亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        退化線性橢圓方程非常弱解的存在唯一性

        2014-11-28 17:56:57晏華輝顧廣澤

        晏華輝+顧廣澤

        摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問(wèn)題非常弱解的存在唯一性結(jié)果.

        關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

        中圖分類(lèi)號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

        他們需要得到上面問(wèn)題非常弱解的存在唯一性結(jié)果.

        [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

        [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

        [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

        [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

        [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

        [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

        [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

        [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

        摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問(wèn)題非常弱解的存在唯一性結(jié)果.

        關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

        中圖分類(lèi)號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

        他們需要得到上面問(wèn)題非常弱解的存在唯一性結(jié)果.

        [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

        [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

        [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

        [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

        [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

        [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

        [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

        [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

        摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問(wèn)題非常弱解的存在唯一性結(jié)果.

        關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

        中圖分類(lèi)號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

        他們需要得到上面問(wèn)題非常弱解的存在唯一性結(jié)果.

        [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

        [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

        [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

        [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

        [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

        [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

        [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

        [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

        日本成年少妇人妻中文字幕| 99精品视频在线观看免费| 日韩专区欧美专区| 久久精品国产亚洲av蜜桃av| 国产一级黄色录像大片| 青青青爽在线视频观看| 狠狠久久亚洲欧美专区| 国产精品成人免费视频一区| 国产乱子乱人伦电影在线观看| 天天狠天天透天干天天| 中文字幕一区二区在线看| 久久亚洲av成人无码国产最大| 久久久受www免费人成| 欧美性久久| 国产av一区仑乱久久精品| 人妖一区二区三区四区| 国产精品无码a∨精品影院| 娇柔白嫩呻吟人妻尤物| 一卡二卡国产av熟女| 国内熟女啪啪自拍| 亚洲白白色无码在线观看| 最新亚洲av日韩av二区一区| 亚洲国产精品不卡av在线| 中国内射xxxx6981少妇| 国产乱人伦真实精品视频| 国产黄色一区二区三区av| 日韩精品久久无码中文字幕| 最新国产日韩AV线| 国产av熟女一区二区三区老牛| 亚洲国产成人久久综合碰碰| 男女下面进入的视频| 久久青草国产免费观看| 亚洲精品国产一区二区免费视频 | 99久久伊人精品综合观看| 久久99久久久无码国产精品色戒| 国产亚洲精品免费专线视频| 国内免费高清在线观看| 亚洲图区欧美| 国产精品久久久看三级| 日韩网红少妇无码视频香港| 国产精品女同一区二区|