摘要:人轉(zhuǎn)鐵蛋白受體(TfR1)在不同組織器官中普遍表達(dá),其主要功能是協(xié)助轉(zhuǎn)鐵蛋白在細(xì)胞和血腦屏障內(nèi)外轉(zhuǎn)運(yùn),維持細(xì)胞鐵平衡。在腫瘤細(xì)胞中以及血腦屏障中,TfR1的表達(dá)水平明顯高于正常細(xì)胞組織,因此,TfR1被認(rèn)為是腫瘤靶向治療和腦部疾病靶向治療的重要靶點(diǎn)?;赥fR1靶向治療的藥物載體主要有轉(zhuǎn)鐵蛋白(Tf)、抗TfR1抗體、TfR1結(jié)合肽,這些生物大分子能與TfR1特異性結(jié)合,結(jié)合之后可以通過(guò)受體介導(dǎo)的跨胞轉(zhuǎn)運(yùn)機(jī)制進(jìn)入細(xì)胞或穿過(guò)血腦屏障。將小分子藥與這些載體偶聯(lián)可以促進(jìn)許多親水性的化療藥物或神經(jīng)治療藥物進(jìn)入腫瘤細(xì)胞或血腦屏障,而許多中樞神經(jīng)治療性大分子則主要通過(guò)融合蛋白的方式與抗TfR1抗體連接轉(zhuǎn)運(yùn)進(jìn)入中樞神經(jīng)系統(tǒng)。
關(guān)鍵詞:轉(zhuǎn)鐵蛋白受體;腫瘤靶向治療;腦靶向給藥
Based on the Transferrin Receptor (TfR1) of the Tumor and Brain Disease Progress in Targeted Therapy
SHAO Ming,LIU Yu
(College of Life Science and Technology,China Pharmaceutical University,Nanjing 210009,Jiangsu,China)
Abstract:Human TfR1 was universally expressed in different tissues. The major function of TfR1 was to facilitate delivery of transferrin across cells and blood-brain barrier(BBB). As a result, iron homo-stasis was maintained. TfR1 was recognised as a critical target for tumor and brain disease therapy due to its over expression in tumor cells and BBB. In recent years, drug carriers based on TfR1 recognition were developed such as Transferrin (Tf), anti-TfR1 antibody and TfR1 binding peptide. These carriers bind to TfR1 specifically and enter into cell or BBB through receptor mediated endocytosis. Chemicals conjugated with these carriers can be facilitated to enter into tumor cells and brain tissue. Therapeutic proteins can be engineered to fused with anti-TfR1 antibody and transported across BBB.
Key words: TfR1; Tumor target therapy;Brain directed delivery
1轉(zhuǎn)鐵蛋白受體(TfR1)簡(jiǎn)介
