亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        小粒野生稻導(dǎo)入系子粒大小和形狀的QTL定位

        2014-10-20 11:10:08劉開強等
        湖北農(nóng)業(yè)科學(xué) 2014年16期

        劉開強等

        摘要:通過AB-QTL分析法,應(yīng)用Windows QTL Cartographer 2.5軟件,于2009~2010年分別在武昌和南寧對一套小粒野生稻(Oryza minuta)導(dǎo)入系的子粒大小、粒長、粒寬與子粒長寬比進行QTL定位。2009年檢測到18個QTLs,其中千粒重、粒長、粒寬和子粒長寬比分別檢測到6、4、5和3個QTLs,單個QTL可解釋表型貢獻率的5.18%~21.33%;2010年檢測到12個QTLs,其中千粒重、粒長、粒寬和子粒長寬比分別檢測到6、2、2和2個QTLs,單個QTL可解釋表型貢獻率的6.68%~16.55%。兩年均檢測到的QTLs共有10個,其中4個新鑒定的QTLs的表型貢獻率較大,分別為qTGW-9.2、qTGW-12、qGL-9和qGW-12,其增效基因均來自于小粒野生稻。這些攜帶有利QTL的小粒野生稻導(dǎo)入系是進行水稻(Oryza sativa)產(chǎn)量和品質(zhì)改良的優(yōu)良材料。

        關(guān)鍵詞:小粒野生稻(Oryza minuta);導(dǎo)入系;子粒大小;粒形;QTL定位

        中圖分類號:Q78 文獻標識碼:A 文章編號:0439-8114(2014)16-3731-05

        Abstract: Quantitative trait loci of grain size and shape were mapped with substitution lines from Oryza minuta with software Windows QTL Cartographer 2.5 in Wuchang and Nanning in 2009 and 2010. In 2009,18 QTLs were identified,among which 6, 4, 5 and 3 QTLs were detected for grain size,grain length,grain width and grain length/grain width, respectively. The phenotypic contribution rate explained by individual QTLs was ranged from 5.18% to 21.33%; In 2010,12 QTLs were identified,among which 6, 2, 2 and 2 QTLs were detected for grain size,grain length, grain width and grain length/grain width, respectively. The phenotypic contribution rate explained by individual QTLs was ranged from 6.68% to 16.55%. A total of 10 QTLs were detected in both two years, among which 4 QTLs newly detected have large phenotypic contribution rate explained by individual QTLs, named as qTGW-9.2, qTGW-12, qGL-9 and qGW-12, with efficiency genes from Oryza minuta. These substitution lines carrying favorable QTLs were elite materials for improving rice yield and quality.

        Key words: Oryza minuta; substitution line; grain size; grain shape; QTL mapping

        水稻(Oryza sativa)是重要的糧食作物,是全球一半以上人口主要的食物和營養(yǎng)來源。高產(chǎn)、優(yōu)質(zhì)一直是水稻的遺傳與育種研究的關(guān)鍵所在。不斷提高水稻產(chǎn)量和品質(zhì),是保障我國農(nóng)業(yè)可持續(xù)發(fā)展的重要條件。子粒大小是水稻產(chǎn)量的主要構(gòu)成因子之一,不僅與水稻的產(chǎn)量顯著正相關(guān),還嚴重影響稻米的品質(zhì);粒形(粒長、粒寬及子粒長寬比)直接決定稻米的外觀品質(zhì)和加工品質(zhì),因此發(fā)掘水稻子粒大小和粒形的關(guān)鍵基因,獲得具有自主知識產(chǎn)權(quán)的高產(chǎn)、優(yōu)質(zhì)基因,對培育高產(chǎn)、優(yōu)質(zhì)水稻新品種具有重要意義。

