唐峰綜 述 謝寧 審校
綜述
頸椎小關(guān)節(jié)源性疼痛機(jī)制的神經(jīng)生物學(xué)研究進(jìn)展
唐峰綜 述 謝寧 審校
頸椎小關(guān)節(jié)疾病是頸部慢性疼痛的常見來源,臨床上較為關(guān)注其診斷的精確性和穩(wěn)定性,而對病理生理及疼痛機(jī)制,特別是相關(guān)神經(jīng)生物學(xué)研究缺乏足夠的認(rèn)識。該文從疼痛產(chǎn)生的細(xì)胞學(xué)水平層面對頸椎小關(guān)節(jié)源性疼痛這一由多種炎性因子及神經(jīng)遞質(zhì)參與調(diào)節(jié)及維持的綜合反應(yīng)進(jìn)行綜述:介紹頸椎小關(guān)節(jié)神經(jīng)支配及其疼痛感受器的分布情況,闡述慢性損傷后小關(guān)節(jié)發(fā)生的不可逆的神經(jīng)病理變化(包括神經(jīng)元激活、炎性因子釋放和神經(jīng)元免疫表型改變等),并重點(diǎn)介紹其中參與疼痛啟動與維持的疼痛傳入遞質(zhì)、應(yīng)激相關(guān)蛋白和局部炎性因子、脊髓谷氨酸等三大類神經(jīng)遞質(zhì)和肽類。
頸椎;關(guān)節(jié)疾??;疼痛;神經(jīng)生物學(xué);疼痛感受器;神經(jīng)遞質(zhì);細(xì)胞因子類;神經(jīng)肽類
頸椎小關(guān)節(jié)又稱頸椎關(guān)節(jié)突關(guān)節(jié),由相鄰上下頸椎關(guān)節(jié)突的關(guān)節(jié)面組成,有一定的穩(wěn)定性,具有在一定范圍內(nèi)伸屈和旋轉(zhuǎn)運(yùn)動的功能。頸椎小關(guān)節(jié)富于神經(jīng)支配且易受創(chuàng)傷性機(jī)械負(fù)荷,越來越多的證據(jù)表明其是頸部慢性疼痛的一個獨(dú)立存在和常見的疼痛來源[1]。由于缺乏特異性的臨床表現(xiàn),頸椎小關(guān)節(jié)病變確診方法相對有限[2];控制性診斷性關(guān)節(jié)內(nèi)阻滯,包括對脊神經(jīng)內(nèi)側(cè)束支和背側(cè)束支的阻滯是診斷脊柱小關(guān)節(jié)疼痛的金標(biāo)準(zhǔn)[3-4]。目前對頸椎小關(guān)節(jié)源性疼痛的診治研究雖然備受關(guān)注,但多有爭議,結(jié)果也存在不確定性[5],疼痛機(jī)制方面也少有報道。但基本取得共識的觀點(diǎn)是,頸椎小關(guān)節(jié)發(fā)生急慢性損傷后,首先表現(xiàn)為小關(guān)節(jié)內(nèi)感受器放電增強(qiáng),之后伴隨不同類型感覺神經(jīng)纖維上傳至脊髓背根神經(jīng)節(jié)(dorsal root ganglion,DRG),在此交換神經(jīng)元后繼續(xù)發(fā)出神經(jīng)至脊髓背角感覺神經(jīng)元并上行至大腦,這一過程受到一系列神經(jīng)肽及細(xì)胞因子的調(diào)控和影響。本文就是圍繞頸椎小關(guān)節(jié)源性疼痛機(jī)制的神經(jīng)生物學(xué)研究進(jìn)展進(jìn)行綜述。
頸椎小關(guān)節(jié)內(nèi)富含游離神經(jīng)末梢及多種感受器,其疼痛分布的映射在幾個支配水平的重疊提示了頸椎小關(guān)節(jié)的多重節(jié)段支配,這與其臨床癥狀表現(xiàn)為疼痛區(qū)域重疊、牽涉痛等現(xiàn)象相符合;而自主神經(jīng)和感覺神經(jīng)的雙重支配也可解釋部分患者出現(xiàn)的頭昏、視物不清、眼球震顫、面部麻木等頭頸綜合征;小關(guān)節(jié)及其周圍組織神經(jīng)及感受器分布的大范圍、高密度也成為其疼痛綜合征發(fā)生頻繁和持續(xù)時間長的解剖學(xué)基礎(chǔ)。
1.1 頸椎小關(guān)節(jié)的神經(jīng)支配
