王瑛+蔣曉東+張璐
文章編號:16742974(2014)04011807
收稿日期:20131030
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(71340003)
作者簡介:王 瑛(1964-),女,湖南漢壽人,湖南大學(xué)副教授
通訊聯(lián)系人,E-mail:wangying31106@163.com
摘 要:針對科技獎勵評價(jià)問題,用標(biāo)準(zhǔn)差系數(shù)改進(jìn)CRITIC法對專家評分進(jìn)行動態(tài)賦權(quán),結(jié)合云模型用逆向云發(fā)生器構(gòu)造模糊評價(jià)矩陣,用虛擬云計(jì)算出評價(jià)項(xiàng)目的期望、熵和超熵,得出評價(jià)結(jié)果并排序.既考慮了科技獎勵評價(jià)過程中專家評分的模糊性和隨機(jī)性,又實(shí)現(xiàn)了定性語言與定量數(shù)值之間的轉(zhuǎn)換,減少了專家主觀因素的干擾,使評價(jià)結(jié)果更加準(zhǔn)確、客觀.
關(guān)鍵詞:云;改進(jìn)的CRITIC法;科技獎勵評價(jià)
中圖分類號:G311 文獻(xiàn)標(biāo)識碼:A
Research on the Evaluation of Science and Technological Awards
Based on Improved CRITIC Method and Cloud Model
WANG Ying,JIANG Xiaodong,ZHANG Lu
(College of Finance and Statistics, Hunan Univ, Changsha, Hunan 410079, China)
Abstract: To address theproblems in the evaluation of science and technology awards, this paper proposed an improved CRITIC method, which was modified by coefficient of standard deviation to carry on the dynamic empowerment. And combined withcloud model, the method used reverse cloud generator to construct a fuzzy evaluation matrix and usedthe virtual cloud to calculate the expectation entropy and hyper entropy of evaluated project to get and sort the evaluation results. This method can consider the fuzziness and the randomness of expert score in the evaluation of science and technology awards, and realize the conversion between the qualitative linguistic and the quantitative numerical value, thus reducing the interference of expert subjective factors and making the results more accurate and objective.
Key words: clouds; improved CRITIC method; the evaluation of science and technology awards
科技獎勵制度是中國科技工作的一個重要組成部分,也是國家促進(jìn)科技創(chuàng)新和發(fā)展的一種舉措,它對于激發(fā)科技工作者的工作積極性,鼓舞科技工作者的創(chuàng)造熱情,促進(jìn)科技工作與經(jīng)濟(jì)發(fā)展相結(jié)合等各方面都有重要作用.如何公正、客觀、有效地評價(jià)科技成果,為指導(dǎo)科技獎勵評價(jià)提供理論和方法依據(jù),顯得尤為重要.因此,研究和完善科學(xué)的科技獎勵評估機(jī)制,并將科學(xué)評價(jià)理論、方法和技術(shù)運(yùn)用到科技獎勵評審工作中成為新時期科技獎勵研究的重點(diǎn)內(nèi)容.
對于科技獎勵綜合評價(jià)方法的探索,不少專家在這方面都進(jìn)行過研究.如:石磊等[1]用模糊決策理論對科技獎勵評價(jià)建立數(shù)學(xué)模型,并探討用該模型進(jìn)行科技獎勵評價(jià)的步驟.李茹等[2]在分析傳統(tǒng)綜合評價(jià)方法的基礎(chǔ)上,將主觀評價(jià)與客觀評價(jià)相整合,提出了一種基于模糊集理論的組合賦權(quán)模糊綜合評價(jià)方法,對項(xiàng)目完成情況進(jìn)行橫向與縱向的比較后采用組合賦權(quán)法進(jìn)行評價(jià).劉業(yè)政等[3]提出根據(jù)專家個體決策與群體決策之間的偏離度計(jì)算專家權(quán)重,并用熵值法計(jì)算屬性權(quán)重,以新的權(quán)重計(jì)算出專家個體決策與群體決策的差異,保證項(xiàng)目評價(jià)的客觀性.張立軍等[4]建立信度系數(shù)分析模型,計(jì)算單個專家評分的信度系數(shù),根據(jù)單個專家對項(xiàng)目的排序與綜合排序之間的一致性,測量專家評議的質(zhì)量.王瑛等[5-7]提出了EBP科技獎勵綜合評價(jià)智能模型、最小二乘支持向量機(jī)模型和基于改進(jìn)DS證據(jù)理論的TOPSIS模型.金聰?shù)泉8]采用定性定量相結(jié)合的方法,將人工神經(jīng)網(wǎng)絡(luò)模型與模糊系統(tǒng)的理論和方法相結(jié)合實(shí)現(xiàn)對科技成果獎勵的智能評審.