        目前,已克隆了水稻中幾個影響子粒大小和形狀的數(shù)量性狀基因座(Quantitative trait loci, QTL)。如控制水稻粒長和粒重的QTL GS3(Grain Size 3),編碼了一個預(yù)測的膜蛋白[1]。GS3通過抑制細胞分裂,調(diào)控水稻粒長和粒重[1,2]。GS3在水稻中的同源基因DEP1(Dense and Erect Panicle)影響種子的密度和穗型,同時也調(diào)控了粒長[3,4]。最近報道的控制粒長的QTL qGL3,編碼了一個預(yù)測的磷酸酶蛋白(OsPPKL1),通過抑制細胞分裂,調(diào)控粒長和粒重[5,6]。qGL3能夠使Cyclin-T1;3基因去磷酸化,從而導(dǎo)致子粒變小[5]。因此,qGL3可能通過對Cyclin-T1;3基因進行調(diào)控間接控制細胞分裂,從而影響粒長和粒重。目前已克隆了幾個影響水稻粒寬的QTLs。其中QTL GW2編碼了一個E3泛素連接酶,可能參與降解促進細胞分裂的蛋白,從而負調(diào)控水稻粒寬、粒重及產(chǎn)量[7]。另外QTL qSW5/GW5編碼了一個未知功能蛋白,能夠結(jié)合多聚泛素(polyubiquitin)[8,9],表明GW5可能參與蛋白質(zhì)的降解途徑。GW2和GW5的研究結(jié)果表明泛素或蛋白質(zhì)降解途徑在子粒大小和重量調(diào)控中起著關(guān)鍵作用。QTL GS5編碼了一個預(yù)測的絲氨酸羧肽酶(serine carboxypeptidase),是粒寬和粒重的正調(diào)控因子。GS5過量表達導(dǎo)致子粒變大,而T-DNA插入的gs5突變體導(dǎo)致子粒變小[10]。GS5主要是通過促進細胞分裂影響水稻粒寬和粒重。GW8編碼了SPL16轉(zhuǎn)錄因子,通過促進細胞分裂調(diào)控粒寬[11]。

        目前,我國在水稻產(chǎn)量(粒重等)基因克隆研究方面取得了長足發(fā)展,已克隆的調(diào)控子粒大小與重量的基因大多已在水稻育種中得到廣泛應(yīng)用。例如,南方秈稻品種主要利用GS3的缺失功能等位基因[1,2],而北方粳稻主要利用GS3的同源基因DEP1[3,4]。因此,為了進一步提高我國水稻產(chǎn)量,需要發(fā)掘新的調(diào)控水稻子粒大小與重量等高產(chǎn)性狀的關(guān)鍵基因,在現(xiàn)有品種的基礎(chǔ)上通過遺傳改良提高水稻產(chǎn)量。

        四倍體小粒野生稻(Oryza minuta)擁有多種病蟲害抗性,品質(zhì)優(yōu)良,是優(yōu)異的種質(zhì)資源[12]。在前期的研究中,從國際水稻所引進了小粒野生稻種質(zhì)資源,通過多年鑒定發(fā)現(xiàn)其稻米品質(zhì)優(yōu)良。因此構(gòu)建了一套小粒野生稻導(dǎo)入系[13],期望利用其發(fā)掘?qū)υ耘嗟居欣膬?yōu)質(zhì)基因。本研究采用AB-QTL(Advanced backcross quantitative trait loci,AB-QTL)分析法對小粒野生稻導(dǎo)入系群體進行子粒大小和粒形的QTL分析,希望從小粒野生稻中發(fā)掘?qū)υ耘嗟居欣淖恿4笮『土P蜵TL,獲得有利的QTL連鎖標記,以期為培育高產(chǎn)、優(yōu)質(zhì)水稻新品種提供實踐依據(jù)和重要基因資源。

        1 材料與方法

        1.1 試驗材料

        本研究供試材料是前期的研究工作中以小粒野生稻(國際水稻研究所種質(zhì)資源庫材料,編號Acc.No.101133)為供體親本,IR24為受體親本,構(gòu)建的一套包括216個株系的小粒野生稻導(dǎo)入系[13]。2009年夏季在華中農(nóng)業(yè)大學(xué)水稻試驗基地(湖北武漢),2010年春季在廣西農(nóng)業(yè)科學(xué)院水稻研究所(廣西南寧),分別種植216份BC4F2株系群體和IR24,每點設(shè)兩次重復(fù),按隨機區(qū)組設(shè)計,每個小區(qū)3行,每行10株,種植密度為16.5 cm×18.9 cm,選取中間8株考察千粒重(TGW)、粒長(GL)、粒寬(GW)、子粒長寬比(GL/GW)4個性狀。分析數(shù)據(jù)取8個單株的平均值。

