亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Dynamic Analysis of Some Impulsive Fractional-Order Neural Network with Mixed Delay

        2015-01-12 08:32:56LIUXianghu劉向虎LIUYanmin劉衍民LIYanfang李艷芳

        LIU Xiang-hu (劉向虎), LIU Yan-min (劉衍民), LI Yan-fang (李艷芳)

        School of Mathematics and Computer Science, Zunyi Normal College, Zunyi 563002, China

        Dynamic Analysis of Some Impulsive Fractional-Order Neural Network with Mixed Delay

        LIU Xiang-hu (劉向虎)*, LIU Yan-min (劉衍民), LI Yan-fang (李艷芳)

        SchoolofMathematicsandComputerScience,ZunyiNormalCollege,Zunyi563002,China

        In this paper, the authors study some impulsive fractional-order neural network with mixed delay. By the fractional integral and the definition of stability, the existence of solutions of the network is proved, and the sufficient conditions for stability of the system are presented. Some examples are given to illustrate the main results.

        fractional-orderneuralnetwork;mixeddelay;fixedpointtheorem

        Introduction

        In this paper, we study the impulsive fractional-order neural network with mixed delay

        Itiswellknownthatthedelayedandimpulsiveneuralnetworksexhibitingtherichandcolorfuldynamicalbehaviorsareimportantpartofthedelayedneuralsystems.Thedelayedandimpulsiveneuralnetworkscanexhibitsomecomplicateddynamicsandevenchaoticbehaviors.Duetotheirimportantandpotentialapplicationsinsignalprocessing,imageprocessing,artificialintelligenceaswellasoptimizingproblemsandsoon,thedynamicalissuesofdelayedandimpulsiveneuralnetworkshaveattractedworldwideattention,andmanyinterestingstabilitycriteriafortheequilibriumsandperiodicsolutionsofdelayedorimpulsiveneuralnetworkshavebeenderivedviaLyapunov-typefunctionorfunctionalapproaches.Forexample,Wanget al.[1]investigatedtheglobalasymptoticstabilityoftheequilibriumpointofaclassofmixedrecurrentneuralnetworkswithtimedelayintheleakagebyusingtheLyapunovfunctionalmethod,linearmatrixinequalityapproachandgeneralconvexcombinationtechniquetermunderimpulsiveperturbations.SebdaniandFarjami[2]consideredbifurcationsandchaosinadiscrete-time-delayedHopfieldneuralnetworkwithringstructuresanddifferentinternaldecays.AkhmetandYlmaz[3]gotacriteriafortheglobalasymptoticstabilityoftheimpulsiveHopfield-typeneuralnetworkswithpiecewiseconstantargumentsofgeneralizedtypebyusinglinearization.

        Forthelastdecades,fractionaldifferentialequations[4-11]havereceivedintensiveattentionbecausetheyprovideanexcellenttoolforthedescriptionofmemoryandhereditarypropertiesofvariousmaterialsandprocesses,suchasphysics,mechanics,chemistry,engineering, etc.Therefore,itmaybemoremeaningfultomodelbyfractional-orderderivativesthaninteger-orderones.Recently,fractionalcalculusisintroducedintoartificialneuralnetwork.Forexample,BoroomandandMenhaj[12]investigatedstabilityoffractional-orderHopfield-typeneuralnetworksthroughenergy-likefunctionanalysis,Chenet al.[13]studieduniformstabilityandtheexistence,uniquenessandstabilityofitsequilibriumpointofaclassoffractional-orderneuralnetworkswithconstantdelay.Theauthors[14-17]analyzedthestabilityofsomeotherneuralnetworkswithdelay.Weallknowthatthedelayisnotalwaysaconstant,itmaybechangedinthenetwork.Time-varyingdelaysanddistributeddelaysmayoccurinneuralprocessingandsignaltransmission,whichcancauseinstability,oscillations,therearefewpapersthatconsidertheproblemsforfractional-orderneuralnetworkwithmixeddelayandimpulse.Thus,itisworthinvestigatingsomeimpulsivefractional-orderneuralnetworkwithmixeddelay.

        Tothebestofourknowledge,thesystem(1)isstilluntreatedintheliteratureanditisthemotivationofthepresentwork.Therestofthispaperisorganizedasfollows:Insection1,somenotationsandpreparationsaregiven.Insection2,somemainresultsofsystem(1)areobtained.Atlast,someexamplesaregiventodemonstratethemainresults.

