史作民, 唐敬超, 程瑞梅, 羅 達, 劉世榮
中國林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護研究所, 國家林業(yè)局森林生態(tài)環(huán)境重點實驗室, 北京 100091
植物葉片氮分配及其影響因子研究進展
史作民*, 唐敬超, 程瑞梅, 羅 達, 劉世榮
中國林業(yè)科學(xué)研究院森林生態(tài)環(huán)境與保護研究所, 國家林業(yè)局森林生態(tài)環(huán)境重點實驗室, 北京 100091
氮是植物生長的基本限制性因子,它的有效利用可以增加植物的適應(yīng)性。葉片氮分配是指氮在植物葉片細胞各細胞結(jié)構(gòu)以及游離化合物中所分配的比例。葉片氮的分配方式?jīng)Q定了葉片光合作用的強弱,影響葉片的堅韌程度以及化學(xué)防御強度,因此研究氮在植物葉片內(nèi)的分配方式具有重要意義。闡述了葉片氮分配的方式,分析了影響葉片氮分配的生物和非生物因子(CO2,光,土壤養(yǎng)分),介紹了常用的葉片氮分配的研究方法,并對未來的研究進行了展望。
氮分配; 葉片; 影響因子; 研究進展
作為植物生長的必需元素之一,氮是很多生態(tài)系統(tǒng)的限制因子[1-3]。與其他元素相比,氮的有效性對植物生長能力的限制更強[4-5]。原因在于氮能通過調(diào)節(jié)植物體內(nèi)一百多種基因來影響其生理過程,包括編碼水通道蛋白、磷酸根和鉀離子轉(zhuǎn)運蛋白、硝酸鹽轉(zhuǎn)運蛋白和硝酸亞硝酸還原酶的基因和一些代謝酶,如天冬酰胺合成酶和組氨酸脫羧酶等[6]的基因。此外,氮也參與合成細胞里的其他的一些物質(zhì),如游離氨基酸[7],生氰糖苷[8]等。植物吸收到葉片中的氮存在于葉片細胞的不同細胞結(jié)構(gòu)以及一些游離的化合物當中,這種分配方式?jīng)Q定了葉片光合作用的強弱[9-10],影響葉片的堅韌程度[11]以及化學(xué)防御強度[8],因此研究氮在植物葉片內(nèi)的分配具有重要意義。
目前,關(guān)于葉片氮分配的研究國外已有大量報道,有些研究甚至已經(jīng)深入到分子水平[1-5,7-11]。國內(nèi)的研究也逐步開展,有張亞杰等對斜葉榕(Ficustinctoria)和假斜葉榕(F.subulata)[12]、Feng[13-16]對紫莖澤蘭(Ageratinaadenophora)、Lei等[17]對互花米草(Spartinaalterniflora)和張緒成等[18-20]對春小麥(Triticumaestivum)的研究等。本文對葉片氮分配的研究進行綜合評述,闡述了葉片氮的分配方式,分析了生物因子和非生物因子(光,CO2,土壤養(yǎng)分)對葉片氮分配的影響,并介紹了常用的研究方法,以期促進國內(nèi)相關(guān)研究的深入開展。
葉片氮分配是指氮在植物葉片細胞各細胞結(jié)構(gòu)以及游離化合物中的分配比例。葉片中的氮一般分配到細胞壁、細胞膜[11,21]、細胞核[22-23]以及細胞質(zhì)中的葉綠體和線粒體等細胞器中,也有一些以游離化合物的形式存在。通常超過半數(shù)(最高到75%)的葉片氮會分配到葉綠體中參與光合作用[24-26]。參與光合作用的氮越多,植物生長越快[21]。光合作用強度與單位葉面積含氮量之比稱為光合氮利用效率(PNUE)[10]。分配到葉綠體的氮缺乏可誘導(dǎo)光合抑制物的增加,阻礙光合進程和光合效率的提高[27]。
葉片細胞壁的氮分配量可以間接表示葉片的堅韌程度,這是植物基本的自衛(wèi)手段[28-29]。有10%—30%的氮會分配到其中[30]。比葉重(LMA)與細胞壁氮含量呈顯著相關(guān)[1],并且與分配到葉綠體的氮含量有關(guān)聯(lián)[14]。生存環(huán)境較為惡劣的情況下,更多的氮會分配到細胞壁和一些游離化合物中[24]。如果在細胞壁里氮分配變多,那么分配到葉綠體的氮就會減少[1],這其中存在一個取舍關(guān)系[1,9,31]。但也有研究證明這種取舍關(guān)系是不可靠的[32]。一般認為,當生長環(huán)境較好,植物生長迅速,分配到葉綠體中的氮就會增加,而分配到細胞壁和游離化合物中的氮就會減少,比葉重減??;當環(huán)境惡劣時,植物會分配更多氮到細胞壁和游離化合物中。
不同生物學(xué)特性的植物葉片氮分配具有差異。光合氮利用效率越高的植物分配到Rubisco中的氮越多[37-38]。常綠植物[34,39]、耐脅迫植物[40]、演替后期植物[41]、高緯度植物[37,42]以及葉片壽命較長的植物[43]PNUE通常較低,也就意味著分配到Rubisco中的氮較少。Wright等總結(jié)了2500種植物的葉片功能性狀后也得出葉片壽命較長的植物分配到Rubisco的氮較少的結(jié)論[44]。
大多數(shù)C3植物中,葉片水溶蛋白的含量約是葉片蛋白總量的一半以上,C4植物中則為1/4[45]。草本植物將更多的氮分配到Rubisco中[22,46-47]。例如Galmes等在巴利阿里群島(Balearic Islands)對24個雙子葉植物的研究表明,草本中Rubisco中的氮占葉片氮的13.2%—33.1%,高于木本植物[47]。有研究表明,高LMA植物分配到Rubisco中的氮較少[1],然而相似研究證實二者沒有必然聯(lián)系[37-38,48]。常綠植物分配到不活躍Rubisco中的氮較多,且分配到細胞壁中的氮的比例要高于落葉植物[1,34],這被Hikosaka和Shigeno對青葉山(Aobayama-hill)26種植物的研究結(jié)果所證明[49]。Zhu等研究發(fā)現(xiàn),非固氮植物花花柴(Kareliniacaspica)和駱駝蓬(Peganumharmala)分配到葉綠體中的氮要少于固氮植物駱駝刺(Alhagisparsifolia)[50]。
