a) 15.2,(b)18.3,(c)21.3,and(d)30.4;sodium arsenate,(a) 45,(b)60,(c)140,and(d)200

        3.2 抗癌藥物對癌細胞的作用

        許多抗癌藥物通過誘導細胞凋亡來殺死癌細胞。對細胞死亡的可靠評估,在發(fā)展有效、安全的抗癌藥物治療中顯得尤為重要。細胞凋亡過程中,細胞形態(tài)、細胞間的連接等發(fā)生改變,而細胞阻抗傳感技術能夠?qū)崟r檢測這些變化,降低了檢測成本,加快了測定流程,為抗癌藥物篩選提供了一種新的評估方法。清華大學周玉祥課題組通過細胞阻抗技術檢測阿司匹林誘導人結腸腺癌細胞(HT29)的改變,同時,通過透射電子顯微鏡成像佐證細胞形態(tài)改變,闡明了細胞阻抗技術在藥物毒性測試和藥物研發(fā)中的重要作用[48]。浙江大學王平課題組研究了癌癥治療的常用化學藥物-順鉑對人食管鱗癌細胞(KYSE30)的作用,細胞阻抗技術用于監(jiān)測細胞生長行為并探討了抗癌藥物的化學選擇性[27]。Pradhan等報導了利用阻抗技術評估抗癌藥物ZD6474對乳腺癌細胞(T47D、MCF-7)的作用,優(yōu)化了電極尺寸和測試頻率,測試結果與傳統(tǒng)的流式細胞儀測定結果一致[49-50]。

        4 阻抗技術區(qū)分正常細胞與癌細胞

        目前,臨床醫(yī)學領域診斷癌癥的方法包括超聲、放射和活檢等,活檢是確定癌變階段和程度的最精確的方法,然而有時也有假陰性判斷,而且需要諸如免疫組織化學 (IH)、顯色原位雜交(CISH)或熒光原位雜交(FISH)等程序[63]。近年來,微管吸吮(MA)、蠕變壓縮、原子力顯微鏡(AFM)、光鑷技術等也被用來評估細胞的癌變程度[64]。然而,比較經(jīng)濟、非侵害、更加快速的診斷方法,是應用阻抗技術來探知細胞的相關信息[65-71]。Han等將四種細胞:正常乳腺細胞(MCF-10A)、早期乳腺癌細胞(MCF-7)、侵入性人類乳腺癌細胞株(MDA-MB-231)和轉(zhuǎn)移性人類乳腺癌細胞株 (MDA-MB-435),捕獲到空腔

        內(nèi),并測定它們的阻抗,結果表明,與正常乳腺細胞相比,癌細胞的電容值分別下降4.1%,16.0%和19.1%[65]。Kang等在此基礎上,提高了檢測裝置的穩(wěn)定性和靈敏度,測定出正常乳腺細胞(MCF-10A)和早期乳腺癌細胞(MCF-7)阻抗實部和相位角的平均差異分別是 44.4 Ω和1.41°[66],如圖6。之后,這個課題組又利用相同的裝置區(qū)分了正常前列腺細胞(RWPE-1)和其癌細胞(PC-3),兩者的導納和電納分別相差54.55%和54.59%,重現(xiàn)性優(yōu)異[67]。Chandra等報道了基于功能化的磁性納米顆粒制成的生物阻抗傳感器,進行宮頸癌的早期檢測。宮頸癌細胞可以有選擇性地通過修飾電極檢測到,這在癌癥的監(jiān)測和臨床治療方面有巨大的發(fā)展前景[68]。利用阻抗技術區(qū)分正常細胞和癌細胞已受到廣泛關注,如何進一步提高準確度和靈敏度,為癌癥早期檢測提供預警信息,是目前的研究重點。

        圖6 乳腺癌細胞MCF-10A和正常乳腺細胞MCF-7阻抗值和相位角隨頻率變化的差異:(a)阻抗實部;(b)阻抗虛部;(c)阻抗模值;(d)相位角[66]Fig.6 Electrical impedance responses of MCF-10A and MCF-7 as a function of frequency:(a)real part(b) imaginary part;(c)magnitude and(d)phase angle.The vertical bars represent the error defined by maximum and minimum values.The insets show the precise values when the target cells are distinguished at each signal

