亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Dynamic Analysis of Some Impulsive Fractional-Order Neural Network with Mixed Delay

        2015-01-12 08:32:56LIUXianghu劉向虎LIUYanmin劉衍民LIYanfang李艷芳

        LIU Xiang-hu (劉向虎), LIU Yan-min (劉衍民), LI Yan-fang (李艷芳)

        School of Mathematics and Computer Science, Zunyi Normal College, Zunyi 563002, China

        Dynamic Analysis of Some Impulsive Fractional-Order Neural Network with Mixed Delay

        LIU Xiang-hu (劉向虎)*, LIU Yan-min (劉衍民), LI Yan-fang (李艷芳)

        SchoolofMathematicsandComputerScience,ZunyiNormalCollege,Zunyi563002,China

        In this paper, the authors study some impulsive fractional-order neural network with mixed delay. By the fractional integral and the definition of stability, the existence of solutions of the network is proved, and the sufficient conditions for stability of the system are presented. Some examples are given to illustrate the main results.

        fractional-orderneuralnetwork;mixeddelay;fixedpointtheorem

        Introduction

        In this paper, we study the impulsive fractional-order neural network with mixed delay

        Itiswellknownthatthedelayedandimpulsiveneuralnetworksexhibitingtherichandcolorfuldynamicalbehaviorsareimportantpartofthedelayedneuralsystems.Thedelayedandimpulsiveneuralnetworkscanexhibitsomecomplicateddynamicsandevenchaoticbehaviors.Duetotheirimportantandpotentialapplicationsinsignalprocessing,imageprocessing,artificialintelligenceaswellasoptimizingproblemsandsoon,thedynamicalissuesofdelayedandimpulsiveneuralnetworkshaveattractedworldwideattention,andmanyinterestingstabilitycriteriafortheequilibriumsandperiodicsolutionsofdelayedorimpulsiveneuralnetworkshavebeenderivedviaLyapunov-typefunctionorfunctionalapproaches.Forexample,Wanget al.[1]investigatedtheglobalasymptoticstabilityoftheequilibriumpointofaclassofmixedrecurrentneuralnetworkswithtimedelayintheleakagebyusingtheLyapunovfunctionalmethod,linearmatrixinequalityapproachandgeneralconvexcombinationtechniquetermunderimpulsiveperturbations.SebdaniandFarjami[2]consideredbifurcationsandchaosinadiscrete-time-delayedHopfieldneuralnetworkwithringstructuresanddifferentinternaldecays.AkhmetandYlmaz[3]gotacriteriafortheglobalasymptoticstabilityoftheimpulsiveHopfield-typeneuralnetworkswithpiecewiseconstantargumentsofgeneralizedtypebyusinglinearization.

        Forthelastdecades,fractionaldifferentialequations[4-11]havereceivedintensiveattentionbecausetheyprovideanexcellenttoolforthedescriptionofmemoryandhereditarypropertiesofvariousmaterialsandprocesses,suchasphysics,mechanics,chemistry,engineering, etc.Therefore,itmaybemoremeaningfultomodelbyfractional-orderderivativesthaninteger-orderones.Recently,fractionalcalculusisintroducedintoartificialneuralnetwork.Forexample,BoroomandandMenhaj[12]investigatedstabilityoffractional-orderHopfield-typeneuralnetworksthroughenergy-likefunctionanalysis,Chenet al.[13]studieduniformstabilityandtheexistence,uniquenessandstabilityofitsequilibriumpointofaclassoffractional-orderneuralnetworkswithconstantdelay.Theauthors[14-17]analyzedthestabilityofsomeotherneuralnetworkswithdelay.Weallknowthatthedelayisnotalwaysaconstant,itmaybechangedinthenetwork.Time-varyingdelaysanddistributeddelaysmayoccurinneuralprocessingandsignaltransmission,whichcancauseinstability,oscillations,therearefewpapersthatconsidertheproblemsforfractional-orderneuralnetworkwithmixeddelayandimpulse.Thus,itisworthinvestigatingsomeimpulsivefractional-orderneuralnetworkwithmixeddelay.

        Tothebestofourknowledge,thesystem(1)isstilluntreatedintheliteratureanditisthemotivationofthepresentwork.Therestofthispaperisorganizedasfollows:Insection1,somenotationsandpreparationsaregiven.Insection2,somemainresultsofsystem(1)areobtained.Atlast,someexamplesaregiventodemonstratethemainresults.