入侵種為了迅速占領(lǐng)入侵區(qū)域,較少的將氮分配到細胞壁中,而將大量氮分配到葉綠體中以迅速生長[13-16,21]。Feng等對紫莖澤蘭的研究發(fā)現(xiàn),入侵的紫莖澤蘭分配到葉綠體中的氮要比原生的紫莖澤蘭多30%,最大凈光合速率高24.4%,光合氮利用效率高20.2%,分配到細胞壁的氮低46.5%,而單位葉面積氮含量無顯著差異[21]。Qing等對互花米草的研究表明,入侵的互花米草分配到Rubisco的氮含量以及比例都高于原生的互花米草,而單位葉面積氮含量差異不大[51]。
有些化學(xué)防御物質(zhì)也有氮參與合成,氮分配到這些物質(zhì)中的比例也比較可觀。以生氰糖苷為例,不同樹種分配到這種物質(zhì)中的氮比例有差異,糖桉(Eucalyptuscladocalyx)為9.1%—15%;多花桉(E.polyanthemos)為0.2%;亞拉桉(E.yarraensis)為1.6%[8,31]。
由于大部分葉片氮會分配葉綠體中參與光合作用,因此影響光合作用的因子,如光、CO2和土壤養(yǎng)分等也會對氮在葉片中的分配產(chǎn)生影響。
光照的變化影響葉片氮的分配主要是因為它影響了葉片光合作用的能量供應(yīng),導(dǎo)致氮分配到光反應(yīng)與暗反應(yīng)的比例發(fā)生變化。高光強條件下暗反應(yīng)能力成為制約光合作用的主要因素,因此葉片分配更多的氮到Rubisco中,而較少分配到光反應(yīng)相關(guān)蛋白中[16,22,52-55]。Le[54]等對桃子(Prunuspersica)的研究、Feng[16]對紫莖澤蘭以及Osada等[56]對庫頁蓼(Polygonumsachalinense)的研究支持這種觀點。但也有研究發(fā)現(xiàn)高光強條件下葉片分配氮到Rubisco中比例下降,如張亞杰與馮玉龍的研究表明,生長光強低于自然光強的12%時,斜葉榕和假斜葉榕分配到Rubisco的氮比例(PC)隨光強升高而升高;當生長光強高于自然光強的12%后,兩種榕樹的PC則隨光強升高呈降低趨勢[12]。
強光下葉片葉綠素降解較快[57-58],如果同時具有高大氣CO2濃度則加劇了葉綠素降解[57-59]。Takashima等研究表明,低光條件下(30%自然光)的櫟屬植物比生長在高光條件下(90%自然光)的具有更高的葉綠素含量[1]。但張緒成對甘肅春小麥的研究則表明,與全光照下相比,遮陰后小麥葉綠素含量無明顯差異[19]。
遮陰后植物葉片氮會增加[60-61]。植物將更多的氮分配到葉綠體中,減少次級含氮代謝物的產(chǎn)量[8,13,31]。Burns等對糖桉的研究表明,遮陰(40%全光照)會減少生氰糖苷的產(chǎn)生量[8]。Miller等對P.turneriana的研究也支持上述觀點[62]。
二氧化碳是光合作用的原料,環(huán)境中CO2濃度的變化會對光合作用以及光合氮利用效率產(chǎn)生影響[26,63-64],進而對葉片氮分配產(chǎn)生影響。外界CO2濃度增加,會間接提高羧化位CO2濃度,使羧化反應(yīng)的原料增加。相對的,當CO2濃度減小到一定程度時,暗反應(yīng)成為限制因子,分配到Rubisco的氮會相對增加[65-66]。這其中存在一個最優(yōu)的比例關(guān)系[67],因此前人的研究得出了很多不同的結(jié)論。如Akita等的研究表明,在營養(yǎng)充足情況下,大氣CO2濃度下培養(yǎng)的庫頁蓼比高CO2濃度下(700 μmol/mol)培養(yǎng)的分配到Rubisco中的氮比例略有增加[68]。Seneweera等對水稻(Orazysativa)的研究表明,大氣CO2濃度(390 μmol/mol)與高CO2濃度下(1000 μmol/mol)培養(yǎng)的水稻相比,分配到Rubisco的氮比例在展葉期下降18.8%—16.2%,成熟期卻提高14.9%—17.1%[69]。Lei等研究表明,在高CO2濃度條件下,紫莖澤蘭分配到葉綠體的氮比例變化不大,但分配到細胞壁的氮比例增加[17]。這些研究結(jié)果的差異很可能與不同植物種類和不同發(fā)育時期對CO2需求量及對高CO2的反應(yīng)差異有關(guān)。
長時間過高大氣CO2濃度處理會促進葉片氮含量下降和葉綠素降解,導(dǎo)致光合機構(gòu)活性下降[56,70-71]。Osada等對庫頁蓼的研究表明,隨著CO2濃度增加,分配到葉綠素的氮含量有所下降[56]。王建林等的研究證明,經(jīng)過60 d高CO2(750 μmol/mol)處理后會造成植物最大羧化效率降低,Rubisco的活性降低、含量減少[71]。
土壤中氮含量的變化會直接影響植物體內(nèi)氮含量,進而對葉片氮分配造成影響,土壤中其他元素含量的變化也會對葉片氮分配產(chǎn)生影響,而葉片氮分配又會影響到葉片的光合作用及其化學(xué)防御強度等,進而影響植物的生長發(fā)育和環(huán)境適應(yīng)能力,因此植物葉片氮分配對植物營養(yǎng)學(xué)的研究也具有一定的參考價值。
隨著土壤氮含量的增加,植物葉片內(nèi)氮含量增加,單位葉面積的Rubisco含量也隨之增加,這種現(xiàn)象在歐洲赤松(Pinussylvestris)[72]、火炬松(P.taeda)[73]中發(fā)現(xiàn)。隨著土壤氮含量的增加,分配到Rubisco的氮的比例也有所提高,這被Akita等對庫頁蓼的研究所證明[68]。植物葉片葉綠素含量同樣隨著土壤氮含量的增加而增加。張緒成與上官周平的研究表明,土壤適量施氮后小麥葉綠素a含量顯著提高[74]。Boussadia等發(fā)現(xiàn),土壤高氮處理的兩個油橄欖品種“Meski”和“Koroneiki”葉綠素a濃度分別為76、80 μg/cm2,經(jīng)過減少氮供應(yīng)處理之后,兩種橄欖的葉綠素a含量都顯著減少[75]。隨著土壤氮含量的增加,葉片內(nèi)分配到游離氨基酸的氮也有所增加。Ruan等研究表明,提高土壤氮供應(yīng)可以提高分配到茶葉(Camelliasinensis)幼葉游離氨基酸的氮比例[7]。