        1.2 性狀的相關(guān)分析

        各性狀間的相關(guān)分析在Excel軟件中完成,數(shù)據(jù)為每點兩次重復(fù)的平均值。

        1.3 SSR分析

        提取216份導(dǎo)入系的DNA,獲得其基因型。DNA的提取、PCR反應(yīng)、電泳和銀染檢測的方法均參照文獻[13]。

        1.4 QTL分析

        前期已構(gòu)建了164個標記,覆蓋水稻基因組1 671.7 cM的遺傳連鎖圖[13]。QTL分析均采用Windows QTL Cartographer 2.5 軟件[14],先應(yīng)用復(fù)合區(qū)間作圖法(composite interval mapping, CIM)分析,挑選LOD>3.0的QTL,然后應(yīng)用多區(qū)間作圖法(Multiple interval mapping, MIM) 對這些QTL進行驗證。隨后優(yōu)化各個QTL 的位置,再檢測其顯著性,并確定其存在。QTL的命名方法按照Mccouch等[15]的命名原則進行。

        2 結(jié)果與分析

        2.1 導(dǎo)入系及親本性狀的表現(xiàn)

        對導(dǎo)入系群體(BC4F2)的4個農(nóng)藝性狀進行考察分析,所獲數(shù)據(jù)基本呈連續(xù)分布狀態(tài)且有廣泛分布頻率,為多基因控制的數(shù)量性狀。由表l可見,導(dǎo)入系千粒重、粒長和子粒長寬比的平均值雖介于兩親本值中間,但偏向高值親本IR24;粒寬的平均值高于高值親本IR24。

        2.2 導(dǎo)入系各性狀間的相關(guān)性分析

        由表2可見,千粒重與粒長、粒寬呈極顯著正相關(guān),但與子粒長寬比呈顯著負相關(guān)。粒長與子粒長寬比呈極顯著正相關(guān),而與粒寬呈顯著負相關(guān);粒寬與子粒長寬比呈極顯著負相關(guān)。

        2.3 導(dǎo)入系各性狀的QTL定位分析

        由排列測驗1 000次(permutation=1 000,P=0.05)確定各性狀的LOD閾值,結(jié)果表明在武漢和南寧其平均值均接近3.0。在相應(yīng)的閾值下對各性狀進行了分析,共檢測到20個QTLs,這些QTLs的表型貢獻率介于5.18%~21.33%(表3)。由于所有性狀受環(huán)境的影響較大,對兩地的各性狀數(shù)據(jù)分別進行了定位分析如表3所示,由表3可知在武漢共檢測到18個QTLs,其中有8個來自于小粒野生稻,占44.4%;在南寧共檢測到12個QTLs,其中來自于小粒野生稻的有利QTLs為7個,占58.3%。

        千粒重(TGW):8個控制千粒重的QTLs分別位于第1、3、7、9、12染色體,其中,第1、7、9染色體上有2個,第3和12染色體上各有1個。在武漢和南寧分別能解釋總共62.97%和67.37%的表型變異。位于第12染色體上的qTGW-12效應(yīng)最大,在武漢和南寧分別能解釋15.41%和16.55%的表型變異,其增效基因來自于小粒野生稻。

        粒長(GL):4個控制粒長的QTLs分別位于第3、5、9染色體,其中,第3染色體上有2個,第5和9染色體上各有1個。在武漢和南寧分別能解釋44.07%和21.11%的表型變異。位于第9染色體上的qGL-9效應(yīng)最大,能解釋18.28%的變異,其增效基因來自于小粒野生稻。

        粒寬(GW):5個控制粒寬的QTLs分別位于第1、4、7、12染色體,其中,第1染色體上有2個,第4、7和12染色體上各有1個。在武漢和南寧分別能解釋48.33%和22.66%的表型變異。位于第12染色體上的qGW-12效應(yīng)最大,能解釋25.33%的表型變異,其增效基因來自于小粒野生稻。

        子粒長寬比(GL/GW):3個控制子粒長寬比的QTLs分別位于第4、7、12染色體,在武漢和南寧分別能解釋25.44%和19.00%的表型變異。位于第7染色體上的qGL/GW-7效應(yīng)最大,能解釋11.26%的表型變異,其增效基因來自于IR24。