        1 Preliminaries

        In this section, we will give some definitions and preliminaries which will be used in the paper.

        Let’s recall some known definitions of fractional calculus. For more details, one can see Refs.[4-6].

        Definition 1 The integral

        is called Riemann-Liouville fractional integral of orderα, where Γ is the gamma function.

        For a functionf(t) given in the interval [0, ∞), the expression

        wheren=[α]+1, [α] denotes the integer part of numberα, and it is called the Riemann-Liouville fractional derivative of orderα>0.

        Definition 2 Caputo’s derivative for a functionf: [0, ∞)→can be written as

        where [α] denotes the integer part of real numberα.

        Theorem 1 According to Ref.[18] (Lemma 2.6), one can get that ifu(t)∈PC1(J,X), then

        Proof Ift∈[0,t1], then

        Ift∈(tk,tk+1],k≥1, then

        with the help of the substitutions=z(t-τ)+τ,

        The proof is completed.

        Let us recollect the definition of stability which can be found in Ref. [13] and will be used in our main results.

        2 Existence and Uniqueness of Solution

        In this section, we will investigate the existence and uniqueness of solution for impulsive fractional-order neural network with mixed delay. Without loss of generality, lett∈(tk,tk+1], 1≤k≤m-1.

        For the sake of convenience, the authors adopt the following notations and assumptions.

        H(1): forj=1, 2, …,n, the functionsfj,gj,hj,Ik:X→Xsatisfy as follows: there exist Lipschitz constantsLfj>0,Lgj>0,Lhj>0, andLjk>0 such that

        H(2): the delay kernel functionK(·)=diag(k1(·),k2(·), …,kn(·)) satisfies

        H(3):cj,aij,bi j,di jandLfj,Lgj,Lhj,Ljksatisfy the following conditions:

        (ii)Cmax=max{cj},Cmin=min{cj};

        Proof Consider the system (1), we will study the solvability and stability of it.

        (1) Solvability

        By Theorem 1, it is shown that the system (1) is equivalent to the following integral equation

        (2)

        wecancalculatethat

        (2)Stability

        Assumethatx(t)=(x1(t),x2(t), …,xn(t))Tandy(t)=(y1(t),y2(t), …,yn(t))Tare the two solutions of system (1) with the different initial conditionxi(η)=φi(η)∈C((-∞, 0],),φi(0)=0,yi(η)=φi(η)∈C((-∞, 0],),φi(0)=0,i∈N. We have

        According to Definition 2 and the initial functionφi(0)=0 ifn=1, 0

        Then

        (0≤η1≤t)

        (-∞<η≤0)

        (3)

        From Formula (3), one can get

        which implies that

        3 Some Examples

        In this section, according to the impulsive fractional-order neural network (1), some examples are given to illustrate the main results.

        Fig.1 The image of function in t=100

        Fig.2 The image of function in t=1000

        Fig.3 The image of function in t=40

        Fig.4 The image of function in t=4000

        4 Conclusions

        In this paper, by the fractional integral, the authors changed the derivative equation to integral one, for the convergence of sequences and the definition of stability, the existence of solutions of the network has been proved, the sufficient conditions for stability of the system have been presented. The authors also gave two examples and designed the relevant experimental procedures, after some experiments, the results have been illustrated. The design of impulsive item is difficult. The finite item is proved to be feasible, but how the infinite one or the variable one, which can be our future work.

        [1] Wang Y, Zheng C D, Feng E M. Stability Analysis of Mixed Recurrent Neural Networks with Time Delay in the Leakage Term under Impulsive Perturbations [J].Neurocomputing, 2013, 119(1): 454-461.

        [2] Sebdani R M, Farjami S. Bifurcations and Chaos in a Discrete-Time-Delayed Hopfield Neural Network with Ring Structures and Different Internal Decays [J].Neurocomputing, 2013, 99(1): 154-162.

        [3] Akhmet M U, Ylmaz E. Impulsive Hopfield-Type Neural Network System with Piecewise Constant Argument [J].NonlinearAnalysis-RealWorldApplications, 2010, 11(4): 2584-2593.

        [4] Miller K S, Ross B. An Introduction to the Fractional Calculus and Differential Equations[M]. New York: John Wiley, 1993.

        [5] Podlubny I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.

        [6] Kilbas A A. Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam, North-Holland Mathematics Studies, Elsevier Science B V, 2006.

        [7] Wang J R, Fekan M, Zhou Y. Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations [J].JournalofOptimizationTheoryandApplications, 2013, 156(1): 13-32.

