陳菊移+王鵬凱+陳金慧+施季森
摘要:莖尖分生組織干細(xì)胞是植物地上部分生長(zhǎng)發(fā)育的基礎(chǔ)。復(fù)雜的基因調(diào)控網(wǎng)絡(luò)和信號(hào)傳導(dǎo)途徑使干細(xì)胞維持著細(xì)胞分裂和分化的平衡。對(duì)擬南芥的研究顯示,WUS/CLV3反饋抑制調(diào)節(jié)機(jī)制在干細(xì)胞基因調(diào)控網(wǎng)絡(luò)中發(fā)揮著重要作用,且在植物中具有一定保守性;大量轉(zhuǎn)錄因子和染色體重塑因子在轉(zhuǎn)錄水平通過調(diào)控WUS從而對(duì)干細(xì)胞活動(dòng)進(jìn)行調(diào)節(jié);植物生長(zhǎng)調(diào)節(jié)物質(zhì)也參與調(diào)控莖尖分生組織的生長(zhǎng)活動(dòng),主要通過KNOX基因家族發(fā)揮作用。莖尖分生組織的分子調(diào)控網(wǎng)絡(luò)中存在大量反饋抑制調(diào)節(jié)途徑,這種調(diào)節(jié)形式反映了植物體的動(dòng)態(tài)調(diào)節(jié)能力和平衡維持機(jī)制。
關(guān)鍵詞:莖尖分生組織;干細(xì)胞;WUS/CLV3;反饋調(diào)節(jié)
中圖分類號(hào):Q942.6 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-1302(2014)08-0011-04
植物莖尖分生組織(shoot apical meristem,SAM)是植物地上部分生長(zhǎng)發(fā)育的基礎(chǔ),其中包含的干細(xì)胞(SC)通過分裂(進(jìn)行自身更新并維持一定的細(xì)胞數(shù)量)和分化(指導(dǎo)一部分細(xì)胞輸出分生組織并發(fā)育成各種器官)形成了植物地上部分的各個(gè)器官。這2種細(xì)胞行為使干細(xì)胞和分化細(xì)胞在數(shù)量上保持動(dòng)態(tài)平衡[1],保證了植物生長(zhǎng)發(fā)育過程的可塑性。SAM干細(xì)胞區(qū)是一個(gè)相對(duì)獨(dú)立的結(jié)構(gòu),其中的細(xì)胞保持未分化的狀態(tài)并接受來(lái)自臨近細(xì)胞的信號(hào)。在基因調(diào)控和細(xì)胞信號(hào)的影響下,干細(xì)胞一部分進(jìn)行分裂保持干細(xì)胞數(shù)量,而另一部分移出該干細(xì)胞區(qū)域進(jìn)行分化。分子遺傳學(xué)、分子生物學(xué)和模式植物擬南芥研究的不斷深入使SAM干細(xì)胞基因調(diào)控途徑逐漸清晰。研究發(fā)現(xiàn)莖尖分生組織中心標(biāo)記基因WUSCHEL(WUS)和干細(xì)胞標(biāo)記基因CLVATA3(CLV3)[2]之間的反饋調(diào)節(jié)機(jī)制在分生組織干細(xì)胞區(qū)確定和維持方面起決定性作用。大多數(shù)對(duì)植物地上部分生長(zhǎng)發(fā)揮作用的基因都是通過直接或間接影響WUS/CLV3反饋抑制途徑發(fā)揮作用。
[WTHZ]1 SAM結(jié)構(gòu)
植物SAM大約含有500個(gè)細(xì)胞,這些細(xì)胞可分為不同的區(qū)域和細(xì)胞層。SAM穹頂狀結(jié)構(gòu)自上而下的3層細(xì)胞(圖1)稱為L(zhǎng)1、L2、L3層細(xì)胞:L1層細(xì)胞發(fā)育成表皮;L2層細(xì)胞發(fā)育成葉肉;L3層細(xì)胞形成葉和莖的內(nèi)部組織[3-4]。大多數(shù)雙子葉植物SAM中有L1和L2層,大多數(shù)單子葉植物SAM中只有L1層細(xì)胞[5]。中心區(qū)(含有干細(xì)胞和組織中心)和周邊區(qū)(分化側(cè)生器官)在L1至L3細(xì)胞層上橫向排列[5],而肋狀區(qū)(為莖生長(zhǎng)提供細(xì)胞)則位于組織中心下方(圖1)。中心區(qū)細(xì)胞數(shù)量穩(wěn)定且分裂速度緩慢,擬南芥CLV3表達(dá)分析結(jié)果顯示擬南芥中心區(qū)大約含有35個(gè)干細(xì)胞[6-7]。周邊區(qū)可以進(jìn)一步分為外周邊區(qū)和內(nèi)周邊區(qū)。內(nèi)周邊區(qū)細(xì)胞可通過脫分化恢復(fù)到干細(xì)胞狀態(tài),外周邊區(qū)細(xì)胞一旦進(jìn)入分化途徑后無(wú)法完成脫分化。與中心區(qū)不同,周邊區(qū)細(xì)胞分裂迅速,可為器官原基的形成提供大量細(xì)胞,保證植物正常生長(zhǎng)。