頸椎小關(guān)節(jié)的神經(jīng)支配為脊神經(jīng)后支,后支分為后內(nèi)側(cè)支和后外側(cè)支,兩支均有小分支到小關(guān)節(jié)的關(guān)節(jié)囊,甚至在小關(guān)節(jié)滑膜皺襞處也分布有大量的感覺神經(jīng)[6]。DRG細(xì)胞是傳導(dǎo)觸覺、痛覺等感覺的第一級神經(jīng)元,根據(jù)細(xì)胞大小不同,發(fā)出不同類型的感覺神經(jīng)纖維。不僅是顯微解剖學(xué)研究發(fā)現(xiàn)頸椎小關(guān)節(jié)有豐富的神經(jīng)分布,神經(jīng)生物學(xué)相關(guān)研究也證實(shí)了這一點(diǎn)。Kallakuri等[7]運(yùn)用免疫組化方法評估新鮮尸體頸椎小關(guān)節(jié)的神經(jīng)分布,檢測到大量可作為神經(jīng)軸突標(biāo)記物的蛋白基因產(chǎn)物9.5(protein gene product 9.5,PGP 9.5),從而揭示了小關(guān)節(jié)囊的廣泛神經(jīng)分布,小關(guān)節(jié)內(nèi)為數(shù)眾多的神經(jīng)纖維也增強(qiáng)了頸椎小關(guān)節(jié)作為頸痛關(guān)鍵來源之一的可信度。
頸椎小關(guān)節(jié)的感覺神經(jīng)纖維起源于C1~T3DRG,研究表明,由DRG發(fā)出的神經(jīng)纖維至少分布到相同平面和其下一平面的2個頸椎小關(guān)節(jié),而每個頸椎小關(guān)節(jié)也至少受2個節(jié)段神經(jīng)的支配[8]。Ohtori等[9]還通過逆行性神經(jīng)示蹤法確認(rèn),有些感覺神經(jīng)纖維從頸椎小關(guān)節(jié)進(jìn)入椎旁交感干并通過多節(jié)段水平到達(dá)DRG,進(jìn)一步證實(shí)了頸椎小關(guān)節(jié)多節(jié)段水平的神經(jīng)分布。
頸椎小關(guān)節(jié)囊的神經(jīng)支配不僅來源于感覺神經(jīng)系統(tǒng),同時也來源于交感神經(jīng)系統(tǒng)[10];感覺神經(jīng)的DRG和交感神經(jīng)的中間神經(jīng)節(jié)也有神經(jīng)纖維聯(lián)系,這也是感覺神經(jīng)和交感神經(jīng)中樞外聯(lián)系的一部分,提示頸椎小關(guān)節(jié)受到感覺及交感神經(jīng)的雙重支配。對新鮮尸體的解剖學(xué)研究亦發(fā)現(xiàn),部分稱之為椎神經(jīng)的極小束支進(jìn)入小關(guān)節(jié)纖維囊、椎間關(guān)節(jié)和硬膜,其最主要的作用是作為長而深的交通支,通過C6、C7橫突孔連接星狀神經(jīng)節(jié)和C6、C7脊神經(jīng)[11]。這些證據(jù)進(jìn)一步明確了交感神經(jīng)在小關(guān)節(jié)疼痛調(diào)節(jié)和維持過程中的重要作用。Johnson[12]還提出頸椎小關(guān)節(jié)部分感覺神經(jīng)伴隨交感神經(jīng)通路上傳的模型,其中可以用牽涉痛解釋無法與脊神經(jīng)分布相對應(yīng)的頸肩、上肢、上身痛及頭痛癥狀;臨床上阻斷脊神經(jīng)和交感神經(jīng)可緩解患者的疼痛癥狀,也證實(shí)交感神經(jīng)在牽涉痛中不容忽視的作用。
1.2 頸椎小關(guān)節(jié)疼痛感受器分布
小關(guān)節(jié)囊上含有低閾值的機(jī)械感受器、機(jī)械敏感性傷害感受器以及無反應(yīng)傷害感受器,炎癥和損傷均可導(dǎo)致神經(jīng)末梢閾值下降,基線放電率升高。Strasmann等[13]在縱韌帶及頸椎小關(guān)節(jié)囊中發(fā)現(xiàn)大量的Aδ和C類游離神經(jīng)末梢及少量法特氏小體,其中法特氏小體被認(rèn)為是快適應(yīng)機(jī)械感受器,由肌梭向中樞神經(jīng)系統(tǒng)提供關(guān)于位置和運(yùn)動的信息;電鏡下還可觀察到神經(jīng)軸突末梢以指狀突起延伸到法特氏小體內(nèi)核,推測其可能是機(jī)械電轉(zhuǎn)導(dǎo)過程的位點(diǎn)。