轉(zhuǎn)鐵蛋白受體(TfR1)是一種在不同組織和細(xì)胞系中普遍表達(dá)的糖蛋白。但在惡性增殖細(xì)胞中,TfR1的表達(dá)水平明顯高于其再正常組織細(xì)胞中的表達(dá)水平[1-3]。由于TfR1的表達(dá)與癌細(xì)胞的增殖和腫瘤的發(fā)生進(jìn)程相關(guān),TfR1被認(rèn)為是腫瘤治療的重要靶點(diǎn)。除了在腫瘤細(xì)胞組織高表達(dá),在血腦屏障中TfR1的表達(dá)量也較正常組織高[4]。近些年,TfR1被認(rèn)為是藥物跨血腦屏障轉(zhuǎn)運(yùn)的重要靶受體,通過(guò)靶向血腦屏障表面的TfR1,將特定的藥物運(yùn)送至腦實(shí)質(zhì),可以改善阿茲海默病、帕金森病和急性中風(fēng)等疾病的治療[5]。血腦屏障由內(nèi)皮細(xì)胞、毛細(xì)管基底膜、星形膠質(zhì)細(xì)胞終足和嵌入在毛細(xì)管基底膜的周細(xì)胞組成[6],許多血液中的化合物包括幾乎所有分子量大于1kD的大分子藥物和超過(guò)98%的小分子藥物都很難穿過(guò)血腦屏障進(jìn)入腦實(shí)質(zhì)[7,8],然而許多大腦所必須的營(yíng)養(yǎng)物質(zhì)如轉(zhuǎn)鐵蛋白、葉酸、瘦素、胰島素都能夠通過(guò)相應(yīng)的受體或轉(zhuǎn)運(yùn)體穿過(guò)血腦屏障進(jìn)入腦實(shí)質(zhì)[9-11]。TfR1是由兩個(gè)分子量約為90kD的亞單元單體組成的同源二聚體。每個(gè)單體包括一個(gè)大的胞外C-末端結(jié)構(gòu)域,一個(gè)單次跨膜結(jié)構(gòu)域和一個(gè)短的胞內(nèi)N-末端結(jié)構(gòu)域[12],配體結(jié)合域位于C-末端(640~760位氨基酸)。在生理環(huán)境下,載鐵轉(zhuǎn)鐵蛋白通過(guò)受體介導(dǎo)的跨胞轉(zhuǎn)運(yùn)機(jī)制穿過(guò)血腦屏障,在內(nèi)化之后,載鐵轉(zhuǎn)鐵蛋白從TfR1中釋放并被再循環(huán)至細(xì)胞膜上[13-15]。目前,已有很多學(xué)者采取了基于受體介導(dǎo)的跨胞轉(zhuǎn)運(yùn)機(jī)制運(yùn)送藥物穿過(guò)血腦屏障或進(jìn)入癌細(xì)胞,這其中TfR1抗體是藥物靶向轉(zhuǎn)運(yùn)的主要載體。TfR1抗體融合蛋白、TfR1抗體偶聯(lián)脂質(zhì)體、TfR1抗體偶聯(lián)小分子抗腫瘤藥等免疫復(fù)合物已廣泛用于腦靶向給藥和靶向抗腫瘤研究。
2 TfR1與靶向抗腫瘤
2.1抗腫瘤TfR1單抗不僅不同類型的TfR1單抗對(duì)不同的細(xì)胞系的作用有差異,相同類型的TfR1單抗對(duì)于不同的細(xì)胞系的作用效果也是有差異的。大鼠抗小鼠TfR IgM抗體R17208能夠封閉S194/5.XXO.BU.1小鼠骨髓瘤細(xì)胞中Fe2+的攝取,從而抑制其增殖,除此之外,對(duì)S194/5.XXO.BU.1小鼠骨髓瘤細(xì)胞增殖的抑制還涉及到對(duì)細(xì)胞周期的抑制,研究發(fā)現(xiàn)R17208能夠?qū)194/5.XXO.BU.1小鼠骨髓瘤細(xì)胞阻斷在G2/M期,但是R17208對(duì)于小鼠L細(xì)胞卻沒(méi)有明顯地抑制作用,這可能是由于S194/5.XXO.BU.1小鼠骨髓瘤細(xì)胞是造血性腫瘤細(xì)胞,對(duì)Fe2+的需求比小鼠L細(xì)胞更為強(qiáng)烈[16]。與之相似的是REM17 IgM抗體能夠阻斷Tf的功能,在體內(nèi)和體外實(shí)驗(yàn)中均能夠抑制造血性腫瘤細(xì)胞的增殖[17,18]。除了IgM抗體,研究者們還開(kāi)發(fā)出了諸多IgG抗體,包括R17217[17],RL34-14[17],RR24[17],C2[19],然而這些大鼠抗小鼠TfR抗體對(duì)造血性腫瘤細(xì)胞的增殖并沒(méi)有起到抑制作用。這些實(shí)驗(yàn)結(jié)果提示抗體的類型可能對(duì)其抗腫瘤效果有著明顯地影響,其中IgM抗體較IgG抗體對(duì)于造血性腫瘤的抑制作用更為明顯,這可能是由于IgM是多價(jià)抗體,對(duì)TfR的封閉作用更為強(qiáng)烈,干擾了Tf-TfR復(fù)合物的內(nèi)化,故而對(duì)Fe2+需求更旺盛的造血性腫瘤細(xì)胞對(duì)其更為敏感。