2 擬南芥SAM組織中心標(biāo)記基因WUS及其調(diào)控基因
擬南芥SAM中大約有10個(gè)細(xì)胞表達(dá)WUS基因,這些細(xì)胞位于中心區(qū)L3層和更下層,組成的區(qū)域稱為組織中心(圖1)。WUS編碼1個(gè)轉(zhuǎn)錄因子,WUS功能喪失可使干細(xì)胞在形成器官原基的過程中消失,SAM活動(dòng)過早停止[8];WUS過表達(dá)會(huì)形成過多的干細(xì)胞,因此擬南芥SAM中WUS的表達(dá)可以維持干細(xì)胞數(shù)目,保證干細(xì)胞區(qū)域細(xì)胞分裂與分化之間的平衡?,F(xiàn)有研究結(jié)果已經(jīng)證明WUS基因表達(dá)產(chǎn)生的信號(hào)經(jīng)過運(yùn)輸進(jìn)入干細(xì)胞中發(fā)揮作用[9]。
WUS的表達(dá)受到眾多轉(zhuǎn)錄因子、染色質(zhì)重塑因子的調(diào)控(包括正調(diào)控和負(fù)調(diào)控),這些因子在維持WUS持續(xù)表達(dá)的同時(shí)也將其表達(dá)區(qū)域限制在組織中心。目前大多數(shù)調(diào)控因子對(duì)WUS的調(diào)控機(jī)制和途徑仍不清晰,但已發(fā)現(xiàn)WUS啟動(dòng)子中存在能夠保證WUS準(zhǔn)確表達(dá)的序列[10],說(shuō)明WUS表達(dá)調(diào)控過程中可能存在轉(zhuǎn)錄激活復(fù)合體,該復(fù)合體能夠聯(lián)合多個(gè)信號(hào)途徑對(duì)WUS進(jìn)行表達(dá)調(diào)控[11]。WUS啟動(dòng)子中的一個(gè)57 bp區(qū)域(位于轉(zhuǎn)錄起始位點(diǎn)上游550 bp)能夠維持WUS在組織中心的正常時(shí)空表達(dá)模式。這個(gè)區(qū)域中有2個(gè)相鄰的短序列在WUS的轉(zhuǎn)錄調(diào)控過程中發(fā)揮作用。眾多調(diào)節(jié)信號(hào)相互作用后和這2個(gè)序列相互結(jié)合從而調(diào)控WUS的轉(zhuǎn)錄。
2.1 WUS的直接調(diào)控因子
迄今為止發(fā)現(xiàn)的能夠與WUS啟動(dòng)子直接作用的基因是染色體重塑因子BRCA1-ASSOCIATED RING DOMAIN1(BARD1)和SPLAYED(SYD)。WUS表達(dá)的激活受到SPLAYED(SYD)染色質(zhì)重塑因子的直接調(diào)控,SYD編碼一種ATP酶,可促進(jìn)DNA模板形成轉(zhuǎn)錄結(jié)構(gòu)而啟動(dòng)轉(zhuǎn)錄[12-13]。BARD1編碼的蛋白具有磷酸化依賴性,在SAM結(jié)構(gòu)的維持方面發(fā)揮功能。BARD1突變使WUS只在組織中心邊緣表達(dá),破壞SAM結(jié)構(gòu)。BARD1蛋白不僅與WUS啟動(dòng)子存在直接作用,還與SYD之間有互作關(guān)系,說(shuō)明BARD1通過抑制染色質(zhì)重塑過程影響WUS表達(dá)[14]。
2.2 WUS的間接調(diào)控因子
WOX9是WUS表達(dá)的正調(diào)控基因,其突變體表型為SAM功能喪失,WUS和CLV3表達(dá)量降低。遺傳分析結(jié)果表明WOX9在促進(jìn)WUS表達(dá)的同時(shí)也受到CLV3的負(fù)調(diào)控,三者可以形成輔助性的負(fù)反饋調(diào)節(jié)途徑[5]。
APETALA2(AP2)是花發(fā)育ABC模型中的A功能基因,現(xiàn)有研究結(jié)果說(shuō)明AP2可能在WUS上游起正調(diào)控作用。AP2突變表型也是SAM活動(dòng)過早停止[17]。OBERON1(OBE1)和OBERON2(OBE2)是AP2的功能冗余基因[11],這2個(gè)基因的雙突變體表現(xiàn)出SAM活動(dòng)停止,WUS和CLV3表達(dá)水平降低。說(shuō)明這2個(gè)基因具有維持干細(xì)胞特性的功能。