Chen等[14-15]對山羊頸椎小關(guān)節(jié)囊機(jī)械感受器進(jìn)行神經(jīng)電生理分析,結(jié)果發(fā)現(xiàn)Aβ、Aδ和C類纖維單元對機(jī)械刺激有所反應(yīng),并在有肌肉附著的關(guān)節(jié)囊后外側(cè)發(fā)現(xiàn)較多C類纖維受體,進(jìn)一步證實(shí)頸椎小關(guān)節(jié)囊分布有功能性本體感受器和疼痛感受器;Thunberg等[16]對貓小關(guān)節(jié)進(jìn)行研究,提出頸椎小關(guān)節(jié)的肌梭運(yùn)動感受系統(tǒng)是導(dǎo)致頸部揮鞭樣損傷后慢性頸部功能失調(diào)的可能原因,提示本體感覺功能失調(diào)與揮鞭樣損傷等刺激所致的頸椎小關(guān)節(jié)源性慢性疼痛關(guān)系密切。
在頸椎小關(guān)節(jié)導(dǎo)致的一系列疼痛性變化模型中,均發(fā)現(xiàn)存在神經(jīng)元激活、神經(jīng)肽釋放以及炎癥介質(zhì)反應(yīng)。隨著疼痛神經(jīng)生理學(xué)及免疫組織化學(xué)研究的進(jìn)展,人們發(fā)現(xiàn)許多神經(jīng)遞質(zhì)參與了頸椎小關(guān)節(jié)的疼痛表達(dá)和傳遞,另有相當(dāng)一部分神經(jīng)肽和細(xì)胞因子在疼痛過程中發(fā)生變化,其中參與疼痛啟動與維持的主要有以下三大類:疼痛傳入遞質(zhì)、應(yīng)激相關(guān)蛋白和局部炎性因子、脊髓谷氨酸。
2.1 介導(dǎo)疼痛傳遞和調(diào)節(jié)的物質(zhì)
主要包括降鈣素基因相關(guān)肽(calcitonin gene-related peptide,CGRP)、P物質(zhì)(substance P,SP)和其他相關(guān)介質(zhì)。研究發(fā)現(xiàn),頸椎小關(guān)節(jié)囊同時分布有CGRP能和SP能的神經(jīng)末梢[17]。CGRP 與SP在傷害性信息傳遞中發(fā)揮重要作用,兩者共存于DRG的初級傳入神經(jīng)元中[18],CGRP可以抑制與SP降解有關(guān)的內(nèi)肽酶,使SP作用增強(qiáng)或延長[19];兩者在痛覺調(diào)制中亦存在協(xié)同作用。外周神經(jīng)系統(tǒng)中還存在其他神經(jīng)介質(zhì),具有一定的疼痛調(diào)節(jié)作用。
2.1.1 CGRP作為最常被研究的疼痛性調(diào)節(jié)神經(jīng)元,CGRP能神經(jīng)元在頸椎小關(guān)節(jié)的分布和表現(xiàn)具有一定特異性。Ohtori等[20-21]在對大鼠疼痛模型進(jìn)行研究中發(fā)現(xiàn),CGRP能神經(jīng)元在C5、C6水平DRG比率較高;作者還觀察到DRG水平存在CGRP免疫染色陽性的神經(jīng)細(xì)胞向大型神經(jīng)細(xì)胞免疫表型改變的現(xiàn)象。Kras等[22]則發(fā)現(xiàn),更多被標(biāo)記的CGRP能神經(jīng)元出現(xiàn)在C7水平DRG中,推測其可能在參與C6/7小關(guān)節(jié)疼痛中擔(dān)負(fù)更為主要的作用。以上研究提示,CGRP能神經(jīng)元介導(dǎo)的疼痛在下頸椎更為常見。此外,大鼠頸部DRG內(nèi)亦含有CGRP的感覺神經(jīng)元,其周圍突分為兩支,一支支配頸椎小關(guān)節(jié)囊,另一支隨橈神經(jīng)分布到前(上)肢[23],由此可推測頸椎關(guān)節(jié)突關(guān)節(jié)疼痛綜合征并發(fā)上臂牽涉痛的神經(jīng)形態(tài)學(xué)基礎(chǔ)之一可能發(fā)生在DRG水平。
