亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        退化線性橢圓方程非常弱解的存在唯一性

        2014-11-28 17:56:57晏華輝顧廣澤

        晏華輝+顧廣澤

        摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問題非常弱解的存在唯一性結(jié)果.

        關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

        中圖分類號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

        他們需要得到上面問題非常弱解的存在唯一性結(jié)果.

        [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

        [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

        [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

        [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

        [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

        [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

        [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

        [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

        摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問題非常弱解的存在唯一性結(jié)果.

        關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

        中圖分類號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

        他們需要得到上面問題非常弱解的存在唯一性結(jié)果.

        [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

        [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

        [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

        [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

        [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

        [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

        [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

        [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

        摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問題非常弱解的存在唯一性結(jié)果.

        關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

        中圖分類號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

        他們需要得到上面問題非常弱解的存在唯一性結(jié)果.

        [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

        [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

        [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

        [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

        [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

        [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

        [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

        [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

        依依成人影视国产精品| 欧美 日韩 人妻 高清 中文| 2018国产精华国产精品| 国产成人综合久久精品推| 亚洲高清一区二区三区在线观看| 青青草手机视频免费在线播放| 色狠狠色狠狠综合天天| aaaaaa级特色特黄的毛片| 免费一级黄色大片久久久| 久久人妻精品免费二区| 人妻少妇被粗大爽.9797pw| 无码综合天天久久综合网| 91精品91| 96中文字幕一区二区| 国产成人a∨激情视频厨房| 亚洲狠狠婷婷综合久久| 亚洲熟妇中文字幕日产无码| 少妇激情高潮视频网站| 精品久久久bbbb人妻| 国产免费一区二区三区在线观看| 亚洲AV手机专区久久精品| 日本人妻系列中文字幕| 品色堂永远免费| 午夜片无码区在线| 国产特黄1区2区3区4区| 人妻久久久一区二区三区蜜臀 | 欧美日韩精品久久久久| 国产一区日韩二区欧美三区| 国产麻豆精品久久一二三| 日本人妻伦理在线播放 | 91久久精品人妻一区二区| 久久一道精品一区三区| 欧美大屁股xxxx| 在线视频中文字幕乱人伦| 中文字幕亚洲一区视频| 黑人巨茎大战俄罗斯美女| 久久99精品久久久久久久清纯| av网址不卡免费在线观看| 中文字日产幕码三区的做法大全| 精品人妻人人做人人爽| 无码a级毛片免费视频内谢|