        5 展望

        目前,細胞阻抗傳感技術已在細胞測定方面展示出了巨大前景,其無需標記、非破壞性、操作簡便等特點使得其廣泛應用于臨床和科研領域,包括細胞狀態(tài)和行為的監(jiān)測、藥物測試、正常細胞與癌細胞的區(qū)分等。然而,目前的檢測體系大多是將很多細胞培養(yǎng)在一個電極上,因此阻抗響應反映的是細胞的整體狀態(tài),而無法提供單細胞信息,如何發(fā)展超靈敏電極傳感平臺以實現(xiàn)單細胞的檢測是今后研究的重點。

        隨著檢測技術的快速發(fā)展,細胞阻抗傳感裝置也逐漸商業(yè)化,性能更加穩(wěn)定,操作更加方便,然而可以進一步微型化、自動化,設計成各種功能化芯片,供應各種檢測需要,降低成本,減少檢測時間,實現(xiàn)高通量檢測。

        [1]Lei K F.Review on impedance detection of cellular responses in micro/nanoenvironment[J].Micromachines, 2014,5(1):1-12.

        [2]Coffman F D,Cohen S.Impedance measurements in the biomedical sciences[J].Studies in health technology and informatics,2012,185:185-205.

        [3]Qiu Y,Liao R,Zhang X.Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing[J].Analytical chemistry,2008,80 (4):990-996.

        [4]Spegel C,Heiskanen A,Skjolding L H D,et al.Chip based electroanalytical systems for cell analysis[J]. Electroanalysis,2008,20(6):680-702.

        [5]Gu W,Zhao Y.Cellular electrical impedance spectroscopy:an emerging technology of microscale biosensors[J].Expert review of medical devices,2010,7(6): 767-779.

        [6]K'Owino I O,Sadik O A.Impedance spectroscopy:a powerful tool for rapid biomolecular screening and cell culture monitoring[J].Electroanalysis,2005,17(23):2101-2113.

        [7]Liu Q,Wu C,Cai H,et al.Cell-based biosensors and their application in biomedicine[J].Chemical reviews, 2014,114(12):6423-6461.

        [8]Giaever I,Keese C R.Monitoring fibroblast behavior in tissue culture with an applied electric field[J].Proceedings of the National Academy of Sciences,1984,81(12): 3761-3764.

        [9]Hug T S.Biophysical methods for monitoring cell-substrate interactions in drug discovery[J].Assay and drug development technologies,2003,1(3):479-488.

        [10]Tlili C,Reybier K,Gélo?n A,et al.Fibroblast cells:a sensing bioelement for glucose detection by impedance spectroscopy[J].Analytical chemistry,2003,75(14): 3340-3344.

        [11]Nwankire C E,Venkatanarayanan A,Glennon T,et al. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform[J].Biosensors and Bioelectronics,2015,68: 382-389.

        [12]Haddad S,Zanina N,Othmane A,et al.Polyurethane films modified by antithrombin–heparin complex to enhance endothelialization:An original impedimetric analysis[J].Electrochimica Acta,2011,56(21):7303-7311.

        [13]Lo C M,Keese C R,Giaever I.Impedance analysis of MDCK cellsmeasured by electric cell-substrate impedance sensing[J].Biophysical journal,1995,69(6): 2800-2807.

        [14]Park G,Choi C K,English A E,et al.Electrical impedance measurements predict cellular transformation [J].Cell biology international,2009,33(3):429-433.

        [15]Moore E,Rawley O,Wood T,et al.Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors[J].Sensors and Actuators B:Chemical, 2009,139(1):187-193.

        [16]Lin C Y,Teng N C,Hsieh S C,et al.Real-time detection of β1 integrin expression on MG-63 cells using electrochemical impedance spectroscopy[J].Biosensors and Bioelectronics,2011,28(1):221-226.

        [17]Wang L,Wang H,Mitchelson K,et al.Analysis of the sensitivity and frequency characteristics of coplanar electrical cell–substrate impedance sensors[J].Biosensors and Bioelectronics,2008,24(1):14-21.

        [18]Merrill D R,Tresco P.Impedance characterization of microarray recording electrodes in vitro[J].Biomedical Engineering,IEEE Transactions on,2005,52(11):1960-1965.

        [19]Hondroulis E,Liu C,Li C Z.Whole cell based electrical impedance sensing approach for a rapid nanotoxicityassay[J].Nanotechnology,2010,21(31):315103.