2.1.2 SP作為和CGRP相似的致痛神經(jīng)介質(zhì),SP主要分布在與痛覺傳導(dǎo)有關(guān)的C類和Aδ類纖維,此類神經(jīng)纖維相對于CGRP能神經(jīng)纖維數(shù)量偏少,故可能在疼痛維持中作用更大。Lee等[24-26]對大鼠頸椎小關(guān)節(jié)疼痛的力學(xué)性病理模型進(jìn)行系列研究,結(jié)果表明,頸椎小關(guān)節(jié)在不同強(qiáng)度牽拉負(fù)荷下產(chǎn)生不同程度的異常疼痛,脊髓和DRG水平炎性介質(zhì)激活,其中SP mRNA和蛋白表達(dá)均明顯增加,雖然在痛性牽拉負(fù)荷的初期(1 d)較非痛性牽拉其表達(dá)量明顯降低,但是7 d時疼痛性牽拉負(fù)荷會明顯增加脊髓的SP mRNA及其蛋白表達(dá),提示相對于CGRP,SP可能在慢性疼痛中發(fā)揮更為重要的作用。
2.2 應(yīng)激相關(guān)蛋白和局部炎性因子
整合應(yīng)激反應(yīng)(integrated stress response,ISR)是近年來研究各類應(yīng)激相關(guān)疾病防治的熱門靶點(diǎn),是指在氧化應(yīng)激、氨基酸剝奪和未折疊蛋白集聚等情況下,內(nèi)質(zhì)網(wǎng)應(yīng)激分子介導(dǎo)的細(xì)胞適應(yīng)反應(yīng)主要通過整合內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)、啟動細(xì)胞內(nèi)亞細(xì)胞器反應(yīng)等途徑來決定細(xì)胞的轉(zhuǎn)歸[27]。Dong等[28-29]對頸椎小關(guān)節(jié)受損后ISR相關(guān)炎癥分子進(jìn)行研究,測量內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)蛋白,即生長相關(guān)蛋白78(growth-related protein 78,GRP78)的水平,得出DRG水平神經(jīng)細(xì)胞應(yīng)激活化和痛性小關(guān)節(jié)受損相關(guān),頸椎小關(guān)節(jié)的負(fù)荷受損可直接導(dǎo)致相關(guān)DRG神經(jīng)元應(yīng)激反應(yīng)的發(fā)生;進(jìn)一步的研究發(fā)現(xiàn),ISR中的介質(zhì)激活轉(zhuǎn)錄因子4(activating transcription factor 4,ATF4)也參與了小關(guān)節(jié)介導(dǎo)性疼痛,其活化并不直接導(dǎo)致持續(xù)性疼痛,但可能對負(fù)責(zé)引發(fā)疼痛的神經(jīng)元起致敏作用。這些研究結(jié)果揭示,頸椎小關(guān)節(jié)關(guān)節(jié)面介導(dǎo)的疼痛可通過ISR介導(dǎo)的途徑直接或間接得以維持。
局部炎癥因子的釋放亦與ISR的誘發(fā)密切相關(guān),諸多炎癥因子可導(dǎo)致神經(jīng)元細(xì)胞應(yīng)激反應(yīng)并參與疼痛的誘發(fā)和維持。Kras等[30]通過免疫組化方法測定大鼠頸椎小關(guān)節(jié)損傷后DRG中前列腺素E2(prostaglandin E2,PGE2)受體EP2的表達(dá),由于PGE2水平已被證明在炎性疼痛和關(guān)節(jié)炎中升高,因此在痛性頸椎小關(guān)節(jié)模型DRG中EP2立刻且持續(xù)的升高,可能提示外周小關(guān)節(jié)炎癥的啟動和維持狀態(tài)是誘發(fā)和維持小關(guān)節(jié)疼痛的重要因素。
2.3 脊髓谷氨酸能系統(tǒng)
脊髓谷氨酸能系統(tǒng)也是一類脊髓內(nèi)介導(dǎo)疼痛傳遞,尤其是慢性疼痛維持的重要神經(jīng)遞質(zhì)系統(tǒng)。外周有髄或無髓Aδ和C類纖維首先經(jīng)過DRG中富含谷氨酸的中間神經(jīng)元后向脊髓背角的淺層投射,其傳入神經(jīng)末梢在突觸前膜釋放谷氨酸作為神經(jīng)遞質(zhì),激動突觸后膜谷氨酸相應(yīng)受體,從而維持脊髓在疼痛狀態(tài)下的高敏感性。Dong等[31-32]的系列研究表明,在經(jīng)歷類似于動態(tài)揮鞭樣損傷關(guān)節(jié)負(fù)荷的患者中,脊髓谷氨酸能系統(tǒng)可以增強(qiáng)持續(xù)行為性痛覺過敏,相關(guān)神經(jīng)元突觸活化可能是導(dǎo)致脊髓神經(jīng)這種過度興奮現(xiàn)象的主因。
