亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        灌漿期高溫對(duì)小麥旗葉中SOD和GR活性及相關(guān)基因表達(dá)量的影響

        2014-11-22 11:14:07王春微孫愛(ài)清張杰道
        山東農(nóng)業(yè)科學(xué) 2014年10期

        王春微 孫愛(ài)清 張杰道 等

        摘要:以山農(nóng)23和濟(jì)麥20為試驗(yàn)材料,研究灌漿期(花后10~20 d)高溫對(duì)小麥旗葉中超氧化物歧化酶(SOD)和谷胱甘肽還原酶(GR)活性及相關(guān)基因表達(dá)量的影響。結(jié)果表明,在高溫脅迫條件下,山農(nóng)23的SOD活性一直顯著高于對(duì)照,而濟(jì)麥20的SOD活性變化呈先升高后降低的趨勢(shì)。山農(nóng)23中Fe-SOD和Mn-SOD表達(dá)量的變化與SOD活性的變化趨勢(shì)相似,但Cu/Zn-SOD表達(dá)量的變化與SOD活性的變化趨勢(shì)不同。濟(jì)麥20中3個(gè)SOD基因表達(dá)量的變化均與SOD活性的變化基本一致。高溫脅迫條件下兩個(gè)小麥品種的GR活性均呈現(xiàn)先升高后降低的趨勢(shì),山農(nóng)23中GR表達(dá)量的變化與GR活性的變化趨勢(shì)基本一致,濟(jì)麥20中GR表達(dá)量的變化早于GR活性的變化??傮w來(lái)看,高溫脅迫條件下山農(nóng)23具有較強(qiáng)的抗氧化能力,F(xiàn)e-SOD和Mn-SOD基因?qū)OD活性起主要作用,抗氧化酶相關(guān)基因?qū)酀{期高溫脅迫的響應(yīng)比酶活性更敏感。

        關(guān)鍵詞:小麥;高溫;超氧化物歧化酶;谷胱甘肽還原酶;基因表達(dá)

        中圖分類(lèi)號(hào):S512.103.4文獻(xiàn)標(biāo)識(shí)號(hào):A文章編號(hào):1001-4942(2014)10-0030-05

        3討論與結(jié)論

        高溫引起抗氧化酶活性的改變可能因植物物種、品種、脅迫強(qiáng)度和脅迫持續(xù)時(shí)間的不同而異。Hu等[18]通過(guò)試驗(yàn)發(fā)現(xiàn)高溫脅迫(42℃,1 h)能增加玉米葉片中SOD和GR的活性。Xue等[19]發(fā)現(xiàn)高溫使水稻苗中SOD活性顯著高于對(duì)照。本研究發(fā)現(xiàn),高溫處理過(guò)程中山農(nóng)23的SOD活性一直高于對(duì)照,濟(jì)麥20的SOD活性變化呈現(xiàn)先升高后降低的趨勢(shì);兩個(gè)品種的GR活性雖然都呈先升高后降低的趨勢(shì),但是濟(jì)麥20開(kāi)始下降的時(shí)間早于山農(nóng)23。表明高溫脅迫對(duì)不同耐熱性小麥品種的抗氧化酶活性的影響不同,山農(nóng)23有較高的抗氧化酶活性和較強(qiáng)的耐熱性。

        高溫引發(fā)各種植物響應(yīng),包括調(diào)控基因的表達(dá)。研究在RNA水平上的基因表達(dá)與植物耐熱性的關(guān)系,能對(duì)抗氧化酶激活機(jī)制有更深入地了解,而不僅僅停留在酶活性方面。本研究發(fā)現(xiàn),濟(jì)麥20中三種SOD基因的變化趨勢(shì)與酶活性的變化趨勢(shì)基本一致。山農(nóng)23中Fe-SOD和Mn-SOD在處理過(guò)程中的變化趨勢(shì)與高溫處理?xiàng)l件下SOD活性的變化趨勢(shì)基本一致,但是Cu/Zn-SOD在處理2 d后表達(dá)量一直低于對(duì)照,這與SOD活性的變化趨勢(shì)不一致。前人許多試驗(yàn)也發(fā)現(xiàn)非生物脅迫過(guò)程中Cu/Zn-SOD的轉(zhuǎn)錄水平的變化與SOD變化不完全一致。Xu等[10]研究發(fā)現(xiàn)早熟禾中葉綠體Cu/Zn-SOD與細(xì)胞質(zhì)Cu/Zn-SOD在干旱脅迫后轉(zhuǎn)錄水平顯著升高,但是SOD活性卻呈下降的趨勢(shì)。Kurepa等 (1997)[20]通過(guò)研究發(fā)現(xiàn)Cu2+過(guò)量積累能使葉綠體Cu/Zn-SOD上調(diào),但是SOD活性沒(méi)有發(fā)生顯著變化。綜上所述,F(xiàn)e-SOD和Mn-SOD在抵抗高溫?fù)p傷方面起重要作用。

        山農(nóng)23的GR轉(zhuǎn)錄水平的變化比酶活性的變化早2 d,說(shuō)明抗氧化酶相關(guān)基因?qū)Ω邷孛{迫的響應(yīng)較酶活性更敏感。值得注意的是,在高溫處理?xiàng)l件下濟(jì)麥20的GR基因表達(dá)量在處理4 d時(shí)開(kāi)始下調(diào),但酶活性在8 d開(kāi)始低于對(duì)照,原因可能是GR在處理前期超表達(dá)或者GR活性的變化不是由轉(zhuǎn)錄水平調(diào)控的,更可能受轉(zhuǎn)錄后水平調(diào)控。

        參考文獻(xiàn):

        [1]Maestri E, Klueva N, Perrotta C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5/6): 667-681.