磷是組成轉(zhuǎn)錄蛋白質(zhì)所必須的核糖核酸(Ribonucleic acid, RNA)的原料[76-77],會直接影響蛋白質(zhì)的合成。同時磷也是合成ATP和Rubisco的原料[78],因此會影響氮分配到光合作用中的比例[79-80]。土壤增施磷肥可以增加葉片Rubisco含量和葉綠素含量。Warren研究表明,海岸松(P.pinaster)Rubisco中的氮含量與增施氮肥相關(guān)性不明顯,而與增施磷肥相關(guān)性較高[77]。Tak等對鷹嘴豆(Cicerarietinum)進行4個梯度土壤磷施肥研究表明,施磷可以提高葉片葉綠素的含量,但分配到葉綠素的氮比例有所下降[79]。
在正常的土壤鉀供應(yīng)水平下,葉片的葉綠素合成、運轉(zhuǎn)會保持動態(tài)平衡,而鉀的缺乏或過量會導(dǎo)致葉綠素含量、ATP含量以及Rubisco含量降低[81-82],并使光合電子傳遞及光合磷酸化受阻[83]。楊軍等對奈李(P.salicina)的研究表明,土壤適度增施鉀肥可以提高葉片葉綠素的含量[83]。鄭炳松等對水稻的研究表明,土壤適度增施鉀肥可以提高葉片的Rubisco含量[81]。
化學(xué)分離法是利用不同含氮物質(zhì)的化學(xué)特性,使用化學(xué)試劑將其從葉片中分離的方法。其優(yōu)點是結(jié)果較為準確,能夠直接獲取氮含量數(shù)據(jù);缺點是操作過程較為繁瑣,容易出現(xiàn)人為提取誤差,且費用較高。這種方法適合樣本較少時葉片氮含量的測定。
蛋白質(zhì)的分離與提取在氮分配研究中應(yīng)用較多[1,11,21,24]。最早的一些研究沒有將水溶蛋白與化學(xué)可溶蛋白分開,而是統(tǒng)稱為可溶蛋白[84-85]。Takashima等[1]將細胞內(nèi)蛋白質(zhì)細分為水溶蛋白、化學(xué)可溶蛋白以及化學(xué)不溶蛋白,然后利用化學(xué)試劑將其分別提取。葉綠素也可以通過化學(xué)方法提取,在實驗中應(yīng)用較多的為丙酮提取法。Funk等不僅用化學(xué)方法分離了化學(xué)可溶、化學(xué)不溶與水溶蛋白,還提取了氨基酸與核酸,測定了葉片內(nèi)的硝態(tài)氮與氨態(tài)氮含量[35]。
公式法是利用容易獲得的葉片生理生態(tài)參數(shù),利用經(jīng)驗公式來估算葉綠體中各含氮部分的氮含量的方法。其優(yōu)點是操作簡便,節(jié)省費用,只需獲取部分比較容易獲得的葉片生理生態(tài)參數(shù)就能估算;缺點是誤差較大,計算結(jié)果不精確,無法獲得細胞壁氮含量。這種方法適合樣本較多時葉片氮含量的估算。
光合作用消耗氮的比例是研究的熱點。早先的研究將參與光合的含氮物質(zhì)按參與的階段不同分為羧化系統(tǒng)(主要是Rubisco,參與暗反應(yīng))與類囊體(參與光反應(yīng))兩部分[24,85],Evans和Seemann又將類囊體細分為生物力能學(xué)組分(Cytochrome f, Cyt f、耦合因子以及鐵氧還蛋白-NADP+還原酶)與捕光系統(tǒng)(① 光系統(tǒng)Ⅰ(Photosystem Ⅰ, PSⅠ);② 光系統(tǒng)Ⅱ (Photosystem Ⅱ, PSⅡ);③ 光系統(tǒng)II捕光復(fù)合體(Light-harvesting complex Ⅱ, LHCⅡ))[22],但后人有時仍將類囊體作為一個整體進行研究。
Friend[86]在研究C3植物葉片時使用了最大羧化效率Vcmax和最大電子傳遞速率Jmax來估算氮分配到羧化系統(tǒng)和類囊體中的比例,分別以Rubisco和葉綠素作為代表:
Jmax=0.25×jmax×Nchl×N
式中,Vcmax為最大羧化效率(mol m-2s-1);Jmax最大電子傳遞速率(Eq m-2s-1,F(xiàn)arquhar[87]所使用的單位);kc為Rubisco周轉(zhuǎn)次數(shù),與溫度相關(guān),但溫度對其值影響有限,在25℃時可取值2.5[87];Nrub為氮分配到Rubisco中的比例;Nchl為氮分配到葉綠素中的比例;N為葉片氮含量(mol/m2);jmax為單位葉綠素最大電子傳遞速率(Eq mol-1s-1),其計算公式為:
式中,E為相關(guān)活化能,取值為37000 (J/mol);R為通用氣體常數(shù)8.314 (J K-1mol-1);T為葉片溫度(K);H為去活化能,取值為220000 (J/mol);S為熵,取值為710 (J K-1mol-1)[87]。這種擬合方法以葉綠素含量代替類囊體的氮含量,忽略了類囊體上的其他含氮物質(zhì),對含氮物質(zhì)的估算并不全面。
Evans[88-89]在研究紫花苜蓿(Medicagosativa)時,使用了最大電子傳遞速率與葉綠素含量的比值jmax來估算類囊體氮含量以及羧化系統(tǒng)氮含量:
T=0.068×jmax+34.4
S=0.33×jmax
式中,jmax最大電子傳遞速率(mmol 電子-mol-1Chl s-1),T為類囊體氮含量與葉綠素含量的比值(mol N/mol Chl)[88],S為羧化系統(tǒng)氮含量與葉綠素含量的比值(mol N/mol Chl)[89]。這種擬合方法比較簡單,只使用了最大電子傳遞速率與葉綠素含量的比值進行公式擬合,但這就造成了其精確度不高;且公式的擬合是建立在單一植物研究結(jié)果之上的,在其他植物中使用效果較差[89]。
Niinemets和Tenhunen在對糖楓(Acersaccharum)的研究中,把參與光合作用的含氮物質(zhì)分為了三部分:① 羧化系統(tǒng);② 生物力能學(xué)組分;③ 捕光系統(tǒng),并建立了一種能分別計算這三部分氮含量的模型[90]。其計算各部分氮含量的方法如下:
式中,PR為分配到羧化系統(tǒng)中的氮的比例;PB為分配到生物力能學(xué)組分的氮的比例;PL為分配到捕光系統(tǒng)的氮的比例;MA為單位面積葉干重(g/m2);Nm為單位干重葉片氮含量(g/g);Vcmax最大羧化效率(μmol m-2s-1);Jmax單位為(μmol m-2s-1);CC為葉片葉綠素濃度(mmol/g);Vcr是Rubisco比活,即單位Rubisco的CO2固定活性(μmol CO2g-1Rubisco s-1),與溫度相關(guān);Jmc為單位Cyt f的最大電子傳遞速率(μmol 電子 μmol-1cyt f s-1),與溫度相關(guān)[90]。Vcr和Jmc的計算方法如下[91-92]:
式中,R為通用氣體常數(shù),取值為8.314 (J K-1mol-1);Tk是葉片溫度(K),ΔHa、ΔHd、ΔS和c為活化能、去活化能、熵和比例常數(shù),計算Vcr時的取值分別為74000 (J/mol)、203000 (J/mol)、645 (J K-1mol-1)和32.9;計算Jmc時的取值分別為24100 (J/mol)、564150 (J/mol)、1810 (J K-1mol-1)和14.77[93-94]。
CB為捕光系統(tǒng)中葉綠素與氮的比值(mmol Chl/g N),其取值可以利用擬合出的CB的值與MA的值的關(guān)系的線性公式來進行計算,其相關(guān)系數(shù)較高(r2=0.97),并且可以在多種植物類型中廣泛應(yīng)用。其公式為:
式中,[MA]為單位面積葉片干重(MA,g/m2)的值,[CB]為CB的值[90]。這樣就可以通過MA的值來計算出CB的值,以便進一步計算PL。
這種氮分配的擬合方法不僅考慮了植物的羧化能力以及電子傳遞能力,還使用了單位面積葉片干重,葉綠素含量等作為公式中的變量,考慮比較全面,因此在最近的研究中得到廣泛應(yīng)用[1,12-15,35,95];且公式所擬合的數(shù)據(jù)可信度高,在很多研究中得到了驗證;其葉片氮的分區(qū)也較為合理,是比較方便且準確的公式擬合方法。
氮在葉片細胞內(nèi)的分配比例能夠反映出植物的生理特性及其在不同環(huán)境下所采取的對策。目前對葉片氮分配的研究主要集中在了葉綠體、細胞壁以及一些游離化合物中。然而植物葉片內(nèi)ATP、不參與光合作用的酶、核酸[22-23]、游離氨基酸[7,23]中也會分配一部分的氮,這些含氮物質(zhì)在植物生長發(fā)育和環(huán)境適應(yīng)等方面也具有重要作用。例如,游離氨基酸是蛋白質(zhì)等含氮化合物合成與分解過程的中介物質(zhì),可反映植物體內(nèi)的氮代謝變化及植物對氮的吸收、運輸、同化等狀況[96-97],并且具有調(diào)節(jié)液泡滲透勢、調(diào)節(jié)光呼吸氮代謝以及去除植物體內(nèi)的NH3和SO2等物質(zhì)的解毒作用[98]。未來應(yīng)該加強氮在上述含氮物質(zhì)中的分配及其與植物生長和環(huán)境適應(yīng)性的關(guān)系研究。
另外,目前的研究多關(guān)注各種影響因子對單個含氮物質(zhì)含量的影響,較少涉及這種物質(zhì)所分配的氮占總氮的比例,而氮分配的比例變化或許比含氮物質(zhì)的含量變化更能說明植物的葉片氮分配傾向。因此未來應(yīng)該著重研究植物葉片在生物因子和非生物因子影響下氮分配比例的變化,以期更好的了解植物葉片氮分配的生理生態(tài)特征。
影響葉片氮分配的因子很多,水也是其中之一。水分虧缺將導(dǎo)致參與光合作用的氮減少。在沙漠地區(qū)高水分利用效率的植物具有高光合氮利用效率[50],但也有研究得出水分利用效率與光合氮利用效率之間關(guān)系不明顯的結(jié)論[14,99]。水分脅迫下葉綠體膨脹,排列紊亂,基質(zhì)片層模糊,基粒間連接松弛,類囊體層腫脹或解體,光合器官的超微結(jié)構(gòu)遭到破壞,葉綠素、核酸和蛋白質(zhì)等大分子遭到破壞或損傷[100],且在水分脅迫下卡爾文循環(huán)中間物質(zhì)含量減少,RuBP合成受到限制[101]。也有研究表明缺水可以提高葉片壽命,延長氮的利用時間,提高氮的利用效能[1]。因此了解植物葉片在水分變化下的氮分配具有重要的科學(xué)意義,值得繼續(xù)深入研究。
酶活性存在最適合的溫度范圍,過高或過低的溫度會使酶失活,進而影響光合作用以及氮的分配。有研究表明,植物在高溫下通過葉綠素的降解來減少接收太陽輻射的光量子數(shù),以防止體內(nèi)溫度過高或產(chǎn)生多余的自由基對植物造成傷害[102]。高溫也可以抑制植物細胞器和細胞的功能,如降低光合器官的光能利用、降低PSⅡ活性[103-104]。植物在無法耐受的低溫條件下,葉片蛋白質(zhì)降解,游離氨基酸會增加;在可耐受的低溫條件下脯氨酸含量增加,植物抗寒性增強[105],葉綠素含量下降[106]。關(guān)于溫度對葉片氮分配影響的研究還較少見,在未來可以側(cè)重對這方面的研究。
目前在利用化學(xué)方法提取不同性質(zhì)蛋白質(zhì)的時候存在提取不徹底的問題,從而使蛋白質(zhì)含量出現(xiàn)偏差:化學(xué)不溶蛋白有可能提取不徹底;不能提取可溶于檸檬酸和乙醇的蛋白質(zhì)[1];含有樹脂的樹種的水溶性蛋白的含量也可能被低估[35],因此總蛋白質(zhì)含量可能被低估。有研究表明,在高粱(Sorghumbicolor)[107]、冬小麥(T.aestivuml)[108]、北海道黃楊(Euonymusjaponicus)[109]和棗樹(Zizyphusjujuba)[110]等的葉片蛋白質(zhì)提取中,采用新方法或者添加新配方裂解液可以顯著提高蛋白質(zhì)的獲得量。其它含氮化合物的含量也可能被低估,如葉綠素的提取存在提取不徹底的問題。研究表明,采用最新的超聲波混合提取劑法比以往的研磨法提取的菠菜葉綠素含量要高45.1%[111]。同時,利用公式擬合各種含氮物質(zhì)的氮含量也會出現(xiàn)偏差[91]。植物葉片含氮物質(zhì)提取技術(shù)和方法的改進以及植物葉片各部分氮含量擬合公式精度的提高也是本領(lǐng)域未來的研究重點之一。
[1] Takashima T, Hikosaka K, Hirose T. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduousQuercusspecies. Plant, Cell & Environment, 2004, 27(8): 1047-1054.