MERISTEM DEFECTIVE(MDF)編碼的蛋白可能在轉(zhuǎn)錄調(diào)控和RNA加工過程中對(duì)WUS表達(dá)發(fā)揮正調(diào)控作用。研究證明mdf突變體表型為SAM活動(dòng)停止,WUS表達(dá)量降低;MDF過表達(dá)會(huì)導(dǎo)致異位分生組織形成[18]。
ULTRAPETALA1(ULT1)和HANABA TARANU(HAN)是WUS的負(fù)轉(zhuǎn)錄調(diào)控因子。ULT1在生長(zhǎng)發(fā)育后期對(duì)WUS表達(dá)起到負(fù)調(diào)控作用。ULT1在發(fā)育中的花器官和胚分生組織中表達(dá),ult1表型為花序和花分生組織膨大,說(shuō)明ULT1在花形成過程中對(duì)WUS表達(dá)調(diào)控起重要作用。HAN是GATA-3類轉(zhuǎn)錄因子,可控制表達(dá)WUS基因細(xì)胞的數(shù)目,使分生組織中心區(qū)和器官原基之間形成分界線[19]。
質(zhì)譜結(jié)果顯示出成熟的CLV3編碼產(chǎn)物含有1個(gè)分泌型糖肽(13個(gè)氨基酸)和2個(gè)羥脯氨酸殘基[22-23],在翻譯后加工過程中1個(gè)羥脯氨酸殘基發(fā)生了糖基化反應(yīng),對(duì)其生理功能和生物活性起決定作用,未發(fā)生糖基化反應(yīng)的CLV3編碼產(chǎn)物生物學(xué)活性和受體結(jié)合活性都非常低[22-23]。CLV3在L1至L3層的干細(xì)胞中表達(dá),其翻譯產(chǎn)物在細(xì)胞中以信號(hào)分子的形式向下擴(kuò)散,可以被CLV1受體激酶和CLV2/CRN受體激酶復(fù)合物傳遞而發(fā)揮功能[24]。
CLV3作為信號(hào)分子通過CLV1、CLV2、CORYNE(CRN)共同組成通路向下傳遞,對(duì)WUS的表達(dá)發(fā)揮抑制作用[24]。受體激酶CLV1的亮氨酸富集結(jié)構(gòu)域可以結(jié)合CLV3;無(wú)激酶活性的受體CLV2必須與激酶CORYNE(CRN)結(jié)合后才能形成功能復(fù)合體結(jié)合CLV3。CLV1、CLV2、CRN具有跨膜結(jié)構(gòu)域,可以固定到質(zhì)膜上,其中CLV1可以自身形成二聚體,CLV2/CRN形成四聚體,CLV1、CLV2也可以在CRN的介導(dǎo)下形成CLV1/CRN/CLV2六聚體[25,26]。CLV1、CLV2、CRN組成的大量信號(hào)通路保證了CLV3信號(hào)的傳遞效率。
CLVATA3(CLV3)基因在SAM干細(xì)胞區(qū)特異表達(dá),與WUS的表達(dá)在L3層中重合。clv3表型為WUS表達(dá)區(qū)域的擴(kuò)大,SAM膨大。CLV3過表達(dá)使SAM活動(dòng)過早停止[9],與wus表型類似。這說(shuō)明組織中心標(biāo)記基因WUS能夠促進(jìn)CLV3表達(dá),而CLV3可以抑制WUS表達(dá)。二者形成1個(gè)負(fù)反饋調(diào)節(jié)環(huán),成為SAM中干細(xì)胞區(qū)基因調(diào)控網(wǎng)絡(luò)的中心環(huán)節(jié)。WUS表達(dá)形成的信號(hào)因子轉(zhuǎn)運(yùn)至干細(xì)胞并在干細(xì)胞中梯度分布而維持干細(xì)胞活性,內(nèi)周邊區(qū)的細(xì)胞能接受這種信號(hào)因子發(fā)生脫分化回到干細(xì)胞狀態(tài),從而維持干細(xì)胞數(shù)量的穩(wěn)定。
4 WUS和CLV3在不同植物SAM中的功能保守性
除擬南芥外,WUS和CLV3基因也在其他植物SAM干細(xì)胞調(diào)控中發(fā)揮作用。許多雙子葉植物中已經(jīng)發(fā)現(xiàn)了WUS的同源基因,這些基因在功能上有保守性。其突變體與擬南芥wus突變體表型類似,即SAM活動(dòng)的過早停止[27-30]。已經(jīng)發(fā)現(xiàn)的雙子葉植物WUS同源基因都在SAM的組織中心表達(dá)。