        [2]Hasanuzzaman M, Nahar K, Alam M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.

        [3]Melchiorre M, Robert G A N, Trippi V, et al. Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state[J]. Plant Growth Regulation, 2009, 57(1): 57-68.

        [4]Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant, Cell & Environment, 2010, 33(4): 453-467.

        [5]De Pinto M C, Locato V, De Gara L. Redox regulation in plant programmed cell death[J]. Plant, Cell & Environment, 2012, 35(2): 234-244.

        [6]Farooq M, Aziz T, Hussain M, et al. Glycinebetaine improves chilling tolerance in hybrid maize[J]. Journal of Agronomy and Crop Science, 2008, 194(2): 152-160.

        [7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

        [8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進(jìn)展[J]. 遺傳,2003, 25(2): 225-231.

        [9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

        [10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

        [11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

        [12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

        [13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

        [14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

        [15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

        [16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

        [17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

        [18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

        [19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

        [20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

        [7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

        [8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進(jìn)展[J]. 遺傳,2003, 25(2): 225-231.

        [9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

        [10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

        [11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

        [12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

        [13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

        [14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

        [15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

        [16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

        [17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

        [18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

        [19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

        [20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

        [7]Gupta N K, Agarwal S, Agarwal V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013,35(6):1837-1842.

        [8]馬旭俊,朱大海. 植物超氧化物歧化酶(SOD)的研究進(jìn)展[J]. 遺傳,2003, 25(2): 225-231.

        [9]Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.

        [10]Xu L, Han L, Huang B. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255.

        [11]Almeselmani M, Deshmukh P S, Sairam R K. High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica, 2009, 57(1): 1-14.

        [12]Sairam R K, Srivastava G C, Saxena D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.

        [13]Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.

        [14]Arakawa N, Tsutsumi K, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline[J]. Agricultural and Biological Chemistry, 1981, 45(5): 1289-1290.

        [15]Kanematsu S, Asada K. Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail[J]. Plant and Cell physiology, 1990, 31(1): 99-112.

        [16]Smith M W, Doolittle R F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase[J]. Journal of Molecular Evolution, 1992, 34(2): 175-184.

        [17]Ogawa K, Kanematsu S, Asada K. Intra-and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl[J]. Plant and Cell Physiology, 1996, 37(6): 790-799.

        [18]Hu X, Liu R, Li Y, et al. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress[J]. Plant Growth Regulation, 2010, 60(3): 225-235.

        [19]Xue D, Jiang H, Hu J, et al. Characterization of physiological response and identification of associated genes under heat stress in rice seedlings[J]. Plant Physiology and Biochemistry, 2012,61:46-53.

        [20]Kurepa J, Van Montagu M, Inz E D. Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess[J]. Journal of Experimental Botany, 1997, 48(12): 2007-2014.

        亚洲av综合色区久久精品天堂 | 国产免费又爽又色又粗视频| 免费观看的av毛片的网站| 日韩欧美亚洲综合久久影院d3| 娇妻粗大高潮白浆| 丝袜美腿亚洲综合在线播放| 日本丰满少妇裸体自慰| 亚洲中文字幕无码久久| 99热国产在线| 综合久久一区二区三区| 国产成人无码专区| 国产av电影区二区三区曰曰骚网| 中文字幕亚洲无线码高清| 亚洲发给我的在线视频| 亚洲av无码一区二区三区天堂| 婷婷久久久亚洲欧洲日产国码av| 婷婷色综合成人成人网小说| 男女动态视频99精品| 国产精品理论片在线观看| 一本无码人妻在中文字幕免费| 国产精品入口蜜桃人妻| 日本免费精品一区二区三区视频| 亚洲av永久无码精品古装片| 成人性生交片无码免费看| 精品一区二区三区在线观看l| 男女动态91白浆视频| 国产亚洲美女精品久久久2020 | 漂亮丰满人妻被中出中文字幕| 国产精品18久久久| 亚洲国产精品线路久久| 日本久久一级二级三级| 国产精品久久久天天影视| 老熟妇乱子伦av| 久久久亚洲精品蜜桃臀| 男女激情视频网站免费在线| 国产激情久久久久久熟女老人av| 国产91中文| 亚洲av一二三四又爽又色又色| 伊人久久大香线蕉av不变影院| 无码a∨高潮抽搐流白浆| 无码专区亚洲avl|