[2] Vitousek P M, Porder S, Houlton B Z, Chadwick O A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1): 5-15.
[3] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006.
[4] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 1999, 91(3): 357-363.
[5] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 1991, 13(2): 87-115.
[6] Wang Y H, Garvin D F, Kochia L V. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology, 2001, 127(1): 345-359.
[7] Ruan J, Haerdter R, Gerendás J. Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea [Camelliasinensis(L.) O. Kuntze] plants. Plant Biology, 2010, 12(5): 724-734.
[8] Burns A E, Gleadow R M, Woodrow I E. Light alters the allocation of nitrogen to cyanogenic glycosides inEucalyptuscladocalyx. Oecologia, 2002, 133(3): 288-294.
[9] Hikosaka K, Osone Y. A paradox of leaf-trait convergence: why is leaf nitrogen concentration higher in species with higher photosynthetic capacity? Journal of Plant Research, 2009, 122(3): 245-251.
[10] Hikosaka K. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research, 2004, 117(6): 481-494.
[11] Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 2004, 18(3): 419-425.
[12] 張亞杰, 馮玉龍. 不同光強下生長的兩種榕樹葉片光合能力與比葉重、氮含量及分配的關(guān)系. 植物生理與分子生物學(xué)學(xué)報, 2004, 30(3): 269-276.
[13] Feng Y L, Fu G L. Nitrogen allocation, partitioning and use efficiency in three invasive plant species in comparison with their native congeners. Biological Invasions, 2008, 10(6): 891-902.
[14] Feng Y L, Fu G L, Zheng Y L. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 2008, 228(3): 383-390.
[15] Feng Y L, Auge H, Ebeling S K. InvasiveBuddlejadavidiiallocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia, 2007, 153(3): 501-510.
[16] Feng Y L. Photosynthesis, nitrogen allocation and specific leaf area in invasiveEupatoriumadenophorumand nativeEupatoriumjaponicumgrown at different irradiances. Physiologia Plantarum, 2008, 133(2): 318-326.
[17] Lei Y B, Feng Y L, Zheng Y L, Wang R. F, De G H, Zhang Y P. Innate and evolutionarily increased advantages of invasiveEupatoriumadenophorumover nativeE.japonicumunder ambient and doubled atmospheric CO2concentrations. Biological Invasions, 2011, 13(12): 2703-2714.
[18] 張緒成, 于顯楓, 高世銘. 高大氣 CO2濃度下氮素對小麥葉片光能利用的影響. 植物生態(tài)學(xué)報, 2010, 34(10): 1196-1203.
[19] 張緒成, 于顯楓, 馬一凡, 上官周平. 高大氣 CO2濃度下小麥旗葉光合能量利用對氮素和光強的響應(yīng). 生態(tài)學(xué)報, 2011, 31(4):1046-1057
[20] 張緒成, 于顯楓, 馬一凡. 施氮和大氣 CO2濃度升高對小麥旗葉光合電子傳遞和分配的影響. 應(yīng)用生態(tài)學(xué)報, 2011, 22(3): 673-680.
[21] Feng Y L, Lei Y B, Wang R F, Callaway R. M, Valiente B A, Li Y P, Zheng Y L. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1853-1856.
[22] Evans J R, Seemann J R. The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences and control. Plant biology, 1989, 8(1):183-205.
[23] Chapin III F S. The cost of tundra plant structures: evaluation of concepts and currencies. American Naturalist, 1989, 133(1):1-19.
[24] Evans J R. Photosynthesis and nitrogen relationships in leaves of C3plants. Oecologia, 1989, 78(1): 9-19.
[25] Warren C R, Adams M A. Phosphorus affects growth and partitioning of nitrogen to Rubisco inPinuspinaster. Tree Physiology, 2002, 22(1): 11-19.
[26] Warren C R, Adams M A. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant, Cell & Environment, 2006, 29(2): 192-201.
[27] Henley W J, Levavasseur G, Franklin L A, Osmond C B, Ramus J. Photoacclimation and photoinhibition inUlvarotundataas influenced by nitrogen availability. Planta, 1991, 184(2):235-243.
[28] Ridenour W M, Vivanco J M, Feng Y, Horiuchi J I, Callaway R M. No evidence for trade-offs:Centaureaplants from America are better competitors and defenders. Ecological Monographs, 2008, 78(3): 369-386.
[29] Coley P D. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 1983, 53(2): 209-234.
[30] Stitt M, Schulze D. Does RuBPCase control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant, Cell & Environment, 1994, 17(5): 465-487.
[31] Goodger J Q D, Gleadow R M, Woodrow I E. Growth cost and ontogenetic expression patterns of defence in cyanogenicEucalyptusspp. Trees, 2006, 20(6): 757-765.
[32] Harrison M T, Edwards E J, Farquhar G D, Nicotra A B, Evans J R. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant, Cell & Environment, 2009, 32(3): 259-270.
[33] Murray M B, Smith R I, Friend A, Jarvis P G. Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Piceasitchensis). Tree Physiology, 2000, 20(7): 421-434.
[34] Warren C R, Adams M A. Evergreen trees do not maximize instantaneous photosynthesis. Trends in Plant Science, 2004, 9(6): 270-274.