與此不同的是,一系列小鼠抗人TfR1 IgG單克隆抗體對(duì)于諸多造血性腫瘤細(xì)胞增殖表現(xiàn)出了較為明顯地抑制作用。如E2.3[20]和A27.15[21]對(duì)于IL-6依賴性的造血性腫瘤細(xì)胞表現(xiàn)出了較為明顯地細(xì)胞毒作用。值得注意的是,在小鼠抗人TfR1 單克隆抗體中IgM(RBC4)[22]依然對(duì)造血性腫瘤的生長(zhǎng)表現(xiàn)出了明顯地抑制作用,另外,IgA抗體(42/6)[23]對(duì)造血性腫瘤細(xì)胞具有普遍的細(xì)胞毒性,并且這種細(xì)胞毒作用較IgG抗體而言更為強(qiáng)烈(但其對(duì)實(shí)體瘤的抑制作用卻最弱),研究表明42/6 IgA單克隆抗體對(duì)于腫瘤細(xì)胞生長(zhǎng)的抑制機(jī)制是多樣的,包括抑制Tf 與TfR1的結(jié)合降低Fe2+的攝取,下調(diào)細(xì)胞膜表面的TfR1以及將細(xì)胞滯留于S-期阻礙其增殖。相對(duì)而言,人-鼠嵌合抗TfR1抗體對(duì)于腫瘤細(xì)胞的抑制機(jī)制則相對(duì)單一,Anti-hTfR IgG3-Av 和Anti-rTfR IgG3-Av均為IgG3抗體,二者均不阻斷Tf與TfR1的結(jié)合,但卻能夠誘導(dǎo)K562細(xì)胞和 Y3-Ag1.2.3 and C58細(xì)胞的凋亡,從而抑制其增殖[23-31]。隨著抗體基因工程技術(shù)的發(fā)展,越來(lái)越多的學(xué)者考慮用更小的抗體片段如scFv來(lái)替代全抗體,因?yàn)閟cFv既保留了抗體對(duì)抗原的親和力,也大大降低了抗體的分子量,從而能夠促進(jìn)抗體對(duì)實(shí)體瘤發(fā)揮療效。Ronan Crépin等[32]從噬菌體展示庫(kù)中分離出了3TF12 和 3GH7兩個(gè)候選抗TfR1單鏈抗體,研究結(jié)果表明這兩個(gè)scFv能夠拮抗Tf與TfR1的結(jié)合,并且能夠阻斷一系列造血性細(xì)胞系的體外增殖,在此基礎(chǔ)之上,研究者們又通過(guò)抗體工程的方法將這兩個(gè)scFv制備成了其二價(jià)抗體(55kD),分別命名為F12CH 和 H7CH,二者能夠阻斷癌細(xì)胞的增殖,IC50值達(dá)到0.1μg/mL,而在紅白血病裸鼠模型中,F(xiàn)12CH給藥之后能夠減弱腫瘤的生長(zhǎng),表明其對(duì)實(shí)體瘤具有一定的治療作用。
2.2 TfR1單抗與Tf作為藥物載體抗TfR1抗體除了直接作為腫瘤治療劑,還可以作為藥物載體,將難以進(jìn)入腫瘤細(xì)胞的小分子藥物或者大分子藥物通過(guò)多種多樣的方式與抗TfR抗體偶聯(lián),促進(jìn)化療藥物進(jìn)入腫瘤細(xì)胞內(nèi)其作用靶點(diǎn),增強(qiáng)化療藥物的腫瘤殺傷作用。這一類免疫復(fù)合物類藥物受到了研究者們的廣泛關(guān)注。藥物與抗TfR1抗體連接的方式通常分為通過(guò)化學(xué)鍵將藥物分子與抗體連接以及通過(guò)將藥物分子包裹在納米粒(如納米脂質(zhì)體)中制備免疫脂質(zhì)體實(shí)現(xiàn)連接。小鼠抗大鼠TfR1單克隆抗體OX26是被廣泛用于研究的一種抗體,R. Chignola等[33]通過(guò)化學(xué)鍵將RTA與OX26連接制備免疫毒素,在高劑量給藥時(shí)對(duì)大鼠成膠質(zhì)細(xì)胞瘤顯示出了完全的抑制作用。但迄今為止,小分子藥物靶向給藥大多數(shù)情況是采取了與配體Tf通過(guò)化學(xué)鍵連接的策略。最為經(jīng)典的例子是Tf-多柔比星偶聯(lián)物,將多柔比星與Tf偶聯(lián)大大降低了多柔比星的毒副作用,體外實(shí)驗(yàn)證實(shí)Tf-多柔比星偶聯(lián)物對(duì)許多腫瘤細(xì)胞系顯示出了明顯地細(xì)胞毒作用[34]。