        3 討論

        同栽培稻相比,野生稻基因組中與產(chǎn)量有關(guān)的不利基因出現(xiàn)的頻率遠遠高于栽培稻。Xiao等[16]利用AB-QTL策略來檢測普通野生稻中有利于改良栽培稻性狀的QTL。對12個性狀進行QTL定位。一共定位了68個QTLs,其中35個(占51.0%)有利等位基因來自表型較差的普通野生稻親本。隨后不同研究者利用相同方法檢測到來自于普通野生稻的有利QTLs占33.0%~74.0%[17-19]。Yoon等[20]應(yīng)用至少含有51個重穎野生稻片段的中間材料與一份韓國粳稻品種雜交獲得的F2∶3家系,對13個農(nóng)藝性狀進行了QTLs分析,共檢測到39個的QTLs,正效的QTLs有18(46.2%)個來自于重穎野生稻。Rahman等[21]應(yīng)用至少含有14個小粒野生稻片段的中間材料與一份韓國粳稻品種雜交獲得的F2∶3家系,對16個農(nóng)藝性狀進行QTLs分析,共檢測到36個QTLs,其中有22個與產(chǎn)量及產(chǎn)量相關(guān)性狀的QTLs為首次報道。其中來自于小粒野生稻正效QTLs占57.0%。

        通過以上分析可見,總體而言野生稻中不利基因出現(xiàn)頻率高,但在性狀之間存在差異,因而在利用野生稻資源時應(yīng)視具體性狀而論。另外,不同染色體出現(xiàn)有利基因的頻率也存在差異。本研究共檢測到20個QTLs,其中來自于小粒野生稻的有利QTLs有9個,占45.0%,分布在1、7、9和12條染色體上,有利基因出現(xiàn)在第9和12染色體上頻率最高。

        本研究檢測到的QTLs與其他群體定位的QTLs結(jié)果進行比較,發(fā)現(xiàn)許多QTLs是重疊或相同的(表3),其中部分為首次報道。在被檢測到的20個QTLs中,有10個為首次報道。共定位到8個控制千粒重的QTLs,其中4個早前已有報道,分別為qTGW-1.1、qTGW-1.2[22]、qTGW-3[17]、qTGW-9.1[18]。4個新的QTLs分別為qTGW-7.1、qTGW-7.2、qTGW-9.2和qTGW-12,其中qTGW-7.2僅在武漢被檢測到,qTGW-7.1僅在南寧被檢測到,其增效基因分別來自小粒野生稻和IR24。而qTGW-9.2和qTGW-12在兩地均被檢測到,且表型貢獻率較大,其增效基因都來自小粒野生稻。3個粒型性狀共檢測到12個QTLs,其中6個為已有報道,分別為qGW-1.1、qGW-1.2[22]、qGL-3.1、qGW-7[23]、qGL-3.2[17]、qGL-5[24]。而qGL-9、qGW-4、qGW-12、qGL/GW-4、qGL/GW-7、qGL/GW-12均為首次報道。其中表型貢獻率較大的有2個分別為qGL-9和qGW-12,在武昌和南寧均被檢測到,表型貢獻率的平均值分別為14.26%和17.32%,增效基因均來自小粒野生稻。

        另外,本研究中的4個性狀均檢測到來自小粒野生稻的正效QTLs,對水稻的產(chǎn)量和品質(zhì)具有改良潛力。這些來自小粒野生稻的正效QTLs存在的形式多種多樣,有的單獨存在,有的處于多效QTLs區(qū)間呈簇狀分布。因此針對不同QTLs的特點,在進一步利用時必須采取不同的方法區(qū)別對待。對一些控制單一性狀的QTLs位點,可以直接利用。如第5染色體上RM548~RM509標記區(qū)間檢測到控制粒長的QTLs。而對于多效性的QTLs,由于控制多個性狀,所以在利用時應(yīng)多個性狀相互兼顧。如第9染色體上RM215~RM205標記區(qū)間檢測到控制千粒重和粒長的QTLs,在增加粒重的同時增加粒長,很可能將高產(chǎn)與優(yōu)質(zhì)相結(jié)合。而對第12染色體上RM19~RM512標記區(qū)間檢測到一個控制千粒重和粒寬的QTLs,在增加產(chǎn)量的同時,粒寬也增加,很可能對稻米品質(zhì)產(chǎn)生負效應(yīng),在利用時應(yīng)綜合考慮。

        參考文獻:

        [1] FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112:1164-1171.

        [2] MAO H, SUN S, YAO J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. PNAS,2010,107:19579-19584.

        [3] HUANG X, QIAN Q, LIU Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat Genet, 2009,41:494-497.

        [4] ZHOU Y, ZHU J, LI Z, et al. Deletion in a Quantitative Trait Gene qPE9-1 Associated With Panicle Erectness Improves Plant Architecture During Rice Domestication[J]. Genetics,2009,183:315-324.

        [5] QI P, LIN Y, SONG X, et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1; 3[J]. Cell Res,2012,22:1666-1680.