湖南大學(xué)學(xué)報(bào)(自然科學(xué)版)2014年
第4期王 瑛等:基于改進(jìn)的CRITIC法和云模型的科技獎勵評價(jià)研究
針對科技獎勵評價(jià)涉及多個指標(biāo)、多個專家、多個項(xiàng)目的特點(diǎn),本文提出了一種新的評價(jià)方法, 采用改進(jìn)的CRITIC法對專家進(jìn)行動態(tài)賦權(quán),結(jié)合云模型對科技獎勵進(jìn)行綜合評價(jià).該方法既考慮了專家動態(tài)權(quán)重,又考慮了指標(biāo)權(quán)重,將專家評分的模糊性和隨機(jī)性相結(jié)合,實(shí)現(xiàn)了定性語言與定量數(shù)值之間的轉(zhuǎn)換,降低了專家評分主觀性影響,使評價(jià)結(jié)果更加科學(xué)、準(zhǔn)確和客觀.
1 基于改進(jìn)CRITIC法的專家動態(tài)權(quán)重
在綜合評價(jià)中,各個專家受其自身知識結(jié)構(gòu)、對評判項(xiàng)目熟悉程度以及個人偏好等因素的影響,對評判項(xiàng)目的評分存在差異,因此,在綜合評價(jià)中有必要考慮到不同專家意見的重要性,有必要對專家賦權(quán).
根據(jù)專家賦權(quán)所考慮的因素劃分,專家賦權(quán)方法可以分為兩類:一類是根據(jù)專家有關(guān)的先驗(yàn)信息為專家賦權(quán),此時賦予的權(quán)重是對專家知識、經(jīng)驗(yàn)、水平等的綜合數(shù)量表示,據(jù)此確定的專家權(quán)重被稱為主觀權(quán)重[9];另一類是根據(jù)專家提供的判斷信息質(zhì)量對專家進(jìn)行賦權(quán),據(jù)此確定的專家權(quán)重被稱為客觀權(quán)重[10].一般情況下,專家的主觀權(quán)重是事先賦予的,不隨專家給出的評判信息的質(zhì)量而改變,故主觀權(quán)重其實(shí)是一種靜態(tài)權(quán)重,而專家的客觀權(quán)重隨其給出的評判信息質(zhì)量改變,因而客觀權(quán)重是動態(tài)的,稱之為專家動態(tài)權(quán)重.本文根據(jù)各個專家對各項(xiàng)目的各項(xiàng)指標(biāo)的評分對專家進(jìn)行動態(tài)賦權(quán).
1.1 CRITIC法的基本原理
CRITIC法是由Diakoulaki于1995年提出的一種新的客觀賦權(quán)方法,它是以特征的對比強(qiáng)度和特征的沖突性兩方面來綜合確定特征的客觀權(quán)重[11].用CRITIC法對專家動態(tài)賦權(quán),對比強(qiáng)度表示同一個項(xiàng)目各專家評分差距的大小,用標(biāo)準(zhǔn)差來表示,標(biāo)準(zhǔn)差的大小表明了各專家評分方案差距的大小,標(biāo)準(zhǔn)差越小說明各專家評分差距越小,所賦權(quán)重應(yīng)越大,反之則越小;沖突性則是用專家評分間的相關(guān)性來衡量,如果2個專家評分之間具有較強(qiáng)的正相關(guān)則說明沖突性較低,所賦權(quán)重應(yīng)較大,反之則越小.
1.2 基于改進(jìn)的CRITIC法的專家動態(tài)權(quán)重
設(shè)有n個評價(jià)項(xiàng)目A1,A2,…,Ai,…,An,m個評價(jià)指標(biāo)P1,P2,…,Pj,…,Pm以及r個評分專家C1,C2,…,Ck,…,Cr,組成評價(jià)指標(biāo)的樣本集xkij如表1所示.
表1 專家評分的原始數(shù)據(jù)
Tab.1 The original data of expert score
C1
…
Cr
P1
P2
…
Pm
…
P1
P2
…
Pm
A1
x111
x112
…
x11m
…
xr11
xr12
…
xr1m
A2
x111
x112
…
x11m
…
xr11
xr12
…
xr1m
An
x1n1
x1n2
…
x1nm
…
xrn1
xrn2
…
xrnm
CRITIC法是用標(biāo)準(zhǔn)差來衡量對比強(qiáng)度絕對變動的方法,用標(biāo)準(zhǔn)差系數(shù)這一相對變動來進(jìn)行改進(jìn)[12],以減少專家評分差異程度的影響.
對于特定評審項(xiàng)目Ai,用f(k)ij表示第k個專家Ck對指標(biāo)Pj評分所包含的信息量和獨(dú)立性的綜合度量,用標(biāo)準(zhǔn)差系數(shù)uij來反映對比強(qiáng)度,用∑rl=1γkl來反映專家Ck與其他專家間的沖突性,其中γkl表示第k個專家與第l個專家之間的相關(guān)系數(shù),則f(k)ij表示為:
f(k)ij=1uij∑rl=1γkl. (1)
式中:uij=σijij,xij=1r∑rk=1x(k)ij,σ2ij=1r∑rk=1(x(k)ij-xij)2.