單子葉植物水稻、玉米和短柄草中也發(fā)現(xiàn)了WUS的同源基因,但這些基因在功能上具有多樣性。玉米ZmWUS1/2和水稻OsWUS營(yíng)養(yǎng)生長(zhǎng)時(shí)期表達(dá)區(qū)域主要集中于分生組織周邊區(qū)域和葉原基,SAM中只有短暫表達(dá);生殖生長(zhǎng)時(shí)期這3個(gè)基因與擬南芥CLV1同源基因在SAM中同步表達(dá)[25]。ZmWUS1/2和OsWUS表達(dá)模式說(shuō)明了單子葉植物莖構(gòu)造和葉片發(fā)育過程的特殊性,暗示著單子葉植物中可能存在不同于WUS/CLV3的干細(xì)胞調(diào)控途徑。被子植物和裸子植物的WUS/WOX基因家族分析說(shuō)明WUS的原始功能可與側(cè)生器官原基發(fā)生相關(guān)。雖然擬南芥WUS功能模式在其他植物中通用性不強(qiáng),但是該基因的功能可能具有一定的保守性[25]。
CLE基因家族是植物中最廣泛存在的基因家族[23],水稻、玉米、大豆、楊樹、苜蓿等甚至苔蘚和藻類中都發(fā)現(xiàn)了CLE基因[31-32]。水稻FLORAL ORGAN NUMBER1(FON1)是CLV1同源基因,其突變體表型為分生組織的擴(kuò)大和花器官數(shù)量的增多。FON2和FCP1(FON2-LIKE CLE PROTEIN1)是CLV3的同源基因,其中FON2和FON1共同發(fā)揮維持SAM和花序分生組織的功能,F(xiàn)CP1在SAM和RAM中發(fā)揮維持分生組織細(xì)胞分裂的功能。水稻FON2和FCP1在功能上已產(chǎn)生分化,分別調(diào)控不同的分生組織行為。玉米的CLV1和CLV2同源基因是THICK TASSEL DWARF1(TD1)和FASCIATED EAR2(FEA2)。玉米中這2個(gè)基因的缺失對(duì)分生組織維持和花器官數(shù)量都沒有影響,表達(dá)分析顯示TD1沒有在分生組織中表達(dá)[26]。這說(shuō)明CLE基因在單子葉植物分生組織中也發(fā)揮作用,但信號(hào)機(jī)制和功能已經(jīng)發(fā)生變化。這種功能變化在雙子葉植物中也同樣存在:苜蓿SUPERNUMERIC NODULES(SUNN)和百脈根HYPERNOD-ULATION ABERRANT ROOT 1(HAR1)是CLV1的同源基因,其功能不是維持分生組織而是促進(jìn)根瘤形成。這2個(gè)基因的突變體表型都是根瘤數(shù)量增加,分生組織沒有變化[32]。
5 KNOX基因家族和植物激素對(duì)SAM活動(dòng)的調(diào)控作用
SHOOT MERISTEMLESS(STM)是獨(dú)立于WUS/CLV3途徑在SAM干細(xì)胞維持中發(fā)揮重要功能的轉(zhuǎn)錄因子,編碼Class I KNOX(knotted1-like homeobox)家族的蛋白[33]。STM在分生組織的各個(gè)部位表達(dá),發(fā)揮抑制細(xì)胞分化的作用[34]。SAM中STM和WUS的作用互補(bǔ):STM阻止細(xì)胞分化,WUS使一部分細(xì)胞特化為干細(xì)胞。STM和WUS的共同作用保持著SAM中干細(xì)胞增殖和器官原基形成的平衡,是維持SAM正?;顒?dòng)的重要保證[35]。
植物生長(zhǎng)調(diào)節(jié)物質(zhì)中的生長(zhǎng)素和分裂素在植物莖尖、根尖中作用相反。細(xì)胞分裂素在促進(jìn)莖尖中細(xì)胞分裂的同時(shí)也促進(jìn)根尖中細(xì)胞的分化;生長(zhǎng)素促進(jìn)根尖中細(xì)胞分裂和莖尖中細(xì)胞分化。SAM中周圍區(qū)域高水平的生長(zhǎng)素和赤霉素(GA)與側(cè)生器官原基的生長(zhǎng)點(diǎn)緊密相連。高水平的細(xì)胞分裂素(CK)主要集中在SAM的中央?yún)^(qū)域中,促進(jìn)干細(xì)胞分裂和維持脫分化狀態(tài)[36]。SAM中STM所屬的KNOX轉(zhuǎn)錄因子家族基因發(fā)揮促進(jìn)細(xì)胞分裂素積累和抑制赤霉素積累的作用。這2種植物激素積累分別可以促進(jìn)細(xì)胞分裂和阻止細(xì)胞分化。KNOX通過抑制GA20氧化酶活性和刺激GA2氧化酶活性這2個(gè)單獨(dú)的過程阻止赤霉素在SAM的中心區(qū)域積累。KNOX基因能夠促進(jìn)葉原基基部GA2氧化酶的表達(dá)使赤霉素失活,將激活型赤霉素限制在葉原基中,因此KNOX基因通過阻止赤霉素在SAM中心區(qū)域積累而抑制干細(xì)胞分化[37]。