        [8] Wang J R, Zhou Y, Medved M. On the Solvability and Optimal Controls of Fractional Integrodifferential Evolution Systems with Infinite Delay [J].JournalofOptimizationTheoryandApplications, 2012, 152(1): 31-50.

        [9] Yang X J. Wavelets Method for Solving Systems of Nonlinear Singular Fractional Volterra Integro-Differential Equations [J].CommunicationsinNonlinearScienceandNumericalSimulation, 2014, 19(1): 37-48.

        [10] Yang X J. Advanced Local Fractional Calculus and Its Applications[M]. New York: World Science, 2012.

        [11] Yang X J, Baleanu D. Fractal Heat Conduction Problem Solved by Local Fractional Variation Iteration Method [J].ThermalScience, 2013, 17(2): 625-628.

        [12] Boroomand A, Menhaj M. Fractional-Order Hopfield Neural Networks [J].LectureNotesinComputerScience, 2009, 5506(1): 883-890.

        [13] Chen L P, Chai Y, Wu R C,etal. Dynamic Analysis of a Class of Fractional-Order Neural Networks with Delay [J].Neurocomputing, 2013, 111(2): 190-194.

        [14] Li X D, Rakkiyappan R. Impulsive Controller Design for Exponential Synchronization of Chaotic Neural Networks with Mixed Delays [J].CommunicationsinNonlinearScienceandNumericalSimulation, 2013, 18(6): 1515-1523.

        [15] Delavari H, Baleanu D, Sadati J. Stability Analysis of Caputo Fractional-Order Nonlinear Systems Revisited [J].NonlinearDynamics, 2012, 67(4): 2433-2439.

        [16] Lakshmanan S, Park J H, Lee T,etal. Stability Criteria for BAM Neural Networks with Leakage Delays and Probabilistic Time-Varying Delays [J].AppliedMathematicsandComputation, 2013, 219(17): 9408-9423.

        [17] Chen H B. New Delay-Dependent Stability Criteria of Runcertain Stochastic Neural Networks with Discrete Interval and Distributed Delays [J].Neurocomputing, 2013, 101(1): 1-9.

        [18] Liu Z H, Li X W. Existence and Uniqueness of Solutions for the Nonlinear Impulsive Fractional Differential Equations [J].CommunicationsinNonlinearScienceandNumericalSimulation, 2012, 18(6): 1362-1373.

        Foundation items: National Natural Science Foundation of China (No.71461027); Research Fund for the Doctoral Program of Zunyi Normal College, China (No.201419); Guizhou Science and Technology Mutual Fund, China (No. [2015]7002)

        O175.13 Document code: A

        1672-5220(2015)01-0086-05

        Received date: 2013-11-14

        * Correspondence should be addressed to LIU Xiang-hu, E-mail: liouxianghu04@126.com

        久久免费的精品国产v∧| 国内嫩模自拍偷拍视频| 人妻中文字幕在线网站| 男人j进女人j啪啪无遮挡| 图图国产亚洲综合网站| 99久久免费精品色老| 在线观看 国产一区二区三区 | 亚洲粉嫩高潮的18p| 免费国产h视频在线观看86| 口爆吞精美臀国产在线| 欧美伦费免费全部午夜最新| 美丽的熟妇中文字幕| 国产精品情侣露脸av在线播放| 久久久国产精品首页免费| 日韩精品人成在线播放| 亚洲一线二线三线写真| 久久一日本道色综合久久大香| 亚洲av无吗国产精品| 五十六十日本老熟妇乱| 亚洲av久久无码精品九九| 完整在线视频免费黄片| 99精品国产综合久久麻豆| 成人午夜特黄aaaaa片男男 | 亚洲成av人片在线观看www| 99国产精品视频无码免费| 综合人妻久久一区二区精品| 熟妇高潮一区二区三区在线观看| 精品少妇人妻av一区二区| 亚洲VA欧美VA国产VA综合| 亚洲精品一区二区三区新线路| 超碰97人人射妻| 伊人色综合视频一区二区三区| 国产亚洲午夜高清国产拍精品不卡| 99久久婷婷国产亚洲终合精品| 中文字幕在线播放| 北岛玲日韩精品一区二区三区| 亚洲综合久久精品少妇av| 亚洲精品乱码久久久久久中文字幕| 男女真实有遮挡xx00动态图 | 亚洲最大成av人网站| 国产三级视频在线观看国产|