因此,f(k)ij越大表示第k個專家Ck評分所包含的綜合信息量越多,即該專家的相對重要程度越大,所賦權(quán)重也應(yīng)該越大,所以第k個專家Ck的客觀權(quán)重w(k)ij應(yīng)該為:
w(k)ij=f(k)ij∑rk=1f(k)ij,j=1,2,…,m.(2)
由于專家對每個項(xiàng)目中的每個指標(biāo)的判斷和評分情況都不同,因此對于每個項(xiàng)目中每個指標(biāo)的各位專家的動態(tài)權(quán)重可用以下向量來表示:
Wij=(W1ij,W2ij,…,Wkij,…,Wrij) .
從表1可知,對于特定項(xiàng)目Ai,專家Ck的第j個指標(biāo)值為xkij.專家Ck的第j個指標(biāo)Pj的客觀權(quán)重為w(k)ij,則考慮專家權(quán)重后第j個指標(biāo)Pj的得分可以表示為:
ykij=w(k)ijx(k)ij,i=1,2,…,n.(3)
2 云模型
2.1 云的概念及其數(shù)字特征
云模型由中國李德毅在90年代初期提出的,它是在隨機(jī)數(shù)學(xué)和模糊數(shù)學(xué)的基礎(chǔ)上,用于刻畫語言值隨機(jī)性、模糊性及二者間的關(guān)聯(lián)性的一種方法.云模型綜合考慮了不確定概念的隨機(jī)性和模糊性,實(shí)現(xiàn)了不確定語言與定量數(shù)值之間自然轉(zhuǎn)化[13].
設(shè)U為一論域,U={X},T為與U相聯(lián)系的定性語言,GT(X)是U中的元素X對于T所表達(dá)的定性概念的隸屬度,它是一個具有穩(wěn)定傾向的隨機(jī)數(shù),其在論域上的分布稱為隸屬云,簡稱為云,每個X稱為一個云滴(X,GT(x))[14].GT(X)在[0,1]中取值,云是從論域U到區(qū)間[0,1]的映射,即GT(X):U→[0,1],x∈U,x→GT(X).
云的數(shù)字特征用期望Ex,熵En,超熵He 3個數(shù)值來表征[15],如圖1所示.
云滴
圖1云的數(shù)字特征示意圖
Fig.1 Schematic diagram of the cloud
digital characteristics
期望Ex:云滴在論域空間分布的期望,是論域空間中最能代表定性概率的值,其確定度是1.
熵En:定性概念的不確定性度量,熵既度量了定性概念的亦此亦彼性,又度量了定性概念隨機(jī)性,它反映了論域空間中可被語言值接受云滴的取值范圍,同時代表定性概念云滴的離散程度.
超熵He:熵的不確定性度量,也就是熵的熵,反映了在論域空間代表該語言值的所有點(diǎn)的不確定度的凝聚性.
2.2 云發(fā)生器
云發(fā)生器,即云模型的生成算法,它是構(gòu)造不確定性推理的基礎(chǔ),是建立定性和定量之間相互聯(lián)系、相互依存、量中有性、性中有量的映射關(guān)系.
正向云發(fā)生器是由云的3個數(shù)字特征產(chǎn)生云滴,積累到一定數(shù)量匯聚為云,是從定性到定量的映射,它是一個直接、前向的過程,具體來說是從語言值的定性信息中獲取定量數(shù)據(jù)的范圍及分布規(guī)律.
逆向云發(fā)生器是由云滴產(chǎn)生云的3個數(shù)字特征,是從定量到定性的映射,它是一個間接、逆向的過程,具體來說是將一定數(shù)量的精確數(shù)據(jù)有效轉(zhuǎn)換為恰當(dāng)?shù)亩ㄐ哉Z言(Ex,En,He)表示的概念,并據(jù)此代表這些精確數(shù)據(jù)所反映的云滴的整體,如圖2所示.
圖2 逆向云發(fā)生器
Fig.2 Reverse cloud generator
逆向云發(fā)生器是以統(tǒng)計(jì)理論為基礎(chǔ),其有2種基本運(yùn)算方式:一種是包含確定度信息的運(yùn)算,另一種是不包含確定度信息的運(yùn)算.本文采用不含確定度信息的算法,算法如下[16]:
輸入:樣本點(diǎn)xi,其中i=1,2,…,n.
輸出:這n個云滴所表示的定性概念的數(shù)字特征(Ex,En,He).
算法步驟:
1) 根據(jù)xi計(jì)算樣本均值=1n∑ni=1xi,一階樣本絕對中心距1n∑ni=1xi-,樣本方差S2=1n-1∑ni=1(xi-)2;
2) 期望Ex=;
3) 熵En=π2×1n∑ni=1xi-Ex;
4) 超熵He=S2-E2n.
2.3 虛擬云算法
虛擬云[17]是按照某種應(yīng)用目標(biāo),對各個基云的數(shù)字特征進(jìn)行計(jì)算,將得到的結(jié)果作為新的數(shù)字特征所構(gòu)造的云,對于一個語言變量T,可通過基云定義為:
T{T1(Ex1,En1,He1),T2(Ex2,En2,He2),…,Tn(Exn,Enn,Hen)}.對各個基云進(jìn)行邏輯運(yùn)算——軟“AND”或軟“OR”得到的新云就是虛擬元T(Ex,En,He).