順鉑是一種臨床上廣泛應(yīng)用的烷基化劑,但其對(duì)正常細(xì)胞的毒副作用較大,R.L. Elliott等[35]將順鉑與Tf通過(guò)化學(xué)鍵偶聯(lián)制備出了復(fù)合物MPTC-63,體外實(shí)驗(yàn)證實(shí)其對(duì)Hela細(xì)胞有著明顯地毒性,體內(nèi)實(shí)驗(yàn)證實(shí)其能夠阻止哺乳動(dòng)物癌細(xì)胞在肺部的遷移生長(zhǎng), J.F. Head等[36]證實(shí)在MPTC-63Ⅰ期臨床試驗(yàn)中,有36%的晚期乳腺癌患者出現(xiàn)了陽(yáng)性反應(yīng)。腫瘤化療烷化劑與Tf偶聯(lián)的例子還包括絲裂霉素C-Tf偶聯(lián)物[37]、柔紅霉素-Tf偶聯(lián)物[38]。除此之外的偶聯(lián)物還包括青蒿素-Tf偶聯(lián)物[39]、RNase-Tf[40]等。但通過(guò)化學(xué)鍵將藥物分子與其載體直接連接可能會(huì)因?yàn)榭臻g位阻影響藥物分子的活性,并且并不是所有的藥物分子都可以通過(guò)化學(xué)鍵連接大分子藥物載體的,而通過(guò)將藥物分子包裹在納米微粒中,將藥物載體與納米粒偶聯(lián)則能避免對(duì)藥物分子活性的損傷,同時(shí)還能起到緩釋的作用,降低藥物的毒副作用。Soni V等[41]通過(guò)偶聯(lián)Tf的脂質(zhì)體促進(jìn)5-氟尿嘧啶運(yùn)送進(jìn)入腦部,改善了腦部腫瘤治療。Li X等[42]發(fā)現(xiàn)包被多柔比星的Tf-脂質(zhì)體偶聯(lián)物有效抑制了實(shí)體瘤的生長(zhǎng)。另外,基于PLGA的納米微球也廣泛用于腫瘤靶向治療研究。Shah N等[43]研究發(fā)現(xiàn)靜脈給藥24h之后負(fù)載紫杉醇的Tf-PLGA偶聯(lián)物能增加進(jìn)入大鼠膠質(zhì)瘤中的紫杉醇的量。
3 TfR1與腦靶向給藥
3.1 TfR1單抗協(xié)助小分子藥腦靶向給藥對(duì)于小分子藥物,腦靶向治療目前采用較多的策略是Tf或TfR1抗體偶聯(lián)脂質(zhì)體/納米粒等生物藥劑的方法。 Pardridge 等[44]采用一種TfR1特異性的單克隆抗體制備出了特洛伊木馬脂質(zhì)體,將針對(duì)EGFR的干擾RNA的質(zhì)粒運(yùn)送進(jìn)入了腦組織,使腦部荷瘤小鼠EGFR表達(dá)下調(diào),小鼠存活率增加。洛哌丁胺是一種小分子鎮(zhèn)痛藥,但是由于其具有一定的親水性,因而其穿透血腦屏障的作用受到了一定的限制,臨床使用時(shí)需加大其給藥劑量,增加了藥物的毒副作用。Ulbrich等[45]將洛哌丁胺包裹在人血清白蛋白納米粒中,在納米粒表面偶聯(lián)上TfR1抗體,促進(jìn)了洛哌丁胺的鎮(zhèn)痛效果。但目前有報(bào)道指出,許多脂質(zhì)體的密閉性能、膜穩(wěn)定性以及降解性都不能得到很好的控制,降低了其靶向藥物轉(zhuǎn)運(yùn)的可能性,雖然將PEG偶聯(lián)到脂質(zhì)體上可以在一定程度上提高脂質(zhì)體的穩(wěn)定性,但是這種促穩(wěn)定作用也是有局限的,甚至PEG層在血清中能損失1/3[46,47]。而多聚物囊泡作為一種新型的合成新型單層膠囊相比脂質(zhì)體而言具有更為厚實(shí)的膜,采用多聚物囊泡作為藥物載體更為穩(wěn)定有效,目前已有很多研究者將多聚物囊泡作為藥物載體運(yùn)用于腫瘤治療中,Zhiqing Pang等[48]則將TfR1抗體OX26偶聯(lián)到多聚物囊泡表面,多聚物囊泡內(nèi)包裹上血管加壓素類似物NC-1900,通過(guò)OX26的腦靶向作用將NC-1900運(yùn)送到腦組織,改善了東莨菪堿所致的學(xué)習(xí)記憶障礙。
3.2 TfR1單抗協(xié)助大分子藥腦靶向給藥生物活性大分子在腦部疾病的治療中占有重要地位,但與小分子藥物腦靶向運(yùn)送不同的是,由于其分子量大,活性受結(jié)構(gòu)影響明顯,因而難以采用脂質(zhì)體/納米粒包裹或化學(xué)偶聯(lián)的方式進(jìn)行運(yùn)送。但由于治療性藥物與藥物載體都是蛋白質(zhì),因而通過(guò)基因工程的方法開(kāi)發(fā)出靶向融合蛋白是生物大分子腦靶向給藥的一個(gè)極具優(yōu)勢(shì)的策略。
