亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        有關(guān)常系數(shù)非齊次三階偏微分方程在工程中的解法及推廣

        2014-12-22 14:43:41韓志偉
        科技與創(chuàng)新 2014年23期

        韓志偉

        摘? 要:在工程應(yīng)用中,有關(guān)偏微分方程解的具體形式往往能夠使復(fù)雜問(wèn)題簡(jiǎn)單化。在許多工程的實(shí)際問(wèn)題中,雖然不同偏微分方程代表的實(shí)際意義各不相同,但卻具有完全相同形式的數(shù)學(xué)規(guī)律,因此,研究一般意義上的方程有助于解決實(shí)際應(yīng)用問(wèn)題。主要研究了一般形式的常系數(shù)非齊次三階偏微分方程的解,并探討了常系數(shù)非齊次N階偏微分方程的特殊情況,得到了不同條件下解的形式。

        關(guān)鍵詞:三階偏微分方程;常系數(shù);非齊次;余函數(shù)

        中圖分類(lèi)號(hào):O175.14?????????? 文獻(xiàn)標(biāo)識(shí)碼:A?? ????????????文章編號(hào):2095-6835(2014)23-0104-02

        近年來(lái),有關(guān)偏微分方程解一直是熱點(diǎn)研究問(wèn)題。在實(shí)際工程應(yīng)用中,對(duì)一般意義上的偏微分方程解的研究可以讓原本復(fù)雜的工程計(jì)算變得簡(jiǎn)單。因此,本文討論了常系數(shù)非齊次三階偏微分方程的一般解,進(jìn)而研究了N階常系數(shù)非齊次偏微分方程,從而得到了具體解的形式。

        1? 常系數(shù)非齊次三階偏微分方程的一般解

        三階偏微分方程的一般式為:

        ???????????????????????? (1)

        方程式(1)可簡(jiǎn)記為:

        fD,D′)z=φxt).??????????????????????? (2)

        方程(1)的解由兩部分構(gòu)成,通解zn和余函數(shù)zp,可記為式(3):

        z=zn+zp.?????????????????????????????????????? (3)

        當(dāng)方程(2)的右端φx,t)=0時(shí),通過(guò)解其對(duì)應(yīng)的齊次方程可得到通解:

        fDD′)z=0.?????????????????????????????????? (4)

        不妨假定齊次方程的通解形式為zn=cehx+k,其中,c,h,k為待定常數(shù),代入方程(4)中可得:

        cfhkehx+kt=0.???????????????????????????? (5)

        其中,對(duì)應(yīng)的特征方程為:

        fhk)=0.?????????????????????????????????? (6)

        因此,齊次方程的通解zn必定具備該形式cehx+k.

        在特征方程(6)中,如果能解出常數(shù)k的值,那么,(4)式中的D′必為r階的(r≥2),通解的表達(dá)式如下所示:

        .??????? (7)

        同理,在方程(6)中,如果能解出常數(shù)h的值,那么(4)式中的D′必為r階的(r≥2),通解的表達(dá)式如下所示:

        .?????? (8)

        根據(jù)方程(2),考慮其余函數(shù)的形式為:

        .?????????????????????????? (9)

        或者

        .??????????? (10)

        根據(jù)式(6)可得:

        a1h3+a2h2k+a3hk2+a4k3+b1h2+b2hk+b3k2+c1h+c2k=0.??? (11)

        其變形式為:

        a1h3+(a2k+b1)h2+(a3k2+b2k+c1)h+(a4k3+b3k2+c2k)=0.????????????????? ????????????????????? (12)

        令:A=(a2k+b1)-3a1(a3k3+b2k2+c1k);

        B=(a2k+b1)(a3k2+b2k+c1)-9a1(a4k3+b3k2+c2k);

        C=(a3k2+b2k+c1)2-3(a2k+b1)(a4k3+b3k2+c2k).

        根據(jù)盛金定理可知,記Δ=B2-4AC. 由此可以得到以下結(jié)論。

        情形1:當(dāng)式(12)中A=B=0時(shí),可解得:

        .????????????????????????? (13)

        情形2:當(dāng)Δ>0時(shí),則有:

        ,

        .????????????????????????????? (14)

        其中,,i2=-1.