揮鞭樣損傷所致的慢性疼痛可通過兩種方式得到緩解,一是通過阻斷代謝型谷氨酸受體5 (metabotropic glutamate receptor-5,mGluR5)的表達(dá),二是通過興奮性氨基酸轉(zhuǎn)運(yùn)蛋白1(excitatory amino acid carrier 1,EAAC1)增強(qiáng)谷氨酸轉(zhuǎn)運(yùn)。而在進(jìn)一步研究DRG和脊髓水平的谷氨酸能受體和轉(zhuǎn)運(yùn)體時人們發(fā)現(xiàn),mGluR5及其下游細(xì)胞內(nèi)信使蛋白激酶C-ε(protein kinase C-epsilon,PKCepsilon)水平直到第7天才出現(xiàn)明顯升高,且mGluR5的表達(dá)隨時間延長而逐漸增高,脊髓EAAC1表達(dá)僅在第7天的無痛組顯著增加,表明頸椎小關(guān)節(jié)源性疼痛中脊髓谷氨酸能系統(tǒng)并非一成不變,相應(yīng)受體蛋白可隨時間發(fā)生可塑性變化,這可能是導(dǎo)致小關(guān)節(jié)慢性疼痛維持的機(jī)制之一[32]。
Weisshaar等[33]通過青春期大鼠小關(guān)節(jié)牽拉模型發(fā)現(xiàn),DRG內(nèi)mGluR5、PKCepsilon水平以及脊髓膠質(zhì)細(xì)胞(星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞)活化水平明顯高于對照組,推測發(fā)生小關(guān)節(jié)損傷的青少年對比成人可能含有較少能夠耐受誘導(dǎo)的疼痛和相關(guān)疼痛反應(yīng)組織,脊髓谷氨酸能系統(tǒng)可能是不同年齡患者疼痛程度個性化的原因之一。
需要指出的是,以上三大類參與頸椎小關(guān)節(jié)源性疼痛的神經(jīng)肽和細(xì)胞因子并非頸椎小關(guān)節(jié)源性疼痛的獨(dú)立因素。CGRP能和SP能神經(jīng)纖維不僅是傳遞傷害性感覺的基礎(chǔ),還可以局部釋放CGRP和SP并影響其他炎癥介質(zhì)的釋放,在局部產(chǎn)生炎癥反應(yīng)而致痛[34-35];ISR可以致敏痛性神經(jīng)元,和炎癥因子一起參與疼痛維持;谷氨酸能系統(tǒng)作為中樞神經(jīng)遞質(zhì),可通過其可逆性變化調(diào)節(jié)疼痛并參與疼痛的維持。由此可見,小關(guān)節(jié)源性疼痛是多種炎性因子和神經(jīng)遞質(zhì)參與調(diào)節(jié)及維持的一類綜合反應(yīng)。
頸椎小關(guān)節(jié)在其受損的初期主要是局部機(jī)械敏感性疼痛感受器持續(xù)放電,此時在顯微水平就已出現(xiàn)過度牽拉所致關(guān)節(jié)囊的器質(zhì)性損傷,之后的持續(xù)性頑固疼痛可能是由于ISR激活和局部炎癥物質(zhì)釋放并刺激相關(guān)疼痛感覺神經(jīng)末梢或降低其感受閾值,從而釋放神經(jīng)肽到脊髓DRG所致。小關(guān)節(jié)源性疼痛的神經(jīng)元激活是普遍和持續(xù)的,伴隨有脊髓中的神經(jīng)膠質(zhì)細(xì)胞活化和部分神經(jīng)細(xì)胞免疫表型的改變。脊髓中痛性神經(jīng)分布的年齡特異性和空間特異性也決定了青少年和下頸椎對于小關(guān)節(jié)源性疼痛更為敏感。目前已明確的外周直接致痛神經(jīng)肽為SP和CGRP,中樞則發(fā)現(xiàn)包括mGluR5、PKCepsilon在內(nèi)的脊髓谷氨酸能系統(tǒng)參與疼痛的調(diào)節(jié)和維持,這些神經(jīng)介質(zhì)和炎性因子被認(rèn)為是產(chǎn)生持續(xù)和慢性頸痛的原因;其他神經(jīng)遞質(zhì)和肽類在疼痛反應(yīng)劇烈時也有所變化,如與炎性反應(yīng)相關(guān)的GRP78、ATF4、PGE2,參與疼痛調(diào)節(jié)的一氧化氮、神經(jīng)肽Y等等。但上述這些物質(zhì)參與疼痛調(diào)節(jié)的機(jī)制及相互作用仍然需要進(jìn)一步探明。