        [20]Xiao C,Lachance B,Sunahara G,et al.An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells [J].Analytical Chemistry,2002,74(6):1333-1339.

        [21]Yang X,Zhou Z,Xiao M,et al.Research on electric impedance spectroscopy of living cell suspensions by a chip with microelectrodes[J].XiyouJinshuCailiaoyu-Gongcheng (Rare Metal Materials and Engineering), 2006,35:429-432.

        [22]McCoy M H,Wang E.Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in realtime[J].Journal of Virological Methods,2005,130(1): 157-161.

        [23]肖名飛,楊興,周兆英,等.細胞阻抗譜檢測芯片的設計及實驗[J].納米技術與精密工程,2008,5(4):302-306.

        [24]Lin S P,Kyriakides T R,Chen J JJ.On-line observation of cell growth in a three-dimensional matrix on surfacemodified microelectrode arrays[J].Biomaterials,2009, 30(17):3110-3117.

        [25]Yu H,Wang J,Liu Q,et al.High spatial resolution impedance measurement of EIS sensors for light addressable cell adhesion monitoring[J].Biosensors and Bioelectronics,2011,26(6):2822-2827.

        [26]Wegener J,Keese C R,Giaever I.Electric cell–substrate impedance sensing(ECIS)as a noninvasive means

        to monitor the kinetics of cell spreading to artificial surfaces[J].Experimental cell research,2000,259(1): 158-166.

        [27]Liu Q,Yu J,Xiao L,et al.Impedance studies of bio-behavior and chemosensitivity of cancer cells by microelectrode arrays[J].Biosensors and Bioelectronics, 2009,24(5):1305-1310.

        [28]Luong J H T,Habibi-Rezaei M,Meghrous J,et al.Monitoring motility,spreading,and mortality of adherent insect cells using an impedance sensor[J].Analytical chemistry,2001,73(8):1844-1848.

        [29]Keese C R,Giaever I.Substrate mechanics and cell spreading[J].Experimental cell research,1991,195(2): 528-532.

        [30]Asphahani F,Thein M,Veiseh O,et al.Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors[J].Biosensors and Bioelectronics, 2008,23(8):1307-1313.

        [31]Tiruppathi C,Malik A B,Del Vecchio P J,et al.Electrical method for detection of endothelial cell shape change in real time:assessment of endothelial barrier function [J].Proceedings of the National Academy of Sciences, 1992,89(17):7919-7923.

        [32]Atienza J M,Zhu J,Wang X,et al.Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays[J].Journal of biomolecular screening,2005,10 (8):795-805.

        [33]Giaever I,Keese C R.Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture[J]. Biomedical Engineering,IEEE Transactions on,1986,2: 242-247.

        [34]向常洲,袁泉,夏應清.新型全數(shù)字化細胞阻抗傳感器的設計與實現(xiàn)[J].計算機測量與控制,2007,15(10): 1412-1414.

        [35]Shih S C C,Barbulovic-Nad I,Yang X,et al.Digital microfluidics with impedance sensing for integrated cell culture andanalysis[J].Biosensors and Bioelectronics, 2013,42:314-320.

        [36]Soley A,Lecina M,Gámez X,et al.On-line monitoring of yeast cell growth by impedance spectroscopy[J].Journal of biotechnology,2005,118(4):398-405.

        [37]Brischwein M,Herrmann S,Vonau W,et al.Electric cell-substrate impedance sensing with screen printed electrode structures[J].Lab on a Chip,2006,6(6):819-822.

        [38]Wegener J,Sieber M,Galla H J.Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces[J].Journal of biochemical and biophysical methods,1996,32(3):151-170.

        [39]Keese C R,Wegener J,Walker S R,et al.Electrical wound-healing assay for cells in vitro[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(6):1554-1559.

        [40]Wang L,Zhu J,Deng C,et al.An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing[J].Lab on a Chip,2008,8(6):872-878.

        [41]Stolwijk J A,Hartmann C,Balani P,et al.Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations[J].Biosensors and Bioelectronics,2011,26(12): 4720-4727.

        [42]Giaever I,Keese C R.Micromotion of mammalian cells measured electrically[J].Proceedings of the National A-cademy of Sciences,1991,88(17):7896-7900.