        1 Preliminaries

        In this section, we will give some definitions and preliminaries which will be used in the paper.

        Let’s recall some known definitions of fractional calculus. For more details, one can see Refs.[4-6].

        Definition 1 The integral

        is called Riemann-Liouville fractional integral of orderα, where Γ is the gamma function.

        For a functionf(t) given in the interval [0, ∞), the expression

        wheren=[α]+1, [α] denotes the integer part of numberα, and it is called the Riemann-Liouville fractional derivative of orderα>0.

        Definition 2 Caputo’s derivative for a functionf: [0, ∞)→can be written as

        where [α] denotes the integer part of real numberα.

        Theorem 1 According to Ref.[18] (Lemma 2.6), one can get that ifu(t)∈PC1(J,X), then

        Proof Ift∈[0,t1], then

        Ift∈(tk,tk+1],k≥1, then

        with the help of the substitutions=z(t-τ)+τ,

        The proof is completed.

        Let us recollect the definition of stability which can be found in Ref. [13] and will be used in our main results.

        2 Existence and Uniqueness of Solution

        In this section, we will investigate the existence and uniqueness of solution for impulsive fractional-order neural network with mixed delay. Without loss of generality, lett∈(tk,tk+1], 1≤k≤m-1.

        For the sake of convenience, the authors adopt the following notations and assumptions.

        H(1): forj=1, 2, …,n, the functionsfj,gj,hj,Ik:X→Xsatisfy as follows: there exist Lipschitz constantsLfj>0,Lgj>0,Lhj>0, andLjk>0 such that

        H(2): the delay kernel functionK(·)=diag(k1(·),k2(·), …,kn(·)) satisfies

        H(3):cj,aij,bi j,di jandLfj,Lgj,Lhj,Ljksatisfy the following conditions:

        (ii)Cmax=max{cj},Cmin=min{cj};

        Proof Consider the system (1), we will study the solvability and stability of it.

        (1) Solvability

        By Theorem 1, it is shown that the system (1) is equivalent to the following integral equation

        (2)

        wecancalculatethat

        (2)Stability

        Assumethatx(t)=(x1(t),x2(t), …,xn(t))Tandy(t)=(y1(t),y2(t), …,yn(t))Tare the two solutions of system (1) with the different initial conditionxi(η)=φi(η)∈C((-∞, 0],),φi(0)=0,yi(η)=φi(η)∈C((-∞, 0],),φi(0)=0,i∈N. We have

        According to Definition 2 and the initial functionφi(0)=0 ifn=1, 0

        Then

        (0≤η1≤t)

        (-∞<η≤0)

        (3)

        From Formula (3), one can get

        which implies that

        3 Some Examples

        In this section, according to the impulsive fractional-order neural network (1), some examples are given to illustrate the main results.

        Fig.1 The image of function in t=100

        Fig.2 The image of function in t=1000

        Fig.3 The image of function in t=40

        Fig.4 The image of function in t=4000

        4 Conclusions

        In this paper, by the fractional integral, the authors changed the derivative equation to integral one, for the convergence of sequences and the definition of stability, the existence of solutions of the network has been proved, the sufficient conditions for stability of the system have been presented. The authors also gave two examples and designed the relevant experimental procedures, after some experiments, the results have been illustrated. The design of impulsive item is difficult. The finite item is proved to be feasible, but how the infinite one or the variable one, which can be our future work.

        [1] Wang Y, Zheng C D, Feng E M. Stability Analysis of Mixed Recurrent Neural Networks with Time Delay in the Leakage Term under Impulsive Perturbations [J].Neurocomputing, 2013, 119(1): 454-461.

        [2] Sebdani R M, Farjami S. Bifurcations and Chaos in a Discrete-Time-Delayed Hopfield Neural Network with Ring Structures and Different Internal Decays [J].Neurocomputing, 2013, 99(1): 154-162.

        [3] Akhmet M U, Ylmaz E. Impulsive Hopfield-Type Neural Network System with Piecewise Constant Argument [J].NonlinearAnalysis-RealWorldApplications, 2010, 11(4): 2584-2593.

        [4] Miller K S, Ross B. An Introduction to the Fractional Calculus and Differential Equations[M]. New York: John Wiley, 1993.

        [5] Podlubny I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.

        [6] Kilbas A A. Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam, North-Holland Mathematics Studies, Elsevier Science B V, 2006.