細(xì)胞分裂素信號(hào)可以促進(jìn)A型反應(yīng)調(diào)節(jié)因子ARABIDOPSIS RESPONSE REGULATORS(ARRs)基因的轉(zhuǎn)錄,二者之間形成一個(gè)負(fù)反饋調(diào)節(jié)系統(tǒng)。WUS直接抑制細(xì)胞分裂素應(yīng)答調(diào)控因子ARR7在SAM中的表達(dá),以一種非常精確的方式控制細(xì)胞分裂。玉米A型反應(yīng)調(diào)節(jié)因子ABPHYL1基因在葉原基基部表達(dá),對(duì)葉片發(fā)育過程中的細(xì)胞分裂素應(yīng)答起到緩沖作用。水稻LONELY GUY(LOG)基因編碼產(chǎn)物可將失活性細(xì)胞分裂素轉(zhuǎn)變?yōu)榧せ钚图?xì)胞分裂素[38],該基因在SAM頂端干細(xì)胞部位特異性表達(dá)。擬南芥中已經(jīng)克隆出LOG同源基因,已經(jīng)證明該基因和LOG具有相似的表達(dá)模式[6]。
SAM的周圍區(qū)域(PZ)中,干細(xì)胞和器官發(fā)生處于一種平衡狀態(tài)。KNOX和促進(jìn)葉器官形成的轉(zhuǎn)錄因子ASYMMETRIC LEAVES相互作用維持著這種平衡狀態(tài)。ASYMMETRIC LEAVES1(AS1)屬于MYB家族的轉(zhuǎn)錄因子,AS2是植物特有的LATERAL ORGAN BOUNDARY DOMAIN(LBD)基因家族成員。AS1/2在葉原基形成過程中表達(dá),對(duì)BP、KNAT2和KNAT6表達(dá)起到抑制作用。除擬南芥外,在玉米和金魚草中也發(fā)現(xiàn)了相似的基因互作模式[39]。葉原基中的表觀遺傳調(diào)控由GENERAL TRANSCRIPTION FACTOR GROUP E6(GTE6)實(shí)現(xiàn),該蛋白直接調(diào)控AS1表達(dá)。組蛋白H3/H4的蛋白伴侶可以和AS1/2蛋白結(jié)合形成染色體重塑復(fù)合物抑制側(cè)生器官原基中KNOX基因的表達(dá)。as1/2突變體中KNOX基因的異位表達(dá)可以在葉片中形成分生組織[34,37],因此KNOX的準(zhǔn)確表達(dá)是影響葉正常發(fā)育的重要因素。
6 展望
SAM的調(diào)控信號(hào)網(wǎng)絡(luò)十分復(fù)雜,其中包含許多調(diào)控因子和相互交叉的調(diào)控途徑。如果將已有的互作網(wǎng)絡(luò)繪制成一個(gè)調(diào)控模型,可以看出WUS位于該模型的中心,是SAM中干細(xì)胞調(diào)控的主要調(diào)控因子。同樣,KNOX調(diào)控途徑可以認(rèn)為是控制分化的中心調(diào)控途徑。WUS/CLV3和STM/KNOX途徑在維持SAM正常功能方面共同起決定性作用。而STM/KNOX途徑和WUS/CLV3途徑又通過植物激素相互作用,保證SAM頂端處于一個(gè)高細(xì)胞分裂素低赤霉素的環(huán)境。與WUS/CLV3同時(shí)存在的其他反饋調(diào)節(jié)途徑也在SAM中發(fā)揮重要作用,它們通過負(fù)反饋調(diào)節(jié)功能共同維持干細(xì)胞內(nèi)環(huán)境穩(wěn)定。
可以從2個(gè)角度去理解為何植物SAM調(diào)控需要大量的調(diào)控因子參與。一是必須有大量的功能冗余因子存在,保證某個(gè)因子功能喪失時(shí)同樣可以維持SAM正?;顒?dòng);二是持續(xù)形成干細(xì)胞保證形態(tài)建成的過程需要許多信號(hào)系統(tǒng)進(jìn)行輔助調(diào)節(jié)以維持分裂分化平衡。對(duì)參與SAM調(diào)控的因子進(jìn)行詳細(xì)的時(shí)空動(dòng)態(tài)表達(dá)分析,可以對(duì)干細(xì)胞增殖和分化行為進(jìn)行詳細(xì)說(shuō)明,同時(shí)可以對(duì)已知途徑進(jìn)行修正,而不同途徑的相互聯(lián)系則需要更多的證據(jù)進(jìn)行補(bǔ)充。
參考文獻(xiàn):
[1]Haecker A,Laux T. Cell-cell signaling in the shoot meristem[J]. Current Opinion in Plant Biology,2001,4(5):441-446.
[2]Laux T,Mayer K,Berger J,et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development,1996,122(1):87-96.