采用虛擬云理論中的一種綜合算法,計(jì)算公式如下:
Ex=w1Ex1+w2Ex2+…+wnExnw1+w2+…+wn,
En=w21w21+w22+…+w2nEn1+w22w21+w22+…+w2nEn2+
…+w2nw21+w22+…+w2nEnn,
He=w21w21+w22+…+w2nHe1+w22w21+w22+…+w2nHe2+
…+w2nw21+w22+…+w2nHen.
式中:wi為第i個指標(biāo)的權(quán)重;(Exi,Eni,Hei)為第i個指標(biāo)的云模型參數(shù);n為指標(biāo)的個數(shù).
3 改進(jìn)的CRITIC法和云模型結(jié)合的科技
獎勵綜合評價(jià)步驟
假設(shè)在科技獎勵中有n個評價(jià)項(xiàng)目{A1,A2,…,Ai,…,An},m個評價(jià)指標(biāo){P1,P2,…,Pj,…,Pm}以及r個評分專家{C1,C2,…,Ck,…,Cr},實(shí)施步驟如下:
1) 確定科技獎勵評價(jià)的指標(biāo)論域.目前,國家科學(xué)技術(shù)進(jìn)步獎(社會公益項(xiàng)目)的評價(jià)設(shè)定了5個指標(biāo),其評價(jià)依據(jù)主要是技術(shù)創(chuàng)新程度P1,技術(shù)經(jīng)濟(jì)指標(biāo)的先進(jìn)程度P2,推廣應(yīng)用程度P3,已獲社會、生態(tài)、環(huán)境效益P4和對科技進(jìn)步的推動作用P5這5個指標(biāo),則評價(jià)指標(biāo)論域?yàn)椋邯?/p>
P=P1,P2,P3,P4,P5.
2) 確定評價(jià)指標(biāo)的權(quán)重.權(quán)重是表征因子相對重要性大小的表征量度值,是為了使綜合評價(jià)能夠考慮各影響因素對總體影響程度的不一致性.引入P上的一個模糊子集S,稱為權(quán)重分配集,S=(s1,s2,…,sm),其中si>0,∑mi=1si=1.
3) 確定考慮專家動態(tài)權(quán)重的模糊評價(jià)矩陣.以項(xiàng)目Ai為例,根據(jù)式(1)和式(2)計(jì)算專家Ck的第j個指標(biāo)Pj的客觀權(quán)重為wkij,根據(jù)公式(3)計(jì)算考慮專家動態(tài)權(quán)重后指標(biāo)Pj的得分ykij.采用逆向云發(fā)生器計(jì)算模糊評價(jià)矩陣,得到對于特定項(xiàng)目Ai的評價(jià)矩陣:
Ri=r1r2rm=(Ey1,En1,He1)(Ey2,En2,He2)(Eym,Enm,Hem).
項(xiàng)目Ai的評價(jià)指標(biāo)Pj(j=1,2,…,m)的專家評價(jià)結(jié)果云rj(Eyj,Enj,Hej),每個專家對每個指標(biāo)的評分都具有一定的隨機(jī)性和模糊性,對于評價(jià)指標(biāo)Pj可以打分為Eyj,則不同專家對于這個分?jǐn)?shù)的評定一般在[Eyj-3Enj,Exj+3Enj]范圍內(nèi),而Hej則進(jìn)一步體現(xiàn)了主觀評定的隨機(jī)性.
4)利用虛擬云算法,計(jì)算項(xiàng)目Ai的綜合評價(jià)結(jié)果:
Bi=S?Ri=s1,s2,…,sm?r1r2rm=s1,s2,…,sm?(Ey1,En1,He1)(Ey2,En2,He2) (Eym,Enm,Hem)=
s1Ey1+s2Ey2+…+smEyms1+s2+…+sms21s21+s22+…+s2mEn1+s22s21+s22+…+s2nEn2+…+s2ms21+s22+…+s2mEnms2ms21+s22+…+s2mHe1+s2ms21+s22+…+s2mHe2+…+s2ms21+s22+…+s2mHemT=(Ex,En,He).
5) 計(jì)算n個項(xiàng)目的綜合評價(jià)結(jié)果并排序. 同理,可以得到n個評價(jià)項(xiàng)目的綜合評價(jià)結(jié)果為:
B=B1B2BnT=(Ex1,En1,He1)(Ex2,En2,He2)(Exn,Enn,Hen)T.(4)
由公式(4)得到每個項(xiàng)目的綜合評價(jià)結(jié)果,再結(jié)合期望Ex、熵En、超熵He的大小排序,期望值越大排名越靠前,若兩者期望相同,再比較熵En的大小,熵值越小(即穩(wěn)定性越好)排名越好;若兩者期望、熵都相同,則再比較超熵He的大小,超熵值越小(即隨機(jī)性越小)排名越好.