另有相當(dāng)一部分神經(jīng)肽和細(xì)胞因子在疼痛過程中發(fā)生變化,包括特異性疼痛調(diào)節(jié)介質(zhì),如外周神經(jīng)系統(tǒng)中的神經(jīng)元性一氧化氮合酶(neuronal nitric oxide synthase,nNOS)[36],其所產(chǎn)生的一氧化氮被認(rèn)為是非膽堿能、非腎上腺素能神經(jīng)的遞質(zhì)或介質(zhì),參與痛覺傳入與感覺傳遞過程;還有一些非特異性疼痛調(diào)節(jié)介質(zhì),如脊髓星形膠質(zhì)細(xì)胞表達(dá)的蛋白酶激活受體1(protease-activated receptor-1,PAR1),與頸椎小關(guān)節(jié)損傷所致的疼痛維持相關(guān)[37]。未來可能會有更多與小關(guān)節(jié)源性疼痛相關(guān)的神經(jīng)介質(zhì)或細(xì)胞因子被發(fā)現(xiàn),將繼續(xù)充實(shí)現(xiàn)有的小關(guān)節(jié)-DRG-脊髓-大腦通路,進(jìn)而形成完備的小關(guān)節(jié)疼痛神經(jīng)生物學(xué)機(jī)制。需要指出的是,與腰椎小關(guān)節(jié)不同,頸椎小關(guān)節(jié)缺乏足夠的肌肉韌帶保護(hù),其關(guān)節(jié)活動度較大。臨床上引起腰椎小關(guān)節(jié)疼痛的原因也與頸椎有所不同,腰椎小關(guān)節(jié)疼痛相關(guān)研究較為完善,其疼痛常歸因于關(guān)節(jié)囊松弛、關(guān)節(jié)面之間滑膜絨毛嵌頓、骨贅壓迫神經(jīng)及關(guān)節(jié)炎炎性因子的釋放等[38];而頸椎小關(guān)節(jié)疼痛在交通事故等引起的揮鞭樣損傷相關(guān)性疼痛中最為常見,退變、小關(guān)節(jié)炎次之,頸部損傷后疼痛也多歸因于頸椎間盤、頸部韌帶及肌肉問題。由于對頸椎小關(guān)節(jié)源性疼痛的確診仍需依靠一定的侵入性檢查,事實(shí)上臨床頸椎小關(guān)節(jié)所致疼痛的發(fā)生率可能更高。如何將這些疼痛機(jī)制研究與臨床應(yīng)用相結(jié)合,是未來進(jìn)一步研究的方向。
[1]黃袁遲,鄒德威,馬華松,等.頸椎小關(guān)節(jié)的形態(tài)學(xué)研究進(jìn)展[J].中國脊柱脊髓雜志,2011,21(12):1026-1029.
[2]Gellhorn AC.Cervical facet-mediated pain[J].Phys Med Rehabil Clin N Am,2011,22(3):447-458.
[3]Sehgal N,Dunbar EE,Shah RV,et al.Systematic review of diagnostic utility of facet(zygapophysial)joint injections in chronic spinal pain:an update[J].Pain Physician,2007,10 (1):213-228.
[4]Schneider GM,Jull G,Thomas K,et al.Derivation of a clinical decision guide in the diagnosis of cervical facet joint pain[J].Arch Phys Med Rehabil,2014,95(9):1695-1701.
[5]謝寧.頸椎關(guān)節(jié)突關(guān)節(jié)疼痛綜合征[J].中國矯形外科雜志,1997,4(5):404-405.