膠質(zhì)細(xì)胞來(lái)源的神經(jīng)營(yíng)養(yǎng)因子(GDNF)在中腦多巴胺能神經(jīng)元的分化和保護(hù)過(guò)程中扮演著重要的角色,其在帕金森病的動(dòng)物模型中已顯示出了一定的神經(jīng)元保護(hù)和恢復(fù)功能[49,50]。GDNF傳統(tǒng)的給藥方式是顱內(nèi)注射,而A.Fu[51]等通過(guò)基因工程的方法將GDNF融合到了TfR1抗體重鏈的C-端,在小鼠帕金森病模型中,連續(xù)靜脈給藥3w后,多項(xiàng)測(cè)試指標(biāo)反應(yīng)出該融合蛋白具有顯著的神經(jīng)保護(hù)作用。
Β-淀粉樣肽是阿茲海默病的主要病因,抑制β-淀粉樣斑塊生成是治療阿茲海默病的有效策略。目前已有研究者開(kāi)發(fā)出抗β-淀粉樣肽單抗,但問(wèn)題在于其難以穿透血腦屏障。R.J.Boado[52]等通過(guò)將抗β-淀粉樣肽單抗的單鏈抗體(scFv)融合到TfR1單抗8D3的C-端,開(kāi)發(fā)出了治療阿茲海默病的雙功能抗體。Q. Zhou[53]在小鼠阿茲海默病模型中研究了該融合蛋白的活性,研究發(fā)現(xiàn)治療組小鼠腦中的β-樣淀粉斑塊較非治療組減少了40%,說(shuō)明該融合蛋白能在一定程度上抑制阿茲海默病的發(fā)病進(jìn)程。我們知道在血腦屏障的兩側(cè)都分布有TfR1,TfR1介導(dǎo)的跨胞轉(zhuǎn)運(yùn)能夠?qū)崿F(xiàn)\"血液-腦\"和\"腦-血液\"的雙重轉(zhuǎn)運(yùn)循環(huán)。當(dāng)雙功能抗體經(jīng)TfR1介導(dǎo)轉(zhuǎn)運(yùn)進(jìn)入腦實(shí)質(zhì)之后,其β-樣淀粉肽結(jié)合域結(jié)合靶分子(β-淀粉樣肽),隨后再經(jīng)過(guò)血腦屏障內(nèi)側(cè)的TfR1介導(dǎo)轉(zhuǎn)運(yùn)從腦組織進(jìn)入血液循環(huán),實(shí)現(xiàn)了腦組織內(nèi)β-淀粉樣肽的清除。
BACE1是治療阿茲海默病的另一個(gè)主要靶點(diǎn),BACE1抗體是治療阿茲海默病的有效藥物,它可以通過(guò)抑制β淀粉體的形成而緩解病情,但是BACE1抗體難以穿透血腦屏障。Jessica A. Couch等[54]通過(guò)基因工程的方法制備了TfR1抗體與BACE1抗體的雙特異性抗體,促進(jìn)BACE1抗體進(jìn)入腦組織發(fā)揮療效。研究者們發(fā)現(xiàn),TfR1抗體與TfR1的親和力對(duì)抗體的跨血腦屏障轉(zhuǎn)運(yùn)具有顯著影響,親和力過(guò)高會(huì)導(dǎo)致抗體吸附在血腦屏障表面而無(wú)法釋放進(jìn)入腦實(shí)質(zhì),適當(dāng)降低抗體親和力能夠促進(jìn)抗體釋放進(jìn)入腦實(shí)質(zhì)[55,56]。
TNF-α是一種促炎癥細(xì)胞因子,急性缺血性中風(fēng)發(fā)生內(nèi)1h在腦內(nèi)合成。TNF-1是TNF-α的拮抗劑,在外周器官炎癥中抑制TNF-α的激活,是一種廣泛應(yīng)用的抗類風(fēng)濕關(guān)節(jié)炎藥。但是,由于TNF-1單獨(dú)無(wú)法穿透血腦屏障,故其難以用于腦中風(fēng)的治療。為了促進(jìn)生物源性的TNF-1轉(zhuǎn)運(yùn)進(jìn)入血腦屏障,Rachita K Sumbria[57]等同樣采用依賴TfR1抗體的分子特洛伊木馬的策略促進(jìn)TNF-1進(jìn)入腦實(shí)質(zhì)。
4結(jié)論