4 實(shí)證分析
選取25位專家對中國國家科技進(jìn)步獎(社會公益項(xiàng)目)24項(xiàng)科技成果的等級評價(jià)數(shù)據(jù)(數(shù)據(jù)來源: 科技部國家科學(xué)技術(shù)獎勵工作辦公室,原始數(shù)據(jù)略),運(yùn)用Matlab7.0軟件進(jìn)行實(shí)證分析.
1) 確定科技獎勵評價(jià)的指標(biāo)論域.根據(jù)原始數(shù)據(jù)確定科技獎勵的評價(jià)指標(biāo)論域?yàn)椋邯?/p>
P=P1,P2,P3,P4,P5.
2) 確定評價(jià)指標(biāo)的權(quán)重.根據(jù)給定指標(biāo)的權(quán)重,得到與評價(jià)指標(biāo)論域相對應(yīng)的模糊子集S=(0.2,0.2,0.2,0.25,0.15).
3) 確定考慮專家動態(tài)權(quán)重的模糊評價(jià)矩陣.以項(xiàng)目A1為例,根據(jù)公式(1)和(2)求得25位專家的動態(tài)權(quán)重,如表2所示.
表2 25位專家的動態(tài)權(quán)重計(jì)算結(jié)果
Tab.2 The dynamic weights calculation results of 25 experts
[BHDFG2,WK7,WK5,WK5。4W]P1
P2
P3
P4
P5
C1
0.375 3
0.377 7
0.334 0
0.373 0
0.300 2
C2
0.121 2
0.172 7
0.235 7
0.236 4
0.182 3
C25
0.314 0
0.265 9
0.294 9
0.301 2
0.343 3
根據(jù)公式(3),得到考慮專家動態(tài)權(quán)重后項(xiàng)目A1各指標(biāo)的得分,如表3所示.
表3 考慮專家動態(tài)權(quán)重后項(xiàng)目A1各指標(biāo)的得分
Tab.3 Each index score table of projects A1 after
considering experts dynamic weights
指標(biāo)
P1
P2
P3
P4
P5
A1
0.750 5
0.242 5
0.942 0
0.755 40.518 0
0.797 7
0.668 1
0.707 1
0.884 7
0.746 0
0.709 2
1.204 7
0.600 4
0.547 0
1.029 9
采用逆向云發(fā)生器計(jì)算模糊評價(jià)矩陣,根據(jù)逆向云發(fā)生器計(jì)算指標(biāo)的評價(jià)云滴為(0.720 7,0.27 1,0.013 6).
同理,計(jì)算項(xiàng)目A1其他4個指標(biāo)的評價(jià)云滴,得到項(xiàng)目A1的評價(jià)矩陣為:
R1=r1r2r3r4r5=(Ey1,En1,He1)(Ey2,En2,He2)(Ey3,En3,He3)(Ey4,En4,He4)(Ey5,En5,He5)=
(0.720 7,0.271 0,0.013 6)(0.685 6,0.259 3,0.088 6)(0.793 5,0.249 0,0.134 5)(0.896 4,0.319 4,0.073 9)(0.800 4,0.423 1,0.103 2)
4)利用虛擬云算法,計(jì)算項(xiàng)目A1的綜合評價(jià)結(jié)果.
B1=S?R1=s1,s2,…,s5?
r1r2r5=0.2,0.2,0.2,0.25,0.15?
(0.720 7,0.271 0,0.013 6)(0.685 6,0.259 3,0.088 6)(0.793 5,0.249 0,0.134 5)(0.896 4,0.319 4,0.073 9)(0.800 4,0.423 1,0.103 2)=
(0.781 4,0.295 9,0.080 0).
5) 確定24個項(xiàng)目的綜合評價(jià)結(jié)果并排序.同理,可計(jì)算出24個評價(jià)項(xiàng)目的綜合評價(jià)結(jié)果,如表4所示.
表4 24個項(xiàng)目的綜合評價(jià)結(jié)果
Tab.4 Comprehensive evaluation results of 24 projects
項(xiàng)目
綜合評價(jià)結(jié)果
項(xiàng)目
綜合評價(jià)結(jié)果
A1
(0.781 4,0.295 9,0.080 0)
A13
(0.696 0,0.695 4,0.113 9)
A2
(0.645 1,0.645 3,0.073 2)
A14
(0.856 6,0.863 4,0.081 8)
A3
(0.702 5,0.700 4,0.149 9)
A15
(0.948 1,0.949 6,0.061 4)
A4
(0.625 2,0.622 9,0.042 6)
A16
(0.829 6,0.622 9,0.042 6)
A5
(0.630 8,0.640 8,0.065 9)
A17
(1.075 6,1.084 9,0.074 0)
A6
(0.899 8,0.907 5,0.058 7)
A18
(0.964 4,0.971 3,0.048 4)
A7
(0.801 5,0.807 6,0.087 6)
A19
(0.824 6,0.830 7,0.099 8)
A8
(1.018 4,1.027 1,0.078 4)
A20
(0.758 2,0.761 4,0.065 2)
A9
(1.063 0,1.071 2,0.104 4)
A21
(0.781 0,0.779 0,0.042 0)
A10
(0.934 3,0.944 9,0.059 5)
A22
(0.846 0,0.846 8,0.067 8)
A11
(0.837 5,0.839 5,0.118 1)
A23
(0.687 8,0.688 1,0.098 0)
A12
(0.963 4,0.967 4,0.109 9)
A24
(0.879 9,0.884 9,0.064 0)
以項(xiàng)目A1~A4為例進(jìn)行排序,得到項(xiàng)目A1~A4的綜合評價(jià)結(jié)果云模型圖如圖3所示.