        [43]Newbold C,Richardson R,Huang C Q,et al.An in vitro model for investigating impedance changes with cell growth and electricalstimulation:implications for cochlear implants[J].Journal of neural engineering, 2004,1(4):218-227.

        [44]Xiao C,Lachance B,Sunahara G,et al.Assessment of cytotoxicity using electric cell-substrate impedance sensing:concentration and time response function approach[J].Analytical chemistry,2002,74(22):5748-5753.

        [45]Xiao C,Luong J H T.Assessment of cytotoxicity by emerging impedance spectroscopy[J].Toxicology and applied pharmacology,2005,206(2):102-112.

        [46]Peper J K,Schuster H,L?ffler M W,et al.An impedance-based cytotoxicity assay for real-time and label-free assessment of T-cell-mediated killing of adherent cells[J].Journal of immunological methods,2014, 405:192-198.

        [47]Ruemenapp C,Remm M,Wolf B,et al.Improved method for impedance measurements of mammalian cells[J]. Biosensors and Bioelectronics,2009,24(9):2915-2919.

        [48]Yin H,Wang F L,Wang A L,et al.Bioelectrical Impedance Assay to Monitor Changes in Aspirin-Treated Human Colon Cancer HT-29 Cell Shape during Apoptosis[J].Analytical letters,2007,40(1):85-94.

        [49]Pradhan R,Mandal M,Mitra A,et al.Monitoring cellular activities of cancer cells using impedance sensing de-

        vices[J].Sensors and Actuators B:Chemical,2014,193: 478-483.

        [50]Pradhan R,Rajput S,Mandal M,et al.Frequency dependent impedimetric cytotoxic evaluation of anticancer drug on breast cancer cell[J].Biosensors and Bioelectronics, 2014,55:44-50.

        [51]Yeon J H,Park J K.Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip[J].Analytical biochemistry, 2005,341(2):308-315.

        [52]Yu C,Zhu Z,Wang L,et al.A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test[J].Biosensors and Bioelectronics,2014,53:142-147.

        [53]Valdés L,Gueimonde M,Ruas-Madiedo P.Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29[J].Journal of microbiological methods,2015,119:66-73.

        [54]Opp D,Wafula B,Lim J,et al.Use of electric cell–substrate impedance sensing to assess in vitro cytotoxicity [J].Biosensors and Bioelectronics,2009,24(8):2625-2629.

        [55]Louis K S,Siegel A C.Cell viability analysis using trypan blue:manual and automated methods[M].Mammalian Cell Viability:Humana Press,2011.7-12.

        [56]Elengoe A,Hamdan S.Evaluation of Hyperthermia Effect on Cell Viability using Crystal Violet Staining,LDH and Trypan Blue Assays[J].Advancesin Environmental Biology,2014,8(3):744-747.

        [57]Foldbjerg R,Dang D A,Autrup H.Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line,A549[J].Archives of toxicology,2011,85(7): 743-750.

        [58]Nikzad S,Baradaran M,Nasiri P.Dose-response modeling using MTT assay:a short review[J].Life Science Journal,2014,11(9s):432-437.

        [59]Han X,Gelein R,Corson N,et al.Validation of an LDH assay for assessing nanoparticle toxicity[J].Toxicology, 2011,287(1):99-104.

        [60]Boncler M,Rózalski M,Krajewska U,et al.Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells[J].Journal of pharmacological and toxicological methods,2014,69(1):9-16.

        [61]Jo H Y,Kim Y,Park H W,et al.The Unreliability of MTT Assayin theCytotoxicTestofPrimaryCultured Glioblastoma Cells[J].Experimental neurobiology,2015, 24(3):235-245.

        [62]Van Engeland M,Ramaekers F C S,Schutte B,et al.A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture[J]. Cytometry,1996,24(2):131-139.

        [63]Di Palma S,Collins N,Faulkes C,et al.Chromogenic in situ hybridisation (CISH)should be an accepted method in the routine diagnostic evaluation of HER2 status in breast cancer[J].Journal of clinical pathology,2007,60 (9):1067-1068.

        [64]Suresh S.Biomechanics and biophysics of cancer cells [J].ActaMaterialia,2007,55(12):3989-4014.

        [65]Han A,Yang L,Frazier A B.Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy[J].Clinical Cancer Research, 2007,13(1):139-143.