[35] Funk J L, Glenwinkel L A, Sack L. Differential allocation to Photosynthetic and Non-Photosynthetic nitrogen fractions among native and invasive species. PloS One, 2013, 8(5): e64502.
[36] 許振柱, 周廣勝. 植物氮代謝及其環(huán)境調(diào)節(jié)研究進展. 應(yīng)用生態(tài)學(xué)報, 2004, 15.(3): 511-516.
[37] Westbeek M H M, Pons T L, Cambridge M L, Atkin O K. Analysis of differences in photosynthetic nitrogen use efficiency of alpine and lowlandPoaspecies. Oecologia, 1999, 120(1): 19-26.
[38] Ripullone F, Grassi G, Lauteri M, Borghetti M. Photosynthesis-nitrogen relationships: interpretation of different patterns betweenPseudotsugamenziesiiandPopulus×euroamericanain a mini-stand experiment. Tree Physiology, 2003, 23(2): 137-144.
[39] Field C, Mooney H A. Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia, 1983, 56(2/3): 348-355.
[40] Chazdon R L, Field C B. Determinants of photosynthetic capacity in six rainforestPiperspecies. Oecologia, 1987, 73(2): 222-230.
[41] Ellsworth D S, Reich P B. Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession. Ecology, 1996, 77(2): 581-594.
[42] Hikosaka K, Nagamatsu D, Ishii H S, Hirose T. Photosynthesis-nitrogen relationships in species at different altitudes on Mount Kinabalu, Malaysia. Ecological Research, 2002, 17(3): 305-313.
[43] Reich P B, Uhl C, Walters M B, Ellsworth D S. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia, 1991, 86(1): 16-24.
[44] Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J, Villar R .The wordwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827.
[45] Meinzer F C, Zhu J. Nitrogen stress reduces the efficiency of the C4CO2concentrating system, and therefore quantum yield, inSaccharum(sugarcane) species. Journal of Experimental Botany, 1998, 49(324): 1227-1234.
[46] Hikosaka K, Terashima I. Nitrogen partitioning among photosynthetic components and its consequence in sun and shade plants. Functional Ecology, 1996, 10(1): 335-343.
[47] Galmes J, Flexas J, Keys A J, Cifre J, Mitchell R. A, Madgwick P J, Parry M A. Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant, Cell & Environment, 2005, 28(5): 571-579.
[48] Terashima I, Araya T, Miyazawa S I, Sone K, Yano S. Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Annals of Botany, 2005, 95(3): 507-519.
[49] Hikosaka K, Shigeno A. The role of RuBPCase and cell walls in the interspecific variation in photosynthetic capacity. Oecologia, 2009, 160(3): 443-451.
[50] Zhu J T, Li X Y, Zhang X M, Yu Q, Lin L S. Leaf nitrogen allocation and partitioning in three groundwater-dependent herbaceous species in a hyper-arid desert region of north-western China. Australian Journal of Botany, 2012, 60(1): 61-67.
[51] Qing H, Cai Y, Xiao Y, Yao Y, An S. Leaf nitrogen partition between photosynthesis and structural defense in invasive and native tall formSpartinaalterniflorapopulations: effects of nitrogen treatments. Biological Invasions, 2012, 14(10): 2039-2048.
[52] Boardman N K. Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology, 1977, 28(1): 355-377.
[53] Seemann J R, Sharkey T D, Wang J, Osmond C B. Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiology, 1987, 84(3): 796-802.
[54] Le Roux X, Walcroft, A S, Daudet F A, Sinoquet H, Chaves M M, Rodrigues A, Osorio L. Photosynthetic light acclimation in peach leaves: importance of changes in mass: area ratio, nitrogen concentration, and leaf nitrogen partitioning. Tree Physiology, 2001, 21(6): 377-386.
[55] Niinemets ü, Kull O, Tenhunen J D. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 1998, 18(10): 681-696.
[56] Osada N, Onoda Y, Hikosaka K. Effects of atmospheric CO2concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits ofPolygonumsachalinensearound natural CO2springs in northern Japan. Oecologia, 2010, 164(1): 41-52.
[57] Liberloo M, Tulva I, Ra?m O, Kull O, Ceulemans R. Photosynthetic stimulation under long-term CO2enrichment and fertilization is sustained across a closedPopuluscanopy profile (EUROFACE). New Phytologist, 2007, 173(3): 537-549.
[58] Zhou Y, Lam H M, Zhang J. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 2007, 58(5): 1207-1217.
[59] Haake V, Geiger M, Walch L P, Engels C, Zrenner R, Stitt M. Changes in aldolase activity in wild-type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions. The Plant Journal, 1999, 17(5): 479-489.
[60] Waterman P G, Ross J A M, Mckey D B. Factors affecting levels of some phenolic compounds, digestibility, and nitrogen content of the mature leaves ofBarteriafistulosa(Passifloraceae). Journal of Chemical Ecology, 1984, 10(3): 387-401.
[61] H?ft M, Verpoorte R, Beck E. Growth and alkaloid contents in leaves ofTabernaemontanapachysiphonStapf (Apocynaceae) as influenced by light intensity, water and nutrient supply. Oecologia, 1996, 107(2): 160-169.
[62] Miller R E, Gleadow R M, Woodrow I E. Cyanogenesis in tropicalPrunusturneriana: characterisation, variation and response to low light. Functional Plant Biology, 2004, 31(5): 491-503.
[63] Flexas J, Ribas-Carbó M, Diaz-Espejo A, Antonio, Galmes J, Medrano H. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell and Environment, 2008, 31(5):602-621.
[64] Terashima I, Hanba Y T, Tazoe Y, Vyas P, Yano S. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2diffusion. Journal of Experimental Botany, 2006, 57(2): 343-354.
[65] Wullschleger S D, Norby R J, Hendrix D L. Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiology, 1992, 10(1): 21-31.
[66] Hikosaka K, Hirose T. Leaf and canopy photosynthesis of C3plants at elevated CO2in relation to optimal partitioning of nitrogen among photosynthetic components: theoretical prediction. Ecological Modelling, 1998, 106(2): 247-259.
[67] Wullschleger S D. Biochemical limitations to carbon assimilation in C3plants-a retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany, 1993, 44(5): 907-920.
[68] Akita R, Kamiyama C, Hikosaka K.Polygonumsachalinensealters the balance between capacities of regeneration and carboxylation of ribulose-1, 5-bisphosphate in response to growth CO2increment but not the nitrogen allocation within the photosynthetic apparatus. Physiologia Plantarum, 2012, 146(4): 404-412.