評價(jià)云滴
圖3 項(xiàng)目A1~A4的綜合評價(jià)云模型圖
Fig.3 Comprehensive evaluation cloud model
diagram of project A1~A4
由圖3可知,項(xiàng)目A1的Ex較大,綜合評價(jià)結(jié)果較好,En較小,離散程度較小,穩(wěn)定性較好,項(xiàng)目A4的He在4個項(xiàng)目中最小,云滴較薄,確定度的隨機(jī)性最小.由排序規(guī)則,項(xiàng)目A1~A4的排序依次為A1,A3,A2,A4.
同理,可以得到24個評價(jià)項(xiàng)目的排序結(jié)果,如表5所示.
表5 24個項(xiàng)目的排序結(jié)果
Tab.5 Sorting result of 24 projects
項(xiàng)目
排序
項(xiàng)目
排序
項(xiàng)目
排序
A1
16
A9
2
A17
1
A2
22
A10
7
A18
4
A3
19
A11
12
A19
14
A4
24
A12
5
A20
18
A5
23
A13
20
A21
17
A6
8
A14
10
A22
11
A7
15
A15
6
A23
21
A8
3
A16
13
A24
9
5 結(jié) 論
1)利用標(biāo)準(zhǔn)差系數(shù)衡量CRITIC法中專家的對比強(qiáng)度,將其與專家間的沖突性相結(jié)合確定專家動態(tài)權(quán)重,計(jì)算各項(xiàng)目每個指標(biāo)的得分,提高了樣本數(shù)據(jù)的代表性.
2)采用逆向云發(fā)生器確定評價(jià)項(xiàng)目的模糊評價(jià)矩陣,考慮了每個專家的評分具有一定的模糊性及隨機(jī)性,降低了專家評分受主觀因素影響的程度.
3)改進(jìn)的CRITIC法和云模型相結(jié)合對科技獎勵進(jìn)行綜合評價(jià),得出各個項(xiàng)目的評價(jià)結(jié)果并排序,實(shí)現(xiàn)了定性語言與定量數(shù)值之間的轉(zhuǎn)換,與傳統(tǒng)的評價(jià)方法相比,評價(jià)結(jié)果更加科學(xué)、準(zhǔn)確和客觀.
參考文獻(xiàn)
[1] 石磊,蘇明.科技獎勵評價(jià)模型研究[J].現(xiàn)代機(jī)械,2004(6):72-73.
SHI Lei, SU Ming. The study of science and technology encouragement model [J].Modern Machinery,2004(6):72-73.(In Chinese)
[2] 李茹,張麗芳,褚誠緣.科技項(xiàng)目模糊綜合評價(jià)方法研究[J].系統(tǒng)工程理論與實(shí)踐,2006(9):66-75.
LI Ru, ZHANG Lifang, CHU Chengyuan.The research on the fuzzy comprehensive evaluation of scientific and technical projects[J].Systems Engineering Theory & Practice,2006(9):66-75. (In Chinese)
[3] 劉業(yè)政,徐德鵬,姜元春.多屬性群決策中權(quán)重自適應(yīng)調(diào)整的方法[J].系統(tǒng)工程與電子技術(shù),2007(1):45-48.
LIU Yezheng, XU Depeng, JIANG Yuanchun.Method of adaptive adjustment weights in multi attribute group decisionmaking[J].Systems Engineering and Electronics,2007(1):45-48. (In Chinese)
[4] 張立軍,董艷青.科技成果獎勵評價(jià)中專家評議質(zhì)量的測度[J].科技進(jìn)步與對策,2009,26(8):119-121.
ZHANG Lijun, DONG Yanqing.The quality measure of experts assessment in technological achievements reward appreciation[J].Science & Technology Progress and Policy,2009,26(8):119-121. (In Chinese)
[5] 王瑛,趙謙,曹瑋.基于EBP神經(jīng)網(wǎng)絡(luò)的科技獎勵評價(jià)模型研究[J].科技進(jìn)步與對策, 2011,28(10):111-114.