        [66]Kang G,Yoo S K,Kim H I,et al.Differentiation Between Normal and Cancerous Cells at the Single Cell Level Using 3-D Electrode Electrical Impedance Spectroscopy [J].Sensors Journal,IEEE,2012,12(5):1084-1089.

        [67]Kang G,Kim Y,Moon H,et al.Discrimination between the human prostate normal cell and cancer cell by using a novel electrical impedance spectroscopy controlling the cross-sectional area of a microfluidic channel[J]. Biomicrofluidics,2013,7(4):044126.

        [68]Chandra S,Barola N,Bahadur D.Impedimetric biosensor for early detection of cervical cancer[J].Chemical Communications,2011,47(40):11258-11260.

        [69]Yang L,Arias L R,Lane T S,et al.Real-time electrical impedance-based measurement to distinguish oral cancer cells and non-cancer oral epithelial cells[J].Analytical and bioanalytical chemistry,2011,399(5):1823-1833.

        [70]Solly K,Wang X,Xu X,et al.Application of real-time cell electronic sensing (RT-CES)technology to cellbased assays[J].Assay and drug development technologies,2004,2(4):363-372.

        [71]Chiang Y,Jang L S,Tsai S L,et al.Impedance Analysis of Single Melanoma Cells in Microfluidic Devices[J]. Electroanalysis,2014,26(10):2129-2137.

        The application process of impedance sensing in cell detection

        Hu Qing-qing,Cui Yao,Zhang Fan*,He Pin-gang*
        (School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200241,China)

        Electric Cell-substrate Impedance Sensing is the combination of cell culture and impedance technology. Relevant cells cultured on working electrode are subjected to an alternating electric field,when cells attach and spread on this electrode,current signals of the whole system are collected to perceive cells state.With advantages like real-time,continuous,non-invasive,and label-free,impedance technology has been widely used in cell properties determination,cancer cells detection and anticancer drug screening etc.In this paper,we briefly review the recent application process of impedance in cell detection,involving the design of the detection system,the impedance monitoring of the physiological state of cells,the application of impedance in cytotoxicity and drug test, the differentiation of normal cells and cancer cells by impedance.

        impedance;cell detection;review

        國家自然科學基金資助項目(21405049);上海市教育委員會科研創(chuàng)新項目(13zz032)

        *通信聯(lián)系人,E-mail:fzhang@chem.ecnu.edu.cn;pghe@chem.ecnu.edu.cn

        猜你喜歡
        檢測
        QC 檢測
        “不等式”檢測題
        “一元一次不等式”檢測題
        “一元一次不等式組”檢測題
        “幾何圖形”檢測題
        “角”檢測題
        “有理數(shù)的乘除法”檢測題
        “有理數(shù)”檢測題
        “角”檢測題
        “幾何圖形”檢測題
        3d动漫精品一区二区三区| 国产黄色一区二区在线看| 久久综合久久美利坚合众国| 欧美最大胆的西西人体44| 欧美国产亚洲日韩在线二区| 日本最新一区二区三区免费看| 中文字幕人妻久久久中出| 不卡av电影在线| 精品亚洲aⅴ在线观看| 18禁黄无遮挡免费网站| 国产精品亚洲一区二区三区16| 日韩人妻无码一区二区三区久久| 两个人看的www高清视频中文| 日韩欧美亚洲国产一区二区三区| 日产分东风日产还有什么日产| 麻豆蜜桃av蜜臀av色欲av| 久久亚洲中文字幕无码| 亚洲欧洲日产国码久在线| 国产亚洲精品一品二品| 97se亚洲国产综合自在线观看| 国产激情з∠视频一区二区| 国产一区二区三区视频免费在线 | 人妻少妇出轨中文字幕| 欧美高大丰满freesex| 少妇被爽到自拍高潮在线观看| 亚洲一区二区三区中文字幕网| av无码人妻中文字幕| 久久久久久亚洲AV成人无码国产| 亚洲国产av精品一区二| 精品亚洲麻豆1区2区3区| 久久发布国产伦子伦精品| 亚洲AV无码一区二区三区精神| 在线日本国产成人免费精品| 亚洲精品无码久久久久av老牛| 69av视频在线观看| 一级黄片草逼免费视频| 国产 高潮 抽搐 正在播放 | 中文字幕第一页在线无码一区二区| 亚洲高清国产成人精品久久| 国产l精品国产亚洲区久久| 欧美日韩亚洲成色二本道三区|