        情形3:當(dāng)Δ=0時(shí),此時(shí)的形式較為簡(jiǎn)單:

        .????????? ??(15)

        其中,A≠0).

        情形4:當(dāng)Δ<0時(shí),解得:

        ,

        .????? (16)

        其中,θ=arccosT,A>0,-1<T<1.

        將上述結(jié)果代入式(7)和(10)中,可以得到一般三階方程解的一般形式。同理可得:

        a4k3+(a3h+b3)h2+(a2h2+b2h+c2)k+(a1h3+b1h2+c1h)=0.

        (17)

        令:A1=(a3h+b3)-3a4(a1h3+b1h2+c1h);

        B1=(a3h+b3)(a2h2+b2h+c2)-9a4(a1h3+b1h2+c1h);

        C1=(a2h2+b2h+c2)2-3(a3h+b3)(a1h3+b1h2+c1h).

        根據(jù)盛金定理可知,記Δ1=B12-4A1C1. 由此可以得到以下結(jié)論。

        情形1′:在式(17)中,當(dāng)A1=B1=0時(shí),解得:

        .??????????????????????? (18)

        情形2′:當(dāng)Δ1>0時(shí),解得k的值為:

        ,

        .???????? (19)

        其中,,i2=-1.

        情形3′:當(dāng)Δ1=0時(shí),此時(shí)可以解出:

        ,.???????? (20)

        其中,A1≠0).

        情形4′:當(dāng)Δ1<0時(shí),此時(shí)可以得到:

        .?????????? (21)

        其中,θ1=arccosT1,,A1>0,

        -1<T1<1.

        根據(jù)不同的情形,將結(jié)果代入式(8)和(10)中,可以得到一般方程解的形式。

        2? 常系數(shù)非齊次N階偏微分方程的一般解

        對(duì)常系數(shù)非齊次N階偏微分方程而言,要得出其一般意義上的解并不容易。但是,當(dāng)φx,t)取一些特殊函數(shù)時(shí),可以得到其解的具體形式。常系數(shù)非齊次N階偏微分方程的一般形式如下:

        .

        (22)

        根據(jù)φx,t)的不同取值,討論以下5種特殊情形。

        情形1′′:當(dāng)φx,t)=cn1時(shí),如果z具有zn1=An1xn形式的解,代入式(22)中求解。通過(guò)n!a0An1=cn1,可得解得系數(shù)

        .

        情形2′′:當(dāng)φx,t)=cn2x時(shí),如果z具有zn2=An2xn+1形

        式的解,代入式(22)中,由(n+1)!a0An2x=cn2x.

        情形3′′:當(dāng)φx,t)=cn3t時(shí),如果z具有zn3=An3tn+1形式的

        解,代入式(22)中,由(n+1)!anAn3t=cn3t可得.

        情形4′′:當(dāng)φx,t)=cn4x+cn5t時(shí),如果z具有zn4= An4xnt+An5xn+1形式的解,代入式(22)中,則可以通過(guò)

        得到.

        情形5′′:當(dāng)φx,t)=cn6xt時(shí),如果z具有zn5= An6xn+1t+An7xn+2

        形式的解,代入式(22)中可以由

        解得.

        由于常系數(shù)非齊次N階偏微分方程解具有復(fù)雜性,所以,本文僅討論了5種解得的具體形式。當(dāng)遇到具體工程問(wèn)題時(shí),可根據(jù)具體情形求解。

        3? 結(jié)束語(yǔ)

        本文僅研究了一般形式的常系數(shù)非齊次三階偏微分方程的解的一般式,在相應(yīng)的常系數(shù)非齊N階偏微分方程中,得到了部分函數(shù)對(duì)應(yīng)的特殊解的情況。在具體的工程應(yīng)用中,對(duì)更多不同情況的求解一定可以得到更多對(duì)現(xiàn)實(shí)問(wèn)題有幫助的結(jié)果。

        參考文獻(xiàn)

        [1]Devi J Vasundhara.Generalized monotone method for periodic boundary value problems of Caputo fractional differential equations[J].Commun.Appl.Anal,2008,12(4):399-406.

        [2]Yusufjon P.Apakov,Stasys Rutkauskas.On a boundary value problem to third order PDE with multiple characteristics[J].Nonlinear Analysis:Modelling and Control,2011,16(3):255-269.