WANG Ying, ZHAO Qian, CAO Wei. Based on EBP neural network model for intelligent evaluation of science and technology award[J].Science & Technology Progress and Policy,2011,28(10):111-114. (In Chinese)
[6] 王瑛,羅麗雯,歐陽顯斌.基于最小二乘支持向量機(jī)的科技獎勵評價(jià)模型[J].統(tǒng)計(jì)與決策,2013(6):51-53.
WANG Ying,LUO Liwen,OUYANG Xianbing.The application of LSSVM model in the evaluation of scientific and technological achievements[J].Statistics and Decision, 2013(6):51-53. (In Chinese)
[7] 王瑛,李自光,陳吳麗.基于改進(jìn)的DS證據(jù)理論的TOPSIS模型在科技獎勵評價(jià)中的應(yīng)用[J].統(tǒng)計(jì)與信息論壇,2013,28(2):93-97.
WANG Ying,LI Ziguang,CHEN Wuli.The application of TOPSIS model based on improved DS evidence theory inthe evalution of science and technological awaeds[J].Statistics & Information Forum,2013,28(2):93-97. (In Chinese)
[8] 金聰,彭嘉雄.科技獎勵的智能評審模型[J].軟科學(xué),2002,16(5):6-9.
JIN Cong, PENG Jiaxiong, An intelligent evalution model for the science and technology reward [J].Soft Science,2002,16(5):6-9. (In Chinese)
[9] 王碩,費(fèi)樹岷,夏安邦.關(guān)鍵科技選擇與評價(jià)的方法論研究[J].中國管理科學(xué),2000,8(11):69-75.
WANG Shuo, FEI Shumin, XIA Anbang.A research on the methods of keytechnology[J].Chinese Journal of Management Science,2000,8(11):69-75. (In Chinese)
[10]劉向陽.專家權(quán)威性權(quán)重與改進(jìn)的群體決策AHP法[J].中國管理科學(xué),1994(3):41-48.
LIU Xiangyang. Experts authoritative weight and improved AHP group decisionmaking method[J]. Chinese Journal of Management Science,1994(3):41-48. (In Chinese)
[11]DIAKOULAKID,MAVROTAS G,PAPAYANNAKIS L.Determing objective weights in multiple criteria promblems: the CRITIC method[J].Computers & Operations Research, 1995,22(7):763-770.
[12]曹瑋,王瑛.基于改進(jìn)的CRITICCPM的科技獎勵評價(jià)模型[J].科學(xué)學(xué)與科學(xué)技術(shù)管理,2012,33(2):17-20.
CAO Wei, WANG Ying.The improved CRITICCPM evaluation model in science and technological awards[J].Science of Science and Management of S & T,2012,33(2):17-20. (In Chinese)
[13]宋遠(yuǎn)駿,楊孝宗,李德毅,等.多機(jī)多任務(wù)實(shí)時系統(tǒng)云調(diào)度策略[J].計(jì)算機(jī)學(xué)報(bào),2000,23(10):1107-1113.
SONG Yuanjun,YANG Xiaozong,LI Deyi,et al.The cloud scheduler politics of multiprocessor multitask real time systems[J].Chinese Journal of Computers,2000,23(10):1107-1113. (In Chinese)
[14]LI Deyi, HAN Jiawei, SHI Xuemei. Knowledge representation and discovery based onlinguistic atoms [J].KnowledgeBased Systems, 1998, 10(7):431-440.
[15]張瑩,代勁,安世全.基于云模型的定性評價(jià)及在學(xué)評教中的應(yīng)用[J].計(jì)算機(jī)工程與應(yīng)用,2012,48(31):210-215.
ZHANG Ying, DAI Jin, AN Shiquan. Qualitative evaluation based on cloud model and application in student rating of teaching[J]. Computer Engineering and Applications, 2012, 48(31):210-215. (In Chinese)
[16]劉常昱,馮芒,戴曉軍,等.基于云X信息的逆向云新算法[J].系統(tǒng)仿真學(xué)報(bào),2004,16(11):2417-2420.
LIU Changyu,FENG Mang, DAI Xiaojun,et al.A new algorithm of backward cloud[J].Acta Simulata Systematica Sinica,2004,16(11):2417-2420. (In Chinese)
[17]羅勝,劉廣社,張保明,等.基于云模型的數(shù)字影像產(chǎn)品質(zhì)量綜合評價(jià)[J].測繪科學(xué)技術(shù)學(xué)報(bào),2008,25(2):123-126.
LUO Sheng, LIU Guangshe,ZHANG Baoming,et al. Evaluation model of digital map quality based on cloud model[J].Journal of Geomatics Science and Technology,2008,25(2):123-126. (In Chinese)
[3] 劉業(yè)政,徐德鵬,姜元春.多屬性群決策中權(quán)重自適應(yīng)調(diào)整的方法[J].系統(tǒng)工程與電子技術(shù),2007(1):45-48.
LIU Yezheng, XU Depeng, JIANG Yuanchun.Method of adaptive adjustment weights in multi attribute group decisionmaking[J].Systems Engineering and Electronics,2007(1):45-48. (In Chinese)
[4] 張立軍,董艷青.科技成果獎勵評價(jià)中專家評議質(zhì)量的測度[J].科技進(jìn)步與對策,2009,26(8):119-121.