[6]Inami S,Shiga T,Tsujino A,et al.Immunohistochemical demonstration of nerve fibers in the synovial fold of the human cervical facet joint[J].J Orthop Res,2001,19(4): 593-596.
[7]Kallakuri S,Singh A,Chen C,et al.Demonstration of substance P,calcitonin gene-related peptide,and protein gene product 9.5 containing nerve fibers in human cervical facet joint capsules[J].Spine,2004,29(11):1182-1186.
[8]Bogduk N.The clinical anatomy of the cervical dorsal rami [J].Spine,1982,7(4):319-330.
[9]Ohtori S,Takahashi K,Chiba T,et al.Sensory innervation of the cervical facet joints in rats[J].Spine,2001,26(2): 147-150.
[10]Zhou HY,Chen AM,Guo FJ,et al.Sensory and sympathetic innervationofcervicalfacetjointinrats[J].ChinJ Traumatol,2006,9(6):377-380.
[11]Tubbs RS,Loukas M,Remy AC,et al.The vertebral nerve revisited[J].Clin Anat,2007,20(6):644-647.
[12]Johnson GM.The sensory and sympathetic nerve supply within the cervical spine:review of recent observations[J]. Man Ther,2004,9(2):71-76.
[13]Strasmann TJ,F(xiàn)eilscher TH,Baumann KI,et al.Distribution of sensory receptors in joints of the upper cervical column in the laboratory marsupial monodelphis domestica[J].Ann Anat,1999,181(2):199-206.
[14]Chen C,Lu Y,Cavanaugh JM,et al.Recording of neural activityfromgoatcervicalfacetjointcapsuleusing custom-designed miniature electrodes[J].Spine,2005,30 (12):1367-1372.
[15]Chen C,Lu Y,Kallakuri S,et al.Distribution of A-delta andC-fiber receptors in the cervical facet joint capsule and their response to stretch[J].J Bone Joint Surg Am,2006,88(8): 1807-1816.
[16]Thunberg J,Hellstr?m F,Sj?lander P,et al.Influences on the fusimotor-muscle spindle system from chemosensitive nerve endingsincervicalfacetjointsinthecat:possible implications for whiplash induced disorders[J].Pain,2001,91 (1-2):15-22.
[17]Cavanaugh JM,Lu Y,Chen C,et al.Pain generation in lumbar and cervical facet joints[J].J Bone Joint Surg Am,2006,88(Suppl 2):63-67.
[18]Kang TC,Seo J,Song SH,et al.The coexistence of calcitonin gene-related peptide and substance P in pericellular arborization and satellite cell of goat trigeminal and nodose ganglia[J].Anat Histol Embryol,1999,28(1):41-43.
[19]Schaible HG,Hope PJ,Lang CW,et al.Calcitonin generelated peptide causes intraspinal spreading of substance P released by peripheral stimulation[J].Eur J Neurosci,1992,4 (8):750-757.
[20]Ohtori S,Moriya H,Takahashi K.Calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the cervical facet joints in rats[J].J Orthop Sci,2002,7(2): 258-261.
[21]Ohtori S,Takahashi K,Moriya H.Calcitonin gene-related peptideimmunoreactiveDRGneuronsinnervatingthe cervical facet joints show phenotypic switch in cervical facet injury in rats[J].Eur Spine J,2003,12(2):211-215.
[22]Kras JV,Tanaka K,Gilliland TM,et al.An anatomical and immunohistochemical characterization of afferents innervating the C6-C7 facet joint after painful joint loading in the rat[J]. Spine,2013,38(6):E325-E331.
[23]吳麗如,李瑞錫,王劼,等.大鼠頸脊神經(jīng)節(jié)中降鈣素基因相關(guān)肽免疫陽性神經(jīng)元分支至頸椎關(guān)節(jié)突關(guān)節(jié)囊和前肢[J].解剖學(xué)報,2005,36(4):361-366.
[24]Lee KE,Thinnes JH,Gokhin DS,et al.A novel rodent neck painmodeloffacet-mediatedbehavioralhypersensitivity: implications for persistent pain and whiplash injury[J].J Neurosci Methods,2004,137(2):151-159.
[25]Lee KE,Winkelstein BA.Joint distraction magnitude is associated with different behavioral outcomes and substance P levels for cervical facet joint loading in the rat[J].J Pain,2009,10(4):436-445.