[3]Weigel D,Jürgens G. Stem cells that make stems[J]. Nature,2002,415(6873):751-754.
[4]Williams L,F(xiàn)letcher J C. Stem cell regulation in the Arabidopsis shoot apical meristem[J]. Current Opinion in Plant Biology,2005,8(6):582-586.
[5]Kim C,Liu L,Kim J. Signaling network for stem cell maintenance and functioning in Arabidopsis shoot apical meristem[J]. Journal of Plant Biology,2007,50(3):274-281.
[6]Yadav R K,Girke T,Pasala S,et al. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche[J]. Proceedings of the National Academy of Sciences,2009,106(12):4941-4946.
[7]Venugopala R G. Live-imaging stem-cell homeostasis in the Arabidopsis shoot apex[J]. Current Opinion in Plant Biology,2008,11(1):88-93.
[8]Schoof H,Lenhard M,Haecker A,et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell,2000,100(6):635-644.
[9]Reddy G V,Meyerowitz E M. Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex[J]. Science Signaling,2005,310(5748):663.
[10]Burle I,Laux T. Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem[J]. The Plant Cell Online,2005,17(8):2271-2280.
[11]Saiga S,F(xiàn)urumizu C,Yokoyama R,et al. The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance[J]. Development,2008,135(10):1751-1759.
[12]Shen W H,Xu L. Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana[J]. Molecular Plant,2009,2(4):600-609.
[13]Long J A,Moan E I,Medford J I,et al. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis[J]. Nature,1996,379(6560):66-69.
[14]Han P,Li Q,Zhu Y X. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center[J]. The Plant Cell Online,2008,20(6):1482-1493.
[15]Kim Y S,Kim S G,Lee M,et al. HD-ZIP Ⅲ activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development[J]. The Plant Cell Online,2008,20(4):920-933.
[16]Prigge M J,Clark S E. Evolution of the class Ⅲ HD-Zip gene family in land plants[J]. Evolution & Development,2006,8(4):350-361.
[17]Wurschum T,Groβ-Hardt R,Laux T. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem[J]. Science Signaling,2006,18(2):295.