ZHANG Lijun, DONG Yanqing.The quality measure of experts assessment in technological achievements reward appreciation[J].Science & Technology Progress and Policy,2009,26(8):119-121. (In Chinese)
[5] 王瑛,趙謙,曹瑋.基于EBP神經(jīng)網(wǎng)絡(luò)的科技獎勵評價(jià)模型研究[J].科技進(jìn)步與對策, 2011,28(10):111-114.
WANG Ying, ZHAO Qian, CAO Wei. Based on EBP neural network model for intelligent evaluation of science and technology award[J].Science & Technology Progress and Policy,2011,28(10):111-114. (In Chinese)
[6] 王瑛,羅麗雯,歐陽顯斌.基于最小二乘支持向量機(jī)的科技獎勵評價(jià)模型[J].統(tǒng)計(jì)與決策,2013(6):51-53.
WANG Ying,LUO Liwen,OUYANG Xianbing.The application of LSSVM model in the evaluation of scientific and technological achievements[J].Statistics and Decision, 2013(6):51-53. (In Chinese)
[7] 王瑛,李自光,陳吳麗.基于改進(jìn)的DS證據(jù)理論的TOPSIS模型在科技獎勵評價(jià)中的應(yīng)用[J].統(tǒng)計(jì)與信息論壇,2013,28(2):93-97.
WANG Ying,LI Ziguang,CHEN Wuli.The application of TOPSIS model based on improved DS evidence theory inthe evalution of science and technological awaeds[J].Statistics & Information Forum,2013,28(2):93-97. (In Chinese)
[8] 金聰,彭嘉雄.科技獎勵的智能評審模型[J].軟科學(xué),2002,16(5):6-9.
JIN Cong, PENG Jiaxiong, An intelligent evalution model for the science and technology reward [J].Soft Science,2002,16(5):6-9. (In Chinese)
[9] 王碩,費(fèi)樹岷,夏安邦.關(guān)鍵科技選擇與評價(jià)的方法論研究[J].中國管理科學(xué),2000,8(11):69-75.
WANG Shuo, FEI Shumin, XIA Anbang.A research on the methods of keytechnology[J].Chinese Journal of Management Science,2000,8(11):69-75. (In Chinese)
[10]劉向陽.專家權(quán)威性權(quán)重與改進(jìn)的群體決策AHP法[J].中國管理科學(xué),1994(3):41-48.
LIU Xiangyang. Experts authoritative weight and improved AHP group decisionmaking method[J]. Chinese Journal of Management Science,1994(3):41-48. (In Chinese)
[11]DIAKOULAKID,MAVROTAS G,PAPAYANNAKIS L.Determing objective weights in multiple criteria promblems: the CRITIC method[J].Computers & Operations Research, 1995,22(7):763-770.
[12]曹瑋,王瑛.基于改進(jìn)的CRITICCPM的科技獎勵評價(jià)模型[J].科學(xué)學(xué)與科學(xué)技術(shù)管理,2012,33(2):17-20.
CAO Wei, WANG Ying.The improved CRITICCPM evaluation model in science and technological awards[J].Science of Science and Management of S & T,2012,33(2):17-20. (In Chinese)
[13]宋遠(yuǎn)駿,楊孝宗,李德毅,等.多機(jī)多任務(wù)實(shí)時系統(tǒng)云調(diào)度策略[J].計(jì)算機(jī)學(xué)報(bào),2000,23(10):1107-1113.
SONG Yuanjun,YANG Xiaozong,LI Deyi,et al.The cloud scheduler politics of multiprocessor multitask real time systems[J].Chinese Journal of Computers,2000,23(10):1107-1113. (In Chinese)
[14]LI Deyi, HAN Jiawei, SHI Xuemei. Knowledge representation and discovery based onlinguistic atoms [J].KnowledgeBased Systems, 1998, 10(7):431-440.
[15]張瑩,代勁,安世全.基于云模型的定性評價(jià)及在學(xué)評教中的應(yīng)用[J].計(jì)算機(jī)工程與應(yīng)用,2012,48(31):210-215.
ZHANG Ying, DAI Jin, AN Shiquan. Qualitative evaluation based on cloud model and application in student rating of teaching[J]. Computer Engineering and Applications, 2012, 48(31):210-215. (In Chinese)
[16]劉常昱,馮芒,戴曉軍,等.基于云X信息的逆向云新算法[J].系統(tǒng)仿真學(xué)報(bào),2004,16(11):2417-2420.
LIU Changyu,FENG Mang, DAI Xiaojun,et al.A new algorithm of backward cloud[J].Acta Simulata Systematica Sinica,2004,16(11):2417-2420. (In Chinese)
[17]羅勝,劉廣社,張保明,等.基于云模型的數(shù)字影像產(chǎn)品質(zhì)量綜合評價(jià)[J].測繪科學(xué)技術(shù)學(xué)報(bào),2008,25(2):123-126.