[26]Lee KE,Davis MB,Winkelstein BA.Capsular ligament involvement in the development of mechanical hyperalgesia afterfacetjointloading:behavioralandinflammatory outcomes in a rodent model of pain[J].J Neurotrauma,2008,25(11):1383-1393.
[27]Harding HP,Zhang Y,Zeng H,et al.An integrated stress response regulates amino acid metabolism and resistance to oxidative stress[J].Mol Cell,2003,11(3):619-633.
[28]Dong L,Odeleye AO,Jordan-Sciutto KL,et al.Painful facet joint injury induces neuronal stress activation in the DRG: implications for cellular mechanisms of pain[J].Neurosci Lett,2008,443(2):90-94.
[29]Dong L,Guarino BB,Jordan-Sciutto KL,et al.Activating transcription factor 4,a mediator of the integrated stress response,is increased in the dorsal root ganglia following painful facet joint distraction[J].Neuroscience,2011,193: 377-386.
[30]Kras JV,Dong L,Winkelstein BA.The prostaglandin E2 receptor,EP2,is upregulated in the dorsal root ganglion after painful cervical facet joint injury in the rat[J].Spine,2013,38(3):217-222.
[31]Dong L,Winkelstein BA.Simulated whiplash modulates expression of the glutamatergic system in the spinal cord suggesting spinal plasticity is associated with painful dynamic cervicalfacetloading[J].JNeurotrauma,2010,27(1): 163-174.
[32]Dong L,Quindlen JC,Lipschutz DE,et al.Whiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity[J].Brain Res,2012(1461):51-63.
[33]Weisshaar CL,Dong L,Bowman AS,et al.Metabotropic glutamate receptor-5 and protein kinase C-epsilon increase in dorsal root ganglion neurons and spinal glial activation in an adolescentratmodelofpainfulneckinjury[J].J Neurotrauma,2010,27(12):2261-2271.
[34]Holzer P.Local effector functions of capsaicin-sensitive sensory nerve endings:involvement of tachykinins,calcitonin gene-related peptide and other neuropeptides[J].Neuroscience,1988,24(3):739-768.
[35]Louis SM,Jamieson A,Russell NJ,et al.The role of substance P and calcitonin gene-related peptide in neurogenic plasmaextravasationandvasodilatationintherat[J]. Neuroscience,1989,32(3):581-586.
[36]王洪新,王暉,李云峰,等.正常人頸段脊柱結(jié)構(gòu)內(nèi)nNOS陽性神經(jīng)末梢的分布[J].臨床骨科雜志,2006,9(5):459-460.
[37]Dong L,Smith JR,Winkelstein BA.Ketorolac reduces spinalastrocytic activation and PAR1 expression associated with attenuation of pain after facet joint injury[J].J Neurotrauma,2013,30(10):818-825.
[38]Bykowski JL,Wong WH.Role of facet joints in spine pain and image-guided treatment:a review[J].Am J Neuroradiol, 2012,33(8):1419-1426.
Advances in neurobiological mechanism of cervical facet joint pain
TANG Feng,XIE Ning.Department of Spine Surgery,Changzheng Hospital,Second Military Medical University,Shanghai 200003,China.
Diseases of cervical facet joint is a common source of chronic neck pain.Clinically,the accuracy and stability of the diagnosis of cervical facet joint-induced pain is often been concerned,whereas the pathophysiology and pain mechanism,especially the related neurobiological information were still not recognized adequately.In this paper,researches in pain from cervical facet joint,which is a integrated reaction regulated and maintained by all kinds of inflammatory factors and neurotransmitters,were reviewed from the aspect of cytological level of pain induction:the innervation and the distribution of pain receptors of cervical facet joint were introduced,irreversible neuropathological changes of cervical facet joint after chronic injuries were discussed which involved neuron activation,inflammatory cytokines release and changes of neuronal phenotype,at the same time,neurotransmitters and peptides involved in starting and sustaining the facet joint pain were emphasized which including the following three categories:pain neurotransmitters,stress-related proteins and local inflammatory factors,as well as spinal glutamate.
Cervical vertebrae;Joint diseases;Pain;Neurobiology;Nociceptors;Neurotransmitter;Cytokines;Neuropeptides
R681.531,R441.1,R322.86
A
1674-666X(2015)05-298-07
2015-08-14;
2015-09-19)
(本文編輯:白朝暉)
10.3969/j.issn.1674-666X.2015.05.008
200003上海,第二軍醫(yī)大學(xué)附屬長征醫(yī)院脊柱外科
E-mail:tangfengmr@163.com