        [6] ZHANG X, WANG J, HUANG J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. PNAS,2012,109:21534-21539.

        [7] SONG X, HUANG W, SHI M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet,2007,39:623-630.

        [8] SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nat Genet, 2008,40:1023-1028.

        [9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

        [10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

        [11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

        [12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

        [13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

        [14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

        [15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

        [16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

        [17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

        [18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

        [19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

        [20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

        [21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

        [22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

        [23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

        [24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

        (責任編輯 韓 雪)

        [9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

        [10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

        [11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

        [12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

        [13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

        [14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

        [15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

        [16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

        [17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

        [18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

        [19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

        [20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

        [21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

        [22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

        [23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

        [24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

        (責任編輯 韓 雪)

        [9] WENG J, GU S, WAN X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008,18:1199-1209.

        [10] LI Y, FAN C, XING Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011,43:1266-1269.

        [11] WANG S, WU K, YUAN Q, et al.. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012,44:950-954.

        [12] KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Mol. Bio,1997,35:25-34.

        [13] GUO S B, QIN F L, ZHANG D P, et al. Characterization of interspecific hybrids and backcross progenies from a cross between Oryza minuta and Oryza sativa[J]. Sci China Ser C-Life Sci, 2009(52):1148-1155.

        [14] WANG S, BASTEN C, ZENG Z. Windows QTL Cartographer 2.5[M]. Department of Statistics, North Carolina State University, Baleigh,USA,2007.

        [15] MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet. Newslett, 1997(14):11-13.

        [16] XIAO J H, LI J M, GRANDILLO S, et al. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909.

        [17] MONCADA P, MARTINEZ C P, BORRERO J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 Population evaluated in a upland environment[J]. Theor. Appl. Genet,2001(102):41-52.

        [18] THOMSON M J, TAI T H, MCCLUNG A M, et al. Mapping quantitative trait loc for yield components and morphological traits in an advanced backcross population between O. rufipogon and the Oryza sativa cultivar Jefferson[J]. Theor Appl. Genet,2003,107:479-493.

        [19] MARRI P R, SARLA N, REDDY L V, et al. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon[J]. BMC Genetics, 2005,33:1-14.

        [20] YOON D B, KANG K H, KIM H J, et al. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseoungbyeo[J]. Theor Appl Genet,2006,112:1052-1062.

        [21] RAHMAN M, CHU S H, CHIO M S, et al. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta[J]. Mol. Cells,2007(24):16-26.

        [22] CHO Y C, SUH J P, CHOI I S, et al.QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon[J]. Treat Crop Res,2003(4):19-29.

        [23] GE X J, XING Y Z, XU C G, et al. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population[J]. Plant Breeding, 2005,124:121-126.

        [24] WAN X Y, WAN J M, JIANG L, et al. QTL analysis for rice grain length and ne mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112: 1258-1270.

        (責任編輯 韓 雪)

        欧美裸体xxxx极品少妇| 亚洲码专区亚洲码专区| 狠狠爱婷婷网五月天久久| 人妻丰满熟妇岳av无码区hd| 内射中出无码护士在线| 日本少妇按摩高潮玩弄| 日韩人妻大奶子生活片| 无码人妻久久久一区二区三区| 免费a级毛片18禁网站app| 中文字幕人妻中文av不卡专区| 在线无码精品秘 在线观看| 青青草视频视频在线观看| 亚洲精品成人无限看| 三上悠亚久久精品| 国产成人综合日韩精品无| 国产乱子伦一区二区三区国色天香| 亚洲精品白浆高清久久久久久| 少妇的肉体k8经典| 国产成人自拍小视频在线| 夜晚黄色福利国产精品 | 99在线精品免费视频九九视| 亚洲国产午夜精品乱码| 日韩中文字幕一区在线| 中文字幕无码中文字幕有码| 国产乱人伦av在线a| 国产精品原创永久在线观看| 日本乱熟人妻中文字幕乱码69| 无码国内精品久久人妻| 精品久久久久久久久免费午夜福利| 视频精品亚洲一区二区| 亚洲中文字幕人妻久久| 精品麻豆国产色欲色欲色欲www| 国产综合第一夜| 日本免费大片一区二区三区 | 四虎影视4hu4虎成人| 亚洲精品成人av一区二区| 日本a级片一区二区三区| 四川丰满妇女毛片四川话| 四虎永久免费影院在线| 最新亚洲视频一区二区| 一本久道综合色婷婷五月|