[69] Seneweera S. Reduced nitrogen allocation to expanding leaf blades suppresses ribulose-1, 5-bisphosphate carboxylase/oxygenase synthesis and leads to photosynthetic acclimation to elevated CO2in rice. Photosynthetica, 2011, 49(1): 145-148.
[70] Chaiklahan R, Khonsarn N, Chirasuwan N, Ruengjitchatchawalya M, Bunnag B, Tanticharoen M. Response ofSpirulinaplatensisC1 to high temperature and high light intensity. Kasetsart Journal (Natural Sciences), 2007, 41(1): 123-129.
[71] 王建林, 溫學(xué)發(fā), 趙風華, 房全孝, 楊新民. CO2濃度倍增對 8 種作物葉片光合作用、蒸騰作用和水分利用效率的影響. 植物生態(tài)學(xué)報, 2012, 36(5): 438-446.
[72] Warren C R, Dreyer E, Adams M A. Photosynthesis-Rubisco relationships in foliage ofPinussylvestrisin response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees, 2003, 17(4): 359-366.
[73] Tissue D T, Thomas R B, Strain B R. Long-term effects of elevated CO2and nutrients on photosynthesis and Rubisco in loblolly pine seedlings. Plant, Cell & Environment, 1993, 16(7): 859-865.
[74] 張緒成, 上官周平. 施氮對不同抗旱性冬小麥葉片光合與呼吸的調(diào)控. 應(yīng)用生態(tài)學(xué)報, 2006, 17(11): 2064-2069.
[75] Boussadia O, Steppe K, Zgallai H, Ben El Hadj, S, Braham M, Lemeur R, Van Labeke M C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’and ‘Koroneiki’. Scientia Horticulturae, 2010, 123(3/4): 336-342.
[76] Pieters A J, Paul M J, Lawlor D W. Low sink demand limits photosynthesis under Pi deficiency. Journal of Experimental Botany, 2001, 52(358): 1083-1091.
[77] Warren C R, McGrath J F, Adams M A. Differential effects of N, P and K on photosynthesis and partitioning of N inPinuspinasterneedles. Annals of Forest Science, 2005, 62(1): 1-8.
[78] Reich P B, Oleksyn J, Wright I J. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 2009, 160(2): 207-212.
[79] Tak H I, Ahmad F, Babalola O O, Inam A. Growth, photosynthesis and yield of chickpea as Influenced by urban wastewater and different levels of phosphorus. International Journal of Plant Research, 2012, 2(2): 6-13.
[80] Osaki M, Shinano T, Tadano T. Effect of nitrogen, phosphorus, or potassium deficiency on the accumulation of ribulose-1, 5-bisphosphate carboxylase/oxygenase and chlorophyll in several field crops. Soil Science and Plant Nutrition, 1993, 39(3): 417-425.
[81] 鄭炳松, 蔣德安, 翁曉燕, 陸慶, 奚海福. 鉀營養(yǎng)對水稻劍葉光合作用關(guān)鍵酶活性的影響. 浙江大學(xué)學(xué)報, 農(nóng)業(yè)與生命科學(xué)版, 2001, 27(5): 489-494.
[82] 李玲, 王會肖, 張玉銘, 蔡燕, 劉麗芳. 施肥對小麥旗葉光合特性的影響研究. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2011,19(6): 1268-1271.
[83] 楊軍, 馬振峰, 劉桂華. 鉀營養(yǎng)對柰李葉片光合作用及葉綠素熒光的影響. 中國農(nóng)學(xué)通報, 2010, 26(20): 238-244.
[84] Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (TriticumaestivumL.). Plant physiology, 1983, 72(2): 297-302.
[85] Terashima I, Evans J R. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant and Cell Physiology, 1988, 29(1): 143-155.
[86] Friend A D. Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning. Plant, Cell & Environment, 1991, 14(9): 895-905.
[87] Farquhar G, Caemmerer D S, Berry J A. A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta 1980, 149(1): 78-90.
[88] Evans J R. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. I. Canopy characteristics. Functional Plant Biology, 1993, 20(1): 55-67.
[89] Evans J R. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. II. Stability through time and comparison with a theoretical optimum. Functional Plant Biology, 1993, 20(1): 69-82.
[90] Niinemets ü, Tenhunen J D. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant speciesAcersaccharum. Plant, Cell & Environment, 1997, 20(7): 845-866.
[91] Johnson F H, Henry E R. Williams W. The nature of enzyme inhibitions in bacterial luminescence: sulfanilamide, urethane, temperature and pressure. Journal of Cellular and Comparative Physiology 1942, 20(3): 247-268.
[92] Harley P C, Thomas R B, Reynolds J F, Strain B R. Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell & Environment, 1992, 15(3): 271-282.
[93] Jordan D B, William L O. The CO2/O2specificity of ribulose 1, 5-bisphosphate carboxylase/oxygenase. Planta, 1984, 161(4): 308-313.
[94] Nolan W G, Robert M S. Multi-temperature effects on Hill reaction activity of barley chloroplasts. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1976, 440(3): 461-475.
[95] 馮秋紅, 程瑞梅, 史作民, 劉世榮, 王衛(wèi)霞, 劉興良, 何飛. 四川巴郎山齒果酸模葉片氮素及其分配的海拔響應(yīng). 植物生態(tài)學(xué)報, 2013, 37(7): 591-600.
[96] 陸若輝, 周焱, 董越勇, 婁烽, 何青芳. 核酸混配氨基酸在大棚草莓上應(yīng)用的研究. 中國土壤與肥料, 2006,(5): 36-38.
[97] 李美云, 于明禮. 植物有機營養(yǎng)肥料研究進展. 安徽農(nóng)業(yè)科學(xué), 2007, 35(33): 10773-10775.
[98] 周青. 植物中氨基酸的生理作用. 生物學(xué)通報, 1986, (8): 7-9.
[99] Hill J P, Germino M J, Wraith J M, Olson B E, Swan M. B. Advantages in water relations contribute to greater photosynthesis inCentaureamaculosacompared with established grasses. International Journal of Plant Sciences, 2006, 167(2): 269-277.
[100] 孫梅霞, 祖朝龍, 徐經(jīng)年. 干旱對植物影響的研究進展. 安徽農(nóng)業(yè)科學(xué), 2004, 32(2): 365-367, 384-384.