TfR1在腫瘤細(xì)胞組織和血腦屏障表面的表達(dá)水平高于其在正常組織細(xì)胞中的表達(dá)水平,這為腫瘤靶向治療和腦靶向治療提供了靶點(diǎn)。由于許多腫瘤細(xì)胞是多藥耐性的,p-gp蛋白可以將許多進(jìn)入腫瘤細(xì)胞的藥物泵出,因而增加了化療藥物的劑量,同時(shí)增強(qiáng)了化療藥物的毒副作用。而對(duì)于一些腦部疾病,由于血腦屏障的存在,許多親水性較強(qiáng)的小分子藥物難以進(jìn)入,只有極少數(shù)脂溶性小分子化合物可以滲透穿過(guò)血腦屏障,但幾乎所有的治療性蛋白藥物都無(wú)法進(jìn)入血腦屏障。Tf、抗TfR1抗體、TfR1結(jié)合肽在結(jié)合TfR1之后可以通過(guò)受體介導(dǎo)的跨胞轉(zhuǎn)運(yùn)機(jī)制進(jìn)入腫瘤細(xì)胞或穿透血腦屏障,這為腫瘤靶向給藥及腦靶向給藥提供了一種良好的載具。將小分子藥物包裹進(jìn)納米?;蛑|(zhì)體,在納米?;蛑|(zhì)體表面偶聯(lián)上Tf、抗TfR1抗體、TfR1結(jié)合肽。可將小分子藥物靶向遞送至腫瘤細(xì)胞組織或腦組織,同時(shí)這類靶向緩釋制劑能大大降低小分子藥物對(duì)正常組織細(xì)胞的毒副作用。對(duì)于許多腦部疾病的治療性蛋白,可以通過(guò)基因工程的方法將抗TfR1抗體與治療性蛋白融合,將其遞送進(jìn)入腦組織。綜上,基于TfR1靶點(diǎn)的藥物開(kāi)發(fā)策略在腫瘤及腦部疾病靶向治療中具有廣泛的應(yīng)用前景。
參考文獻(xiàn):
[1]Daniels T R, Delgado T, Rodriguez J A, et al. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer[J]. Clinical Immunology, 2006, 121(2): 144-158.
[2]Sutherland R, Delia D, Schneider C, et al. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin[J]. Proceedings of the National Academy of Sciences, 1981, 78(7): 4515-4519.
[3]Gatter K C, Brown G, Trowbridge I S, et al. Transferrin receptors in human tissues: their distribution and possible clinical relevance[J]. Journal of clinical pathology, 1983, 36(5): 539-545.
[4]Jefferies W A, Brandon M R, Hunt S V, et al. Transferrin receptor on endothelium of brain capillaries[J]. 1984.
[5]Pardridge W M. Drug targeting to the brain[J]. Pharmaceutical research, 2007, 24(9): 1733-1744.
[6]Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications[J]. Neurobiology of disease, 2004, 16(1): 1-13.
[7]Pardridge W M. CNS drug design based on principles of blood‐brain barrier transport[J]. Journal of neurochemistry, 1998, 70(5): 1781-1792.
[8]Pardridge W M. Blood-brain barrier delivery[J]. Drug discovery today, 2007, 12(1): 54-61.
[9]Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases[J]. Neurobiology of disease, 2010, 37(1): 48-57.
[10]Pardridge W M, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor[J]. Journal of neurochemistry, 1985, 44(6): 1771-1778.