[18]Casson S A,Topping J F,Lindsey K. MERISTEM‐DEFECTIVE,an RS domain protein,is required for the correct meristem patterning and function in Arabidopsis[J]. The Plant Journal,2009,57(5):857-869.
[19]Zhao Y,Medrano L,Ohashi K,et al. HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis[J]. The Plant Cell Online,2004,16(10):2586-2600.
[20]Zhu H,Hu F,Wang R,et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell,2011,145(2):242-256.
[21]Jung J H,Park C M. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis[J]. Planta,2007,225(6):1327-1338.
[22]Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem[J]. Developmental Biology,2009,336(1):1-9.
[23]Ohyama K,Shinohara H,Ogawa-Ohnishi M,et al. A glycopeptide regulating stem cell fate in Arabidopsis thaliana[J]. Nature Chemical Biology,2009,5(8):578-580.
[24]Miwa H,Kinoshita A,F(xiàn)ukuda H,et al. Plant meristems:CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem[J]. Journal of Plant Research,2009,122(1):31-39.
[25]Sawa S,Kinoshita A,Betsuyaku S,et al. A large family of genes that share homology with CLE domain in Arabidopsis and rice[J]. Plant Signaling & Behavior,2008,3(5):337.
[26]Yamamoto E,Karakaya H C,Knap H T. Molecular characterization of two soybean homologs of Arabidopsis thaliana CLAVATA1 from the wild type and fasciation mutant[J]. Biochimica et Biophysica Acta-Gene Structure and Expression,2000,1491(1):333-340.
[27]Reinhardt D,F(xiàn)renz M,Mandel T,et al. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem[J]. Development,2003,130(17):4073-4083.
[28]Stuurman J,Jggi F,Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells[J]. Genes & Development,2002,16(17):2213-2218.
[29]Tan F C,Swain S M. Functional characterization of AP3,SOC1 and WUS homologues from citrus(Citrus sinensis)[J]. Physiologia Plantarum,2007,131(3):481-495.
[30]Nardmann J,Reisewitz P,Werr W. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms[J]. Molecular Biology and Evolution,2009,26(8):1745-1755.
[31]Hake S. The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize[J]. Genetics,2009,181(4):1693-1697.
[32]Elise S,Etienne-Pascal J,de Fernanda C N,et al. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length[J]. Plant Molecular Biology,2005,58(6):809-822.
[33]Gallois J L,Woodward C,Reddy G V,et al. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis[J]. Development,2002,129(13):3207-3217.
[34]Veit B. Hormone mediated regulation of the shoot apical meristem[J]. Plant Molecular Biology,2009,69(4):397-408.
[35]Kurakawa T,Ueda N,Maekawa M,et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature,2007,445(7128):652-655.
[36]Su Y H,Liu Y B,Zhang X S. Auxin-cytokinin interaction regulates meristem development[J]. Molecular Plant,2011,4(4):616-625.
[37]Bleckmann A,Simon R. Interdomain signaling in stem cell maintenance of plant shoot meristems[J]. Molecules and Cells,2009,27(6):615-620.
[38]Byrne M E,Simorowski J,Martienssen R A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis[J]. Development,2002,129(8):1957-1965.
[39]Byrne M E,Barley R,Curtis M,et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis[J]. Nature,2000,408(6815):967-971.
[21]Jung J H,Park C M. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis[J]. Planta,2007,225(6):1327-1338.
[22]Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem[J]. Developmental Biology,2009,336(1):1-9.
[23]Ohyama K,Shinohara H,Ogawa-Ohnishi M,et al. A glycopeptide regulating stem cell fate in Arabidopsis thaliana[J]. Nature Chemical Biology,2009,5(8):578-580.
[24]Miwa H,Kinoshita A,F(xiàn)ukuda H,et al. Plant meristems:CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem[J]. Journal of Plant Research,2009,122(1):31-39.
[25]Sawa S,Kinoshita A,Betsuyaku S,et al. A large family of genes that share homology with CLE domain in Arabidopsis and rice[J]. Plant Signaling & Behavior,2008,3(5):337.
[26]Yamamoto E,Karakaya H C,Knap H T. Molecular characterization of two soybean homologs of Arabidopsis thaliana CLAVATA1 from the wild type and fasciation mutant[J]. Biochimica et Biophysica Acta-Gene Structure and Expression,2000,1491(1):333-340.
[27]Reinhardt D,F(xiàn)renz M,Mandel T,et al. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem[J]. Development,2003,130(17):4073-4083.