[101] Tezara W, Mitchell V J, Driscoll S D, Lawior D W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 1999, 401(6756): 914-917.
[102] Tzeng S, Hsu B D. Chlorophyll degradation in heat-treatedChlorellapyrenoidosa. A flow cytometric study. Functional Plant Biology, 2001, 28(1): 79-83.
[103] Schrader S M, Kleinbeck K R, Sharkey T D. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant, Cell & Environment, 2007, 30(6): 671-678.
[104] 孫谷疇, 曾小平, 劉曉靜, 趙平. 適度高溫脅迫對亞熱帶森林3種建群樹種幼樹光合作用的影響. 生態(tài)學(xué)報, 2007, 27(4):1283-1291.
[105] 龔明, 劉友良, 朱培仁. 低溫下稻苗葉片中蛋白質(zhì)及游離氨基酸的變化. 植物生理學(xué)通訊, 1989, 25(4): 18-22.
[106] 邵怡若, 許建新, 薛立, 張柔, 吳彩瓊, 盧廣超. 低溫脅迫時間對 4 種幼苗生理生化及光合特性的影響. 生態(tài)學(xué)報, 2013, 33(14): 4237-4247.
[107] 許克靜, 陳云, 雷珍珍, 程海麗, 陳磊, 樂超銀. 適于 SDSPAGE 分析的高粱葉片蛋白質(zhì)提取方法. 河南農(nóng)業(yè)科學(xué), 2013, 42(5): 38-40.
[108] 李紅兵, 康振生. 適于小麥葉片蛋白質(zhì)組分析的樣品提取方法研究. 西北植物學(xué)報, 2011,31(3): 632-638.
[109] 郝強, 葛秀秀, 張睿鸝, 尉莉莉, 關(guān)雪蓮. 北方常綠闊葉木本植物葉片蛋白質(zhì)雙向電泳技術(shù)體系優(yōu)化. 西北植物學(xué)報, 2010,30(9): 1906-1912.
[110] 杜紹華, 卜志國. 棗樹葉片蛋白質(zhì)提取及 SDS-PAGE 單向電泳條件優(yōu)化. 安徽農(nóng)業(yè)科學(xué), 2012, 40(13): 7631-7632, 7655.
[111] 張秀君, 孫錢錢, 喬雙, 朱海, 孫丹, 江丕文. 菠菜葉綠素提取方法的比較研究. 作物雜志, 2011,(3): 57-59,60-60.
A review of nitrogen allocation in leaves and factors in its effects
SHI Zuomin*, TANG Jingchao, CHENG Ruimei, LUO Da, LIU Shirong
KeyLaboratoryonForestEcologyandEnvironmentalSciencesofStateForestryAdministration,InstituteofForestEcology,EnvironmentandProtection,ChineseAcademyofForestry,Beijing100091,China
Nitrogen is an essential limiting resource for plant growth, and its effective utilization can increase the adaptability of plants. This is because nitrogen is required for the regulation of more than a hundred genes in plants and influences their physiological processes. Leaf nitrogen allocation is defined as the proportion of nitrogen distributed in every plant leaf cell and free compounds. Leaf nitrogen allocation not only determines the photosynthetic capacity of leaves but also affects their toughness and chemical defenses. Therefore, research on nitrogen allocation in leaves is of great importance. In this study, we evaluated the mode of leaf nitrogen allocation. Leaf nitrogen is generally distributed in the cell wall, cell membrane, nucleus, and organelles such as chloroplasts and mitochondria in the cytoplasm; leaf nitrogen is also found in free compounds. Usually more than half (up to 75%) of the leaf nitrogen is assigned to chloroplasts, which are involved in photosynthesis. An increase in the amount of nitrogen involved in photosynthesis results in faster plant growth. The amount of leaf nitrogen allocated to cell walls can indirectly result in blade tenacity, which is a basic method of plant self-defense; 10%—30% of the nitrogen is assigned to the cell walls. Leaf nitrogen is mainly found in the form of plant proteins, and usually 71%—77% of the leaf nitrogen is found in the form of proteins, followed by free amino acids, alkaloids, cyanogenetic glycosides, phospholipids, nucleic acids, nitrate nitrogen, ammonia nitrogen, and adenosine triphosphate. We also analyzed biological and environmental factors (carbon dioxide, illumination, and soil nutrients) that affect the allocation of leaf nitrogen. With respect to biological factors, a higher amount of nitrogen is assigned to Rubisco, resulting in an increase in the photosynthetic nitrogen use efficiency of plants. In most C3plants, more than half of the total leaf protein is soluble; in C4plants, a quarter of the total leaf protein is soluble. In herbs, a higher amount of nitrogen is allocated to Rubisco. In order to rapidly occupy an area, an invasive plant species assigns less nitrogen to the cell walls and more to the chloroplasts. With respect to environmental factors, illumination affects the distribution of leaf nitrogen, mainly because it affects the energy supply for photosynthesis; this results in a change in the amount of nitrogen assigned for light and dark reactions. Carbon dioxide is required for photosynthesis, and changes in the carbon dioxide concentration in the environment will affect photosynthesis, photosynthetic nitrogen use efficiency, and the distribution of leaf nitrogen. Changes in the nitrogen content in the soil will directly affect the nitrogen content in plants and, in turn, affect leaf nitrogen allocation. Changes in the content of other elements in the soil will also affect leaf nitrogen allocation. We have reported on the methods frequently used for measuring leaf nitrogen allocation. There are two commonly used methods: the formula method and chemical separation method. We have also discussed different perspectives for future research on leaf nitrogen allocation.
nitrogen allocation; leaves; effect factors; research progress
國家自然科學(xué)基金重大項目課題(31290223); 中國科學(xué)院碳專項(XDA05060100)
2014-01-24;
日期:2014-11-19
10.5846/stxb201401240184
*通訊作者Corresponding author.E-mail: shizm@caf.ac.cn
史作民, 唐敬超, 程瑞梅, 羅達, 劉世榮.植物葉片氮分配及其影響因子研究進展.生態(tài)學(xué)報,2015,35(18):5909-5919.
Shi Z M, Tang J C, Cheng R M, Luo D, Liu S R.A review of nitrogen allocation in leaves and factors in its effects.Acta Ecologica Sinica,2015,35(18):5909-5919.