[11]Zhang Y, Pardridge W M. Rapid transferrin efflux from brain to blood across the blood-brain barrier[J]. Journal of neurochemistry, 2001, 76(5): 1597-1600.
[12]Lawrence C M, Ray S, Babyonyshev M, et al. Crystal structure of the ectodomain of human transferrin receptor[J]. Science, 1999, 286(5440): 779-782.
[13]Hémadi M, Kahn P H, Miquel G, et al. Transferrin's mechanism of interaction with receptor 1[J]. Biochemistry, 2004, 43(6): 1736-1745.
[14]Ciechanover A, Schwartz A L, Lodish H F. Sorting and recycling of cell surface receptors and endocytosed ligands: the asialoglycoprotein and transferrin receptors[J]. Journal of cellular biochemistry, 1983, 23(1‐4): 107-130.
[15]Daniels T R, Bernabeu E, Rodríguez J A, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(3): 291-317.
[16]Trowbridge I S, Lesley J, Schulte R. Murine cell surface transferrin receptor: Studies with an anti‐receptor monoclonal antibody[J]. Journal of cellular physiology, 1982, 112(3): 403-410.
[17]Lesley J F, Schulte R J. Inhibition of cell growth by monoclonal anti-transferrin receptor antibodies[J]. Molecular and cellular biology, 1985, 5(8): 1814-1821.
[18]Sauvage C A, Mendelsohn J C, Lesley J F, et al. Effects of monoclonal antibodies that block transferrin receptor function on the in vivo growth of a syngeneic murine leukemia[J]. Cancer research, 1987, 47(3): 747-753.
[19]Kemp J D, Cardillo T, Stewart B C, et al. Inhibition of lymphoma growth in vivo by combined treatment with hydroxyethyl starch deferoxamine conjugate and IgG monoclonal antibodies against the transferrin receptor[J]. Cancer research, 1995, 55(17): 3817-3824.
[20]Taetle R, Dos Santos B, Ohsugi Y, et al. Effects of combined antigrowth factor receptor treatment on in vitro growth of multiple myeloma[J]. Journal of the National Cancer Institute, 1994, 86(6): 450-455.
[21]Jones D T, Trowbridge I S, Harris A L. Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate[J]. Cancer research, 2006, 66(5): 2749-2756.
[22]Vaickus L, Levy R. Antiproliferative monoclonal antibodies: detection and initial characterization[J]. The Journal of Immunology, 1985, 135(3): 1987-1997.
[23]Haynes B F, Hemler M, Cotner T, et al. Characterization of a monoclonal antibody (5E9) that defines a human cell surface antigen of cell activation[J]. The Journal of Immunology, 1981, 127(1): 347-351.
[24]Taetle R, Honeysett J M. Effects of monoclonal anti-transferrin receptor antibodies on in vitro growth of human solid tumor cells[J]. Cancer research, 1987, 47(8): 2040-2044.
[25]Taetle R, Honeysett J M. Effects of monoclonal anti-transferrin receptor antibodies on in vitro growth of human solid tumor cells[J]. Cancer research, 1987, 47(8): 2040-2044.
[26]White S, Taetle R, Seligman P A, et al. Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects[J]. Cancer research, 1990, 50(19): 6295-6301.
[27]R. Taetle, J. Castagnola, J. Mendelsohn, Mechanisms of growth inhibition by anti-transferrin receptor monoclonal antibodies[J].Cancer Res,1986,46 :1759-1763.
[28]L.M. Neckers, J. Cossman, Transferrin receptor induction in mitogen-stimulated human T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2,
Proc[J].Natl. Acad. Sci. U. S. A,1983,80: 3494-3498.
[29]I.S. Trowbridge, F. Lopez, Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro, Proc[J].Natl. Acad. Sci. U. S. A,1982,79:1175-1179.
[30]Taetle R, Rhyner K, Castagnola J, et al. Role of transferrin, Fe, and transferrin receptors in myeloid leukemia cell growth. Studies with an antitransferrin receptor monoclonal antibody[J]. Journal of Clinical Investigation, 1985, 75(3): 1061.
[31]Brooks D, Taylor C, Dos Santos B, et al. Phase Ia trial of murine immunoglobulin A antitransferrin receptor antibody 42/6[J]. Clinical cancer research, 1995, 1(11): 1259-1265.