[28]Stuurman J,Jggi F,Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells[J]. Genes & Development,2002,16(17):2213-2218.
[29]Tan F C,Swain S M. Functional characterization of AP3,SOC1 and WUS homologues from citrus(Citrus sinensis)[J]. Physiologia Plantarum,2007,131(3):481-495.
[30]Nardmann J,Reisewitz P,Werr W. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms[J]. Molecular Biology and Evolution,2009,26(8):1745-1755.
[31]Hake S. The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize[J]. Genetics,2009,181(4):1693-1697.
[32]Elise S,Etienne-Pascal J,de Fernanda C N,et al. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length[J]. Plant Molecular Biology,2005,58(6):809-822.
[33]Gallois J L,Woodward C,Reddy G V,et al. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis[J]. Development,2002,129(13):3207-3217.
[34]Veit B. Hormone mediated regulation of the shoot apical meristem[J]. Plant Molecular Biology,2009,69(4):397-408.
[35]Kurakawa T,Ueda N,Maekawa M,et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature,2007,445(7128):652-655.
[36]Su Y H,Liu Y B,Zhang X S. Auxin-cytokinin interaction regulates meristem development[J]. Molecular Plant,2011,4(4):616-625.
[37]Bleckmann A,Simon R. Interdomain signaling in stem cell maintenance of plant shoot meristems[J]. Molecules and Cells,2009,27(6):615-620.
[38]Byrne M E,Simorowski J,Martienssen R A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis[J]. Development,2002,129(8):1957-1965.
[39]Byrne M E,Barley R,Curtis M,et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis[J]. Nature,2000,408(6815):967-971.
[21]Jung J H,Park C M. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis[J]. Planta,2007,225(6):1327-1338.
[22]Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem[J]. Developmental Biology,2009,336(1):1-9.
[23]Ohyama K,Shinohara H,Ogawa-Ohnishi M,et al. A glycopeptide regulating stem cell fate in Arabidopsis thaliana[J]. Nature Chemical Biology,2009,5(8):578-580.
[24]Miwa H,Kinoshita A,F(xiàn)ukuda H,et al. Plant meristems:CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem[J]. Journal of Plant Research,2009,122(1):31-39.
[25]Sawa S,Kinoshita A,Betsuyaku S,et al. A large family of genes that share homology with CLE domain in Arabidopsis and rice[J]. Plant Signaling & Behavior,2008,3(5):337.
[26]Yamamoto E,Karakaya H C,Knap H T. Molecular characterization of two soybean homologs of Arabidopsis thaliana CLAVATA1 from the wild type and fasciation mutant[J]. Biochimica et Biophysica Acta-Gene Structure and Expression,2000,1491(1):333-340.
[27]Reinhardt D,F(xiàn)renz M,Mandel T,et al. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem[J]. Development,2003,130(17):4073-4083.
[28]Stuurman J,Jggi F,Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells[J]. Genes & Development,2002,16(17):2213-2218.
[29]Tan F C,Swain S M. Functional characterization of AP3,SOC1 and WUS homologues from citrus(Citrus sinensis)[J]. Physiologia Plantarum,2007,131(3):481-495.
[30]Nardmann J,Reisewitz P,Werr W. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms[J]. Molecular Biology and Evolution,2009,26(8):1745-1755.
[31]Hake S. The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize[J]. Genetics,2009,181(4):1693-1697.
[32]Elise S,Etienne-Pascal J,de Fernanda C N,et al. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length[J]. Plant Molecular Biology,2005,58(6):809-822.
[33]Gallois J L,Woodward C,Reddy G V,et al. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis[J]. Development,2002,129(13):3207-3217.
[34]Veit B. Hormone mediated regulation of the shoot apical meristem[J]. Plant Molecular Biology,2009,69(4):397-408.
[35]Kurakawa T,Ueda N,Maekawa M,et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature,2007,445(7128):652-655.
[36]Su Y H,Liu Y B,Zhang X S. Auxin-cytokinin interaction regulates meristem development[J]. Molecular Plant,2011,4(4):616-625.
[37]Bleckmann A,Simon R. Interdomain signaling in stem cell maintenance of plant shoot meristems[J]. Molecules and Cells,2009,27(6):615-620.
[38]Byrne M E,Simorowski J,Martienssen R A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis[J]. Development,2002,129(8):1957-1965.
[39]Byrne M E,Barley R,Curtis M,et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis[J]. Nature,2000,408(6815):967-971.