        〔編輯:白潔〕

        The Methods and Generalizations of the Nonhomogeneous Three Order artial Differential

        P Equation with Constant Coefficients in Engineering

        Han Zhiwei

        AbstractIn engineering application, the specific form of partial differential equations is often able to simplify the complex problem. Although the actual significance questions represented the different partial differential equations are not identical, the laws of mathematics has exactly the same form of many practical problems in engineering. The research on the general sense of the equation may contribute to the solution of practical problems. This paper mainly studies the general form of the constant coefficient non-homogeneous three order partial differential equation, and discusses the special condition of non-homogeneous Nth order partial differential equation with constant coefficients, and has obtained the solution under the different conditions.

        Key words: third order partial differential equation; constant coefficient; non-homogeneous; complementary function

        [2]Yusufjon P.Apakov,Stasys Rutkauskas.On a boundary value problem to third order PDE with multiple characteristics[J].Nonlinear Analysis:Modelling and Control,2011,16(3):255-269.

        〔編輯:白潔〕

        The Methods and Generalizations of the Nonhomogeneous Three Order artial Differential

        P Equation with Constant Coefficients in Engineering

        Han Zhiwei

        AbstractIn engineering application, the specific form of partial differential equations is often able to simplify the complex problem. Although the actual significance questions represented the different partial differential equations are not identical, the laws of mathematics has exactly the same form of many practical problems in engineering. The research on the general sense of the equation may contribute to the solution of practical problems. This paper mainly studies the general form of the constant coefficient non-homogeneous three order partial differential equation, and discusses the special condition of non-homogeneous Nth order partial differential equation with constant coefficients, and has obtained the solution under the different conditions.

        Key words: third order partial differential equation; constant coefficient; non-homogeneous; complementary function

        [2]Yusufjon P.Apakov,Stasys Rutkauskas.On a boundary value problem to third order PDE with multiple characteristics[J].Nonlinear Analysis:Modelling and Control,2011,16(3):255-269.

        〔編輯:白潔〕

        The Methods and Generalizations of the Nonhomogeneous Three Order artial Differential

        P Equation with Constant Coefficients in Engineering

        Han Zhiwei

        AbstractIn engineering application, the specific form of partial differential equations is often able to simplify the complex problem. Although the actual significance questions represented the different partial differential equations are not identical, the laws of mathematics has exactly the same form of many practical problems in engineering. The research on the general sense of the equation may contribute to the solution of practical problems. This paper mainly studies the general form of the constant coefficient non-homogeneous three order partial differential equation, and discusses the special condition of non-homogeneous Nth order partial differential equation with constant coefficients, and has obtained the solution under the different conditions.

        Key words: third order partial differential equation; constant coefficient; non-homogeneous; complementary function

        亚洲av无码专区电影在线观看| 日本在线视频www色| 2020国产在视频线自在拍| 久久精品国产熟女亚洲| 日本中文字幕一区二区有码在线| 亚洲综合成人婷婷五月网址| 各种少妇正面着bbw撒尿视频| 日日摸天天摸人人看| 国产中老年妇女精品| 男女扒开双腿猛进入免费看污| 美国黄色片一区二区三区| 中文字幕乱码免费视频| 99久久综合狠狠综合久久| 亚洲aⅴ无码国精品中文字慕| 中文字幕成人乱码亚洲| 国产三级视频在线观看国产| 中文字幕一区二区黄色| 老熟女老女人国产老太| 免费国产线观看免费观看| 内射人妻视频国内| 大肉大捧一进一出视频出来呀| 日本大片免费观看完整视频| 欧美一级视频在线| 日本中文字幕人妻精品| 久久人妻中文字幕精品一区二区 | 久久久久亚洲AV片无码乐播| 国产99久久精品一区| 亚州中文字幕乱码中文字幕| 国产成人精品人人做人人爽97| 国产亚州精品女人久久久久久| 国产精品久久人妻无码| 蜜臀久久99精品久久久久久小说| 浪荡少妇一区二区三区| av最新版天堂在资源在线| 91精品国产色综合久久| 日韩av激情在线观看| 好日子在线观看视频大全免费动漫| 秒播无码国产在线观看| 精品午夜一区二区三区久久 | 九九99久久精品在免费线18| 熟妇人妻不卡中文字幕|