        [7] Wang J R, Fekan M, Zhou Y. Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations [J].JournalofOptimizationTheoryandApplications, 2013, 156(1): 13-32.

        [8] Wang J R, Zhou Y, Medved M. On the Solvability and Optimal Controls of Fractional Integrodifferential Evolution Systems with Infinite Delay [J].JournalofOptimizationTheoryandApplications, 2012, 152(1): 31-50.

        [9] Yang X J. Wavelets Method for Solving Systems of Nonlinear Singular Fractional Volterra Integro-Differential Equations [J].CommunicationsinNonlinearScienceandNumericalSimulation, 2014, 19(1): 37-48.

        [10] Yang X J. Advanced Local Fractional Calculus and Its Applications[M]. New York: World Science, 2012.

        [11] Yang X J, Baleanu D. Fractal Heat Conduction Problem Solved by Local Fractional Variation Iteration Method [J].ThermalScience, 2013, 17(2): 625-628.

        [12] Boroomand A, Menhaj M. Fractional-Order Hopfield Neural Networks [J].LectureNotesinComputerScience, 2009, 5506(1): 883-890.

        [13] Chen L P, Chai Y, Wu R C,etal. Dynamic Analysis of a Class of Fractional-Order Neural Networks with Delay [J].Neurocomputing, 2013, 111(2): 190-194.

        [14] Li X D, Rakkiyappan R. Impulsive Controller Design for Exponential Synchronization of Chaotic Neural Networks with Mixed Delays [J].CommunicationsinNonlinearScienceandNumericalSimulation, 2013, 18(6): 1515-1523.

        [15] Delavari H, Baleanu D, Sadati J. Stability Analysis of Caputo Fractional-Order Nonlinear Systems Revisited [J].NonlinearDynamics, 2012, 67(4): 2433-2439.

        [16] Lakshmanan S, Park J H, Lee T,etal. Stability Criteria for BAM Neural Networks with Leakage Delays and Probabilistic Time-Varying Delays [J].AppliedMathematicsandComputation, 2013, 219(17): 9408-9423.

        [17] Chen H B. New Delay-Dependent Stability Criteria of Runcertain Stochastic Neural Networks with Discrete Interval and Distributed Delays [J].Neurocomputing, 2013, 101(1): 1-9.

        [18] Liu Z H, Li X W. Existence and Uniqueness of Solutions for the Nonlinear Impulsive Fractional Differential Equations [J].CommunicationsinNonlinearScienceandNumericalSimulation, 2012, 18(6): 1362-1373.

        Foundation items: National Natural Science Foundation of China (No.71461027); Research Fund for the Doctoral Program of Zunyi Normal College, China (No.201419); Guizhou Science and Technology Mutual Fund, China (No. [2015]7002)

        O175.13 Document code: A

        1672-5220(2015)01-0086-05

        Received date: 2013-11-14

        * Correspondence should be addressed to LIU Xiang-hu, E-mail: liouxianghu04@126.com

        国产一区二区高清不卡在线| 一本色道久久综合无码人妻| 国产三级精品三级在线观看| 欧美黑人巨大xxxxx| 无码超乳爆乳中文字幕| 亚洲国产一区二区精品| 国产精品国产三级野外国产| 成人一区二区免费中文字幕视频| 真人无码作爱免费视频禁hnn| 亚洲欧美日韩国产一区二区精品| av一区二区不卡久久| 久久伊人精品色婷婷国产| 波多野结衣av一区二区全免费观看| 亚洲va无码手机在线电影| 无码之国产精品网址蜜芽| 国产一区二区av男人| 国产成人自拍视频播放| 中文字幕色av一区二区三区| 越南女子杂交内射bbwxz| 国产三级精品美女三级| 国产精品第一区亚洲精品| 成人女同av在线观看网站| 亚洲国产av玩弄放荡人妇系列 | YW亚洲AV无码乱码在线观看| 亚洲精品尤物av在线网站| 中文字幕高清不卡视频二区| 人妻精品久久久久中文字幕69| 久久综合久久鬼色| 国产成人亚洲精品2020| 女同亚洲一区二区三区精品久久| 天天综合天天爱天天做| 国产裸体xxxx视频在线播放| 久久精品—区二区三区无码伊人色| 久久精品国产亚洲av调教| 国产日产久久高清ww| 男人进去女人爽免费视频| 无码精品一区二区免费AV| 亚洲影院在线观看av| 日本一区二区三级在线观看 | 亚洲精品一区二区三区52p| 色www永久免费视频|