[32] Crépin R, Goenaga A L, Jullienne B, et al. Development of human single-chain antibodies to the transferrin receptor that effectively antagonize the growth of leukemias and lymphomas[J]. Cancer research, 2010, 70(13): 5497-5506.
[33] Chignola R, Foroni R, Franceschi A, et al. Heterogeneous response of individual multicellular tumour spheroids to immunotoxins and ricin toxin[J]. British journal of cancer, 1995, 72(3): 607.
[34]Daniels T R, Delgado T, Helguera G, et al. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells[J]. Clinical Immunology, 2006, 121(2): 159-176.
[35]Elliott R L, Stjernholm R, Elliott M C. Preliminary evaluation of platinum transferrin (MPTC-63) as a potential nontoxic treatment for breast cancer[J]. Cancer detection and prevention, 1987, 12(1-6): 469-480.
[36]Head J F, Wang F, Elliott R L. Antineoplastic drugs that interfere with iron metabolism in cancer cells[J]. Advances in enzyme regulation, 1997, 37: 147-169.
[37]Tanaka T, Shiramoto S, Miyashita M, et al. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME)[J]. International journal of pharmaceutics, 2004, 277(1): 39-61.
[38]Bejaoui N, Page M, N?el C. Cytotoxicity of transferrin-daunorubicin conjugates on small cell carcinoma of the lung (SCCL) cell line NCI-H69[J]. Anticancer research, 1990, 11(6): 2211-2213.
[39]Lai H, Sasaki T, Singh N P. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds[J]. 2005.
[40]Rybak S M, Newton D L, Mikulski S M, et al. Cytotoxic onconase and ribonuclease A chimeras: comparison and in vitro characterization[J]. Drug Delivery, 1993, 1(1): 3-10.
[41]Soni V, Kohli D V, Jain S K. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain[J]. Journal of drug targeting, 2008, 16(1): 73-78.
[42]Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin[J].Int. J. Pharm,2009,373:116-123 .
[43]Shah N, Chaudhari K, Dantuluri P, et al. Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic? P85, an in vitro cell line and in vivo biodistribution studies on rat model[J]. Journal of drug targeting, 2009, 17(7): 533-542.
[44]Pardridge W M. shRNA and siRNA delivery to the brain[J]. Advanced drug delivery reviews, 2007, 59(2): 141-152.
[45]Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB)[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(2): 251-256.
[46]Sharma A, Sharma U S. Liposomes in drug delivery: progress and limitations[J]. International Journal of Pharmaceutics, 1997, 154(2): 123-140.
[47]Discher D E, Ortiz V, Srinivas G, et al. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors[J]. Progress in polymer science, 2007, 32(8): 838-857.
[48]Pang Z, Lu W, Gao H, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26[J]. Journal of Controlled Release, 2008, 128(2): 120-127.
[49] Gash D M, Zhang Z, Ovadia A, et al. Functional recovery in parkinsonian monkeys treated with GDNF[J]. 1996.
[50]Kirik D, Georgievska B, Bj?rklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease[J]. Nature neuroscience, 2004, 7(2): 105-110.
[51]Fu A, Zhou Q H, Hui E K W, et al. Intravenous treatment of experimental Parkinson's disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood-brain barrier[J]. Brain research, 2010, 1352: 208-213.
[52]Boado R J, Zhou Q H, Lu J Z, et al. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor[J]. Molecular pharmaceutics, 2009, 7(1): 237-244.
[53]Zhou Q H, Fu A, Boado R J, et al. Receptor-mediated abeta amyloid antibody targeting to Alzheimer's disease mouse brain[J]. Molecular pharmaceutics, 2010, 8(1): 280-285.
[54]Couch J A, Yu Y J, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier[J]. Science translational medicine, 2013, 5(183): 183ra57-183ra57.
[55]Atwal J K, Chen Y, Chiu C, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo[J]. Science translational medicine, 2011, 3(84): 84ra43-84ra43.
[56]Yu Y J, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target[J]. Science Translational Medicine, 2011, 3(84): 84ra44-84ra44.
[57]Sumbria R K, Boado R J, Pardridge W M. Brain protection from stroke with intravenous TNFα decoy receptor-Trojan horse fusion protein[J]. Journal of Cerebral Blood Flow Metabolism, 2012, 32(10): 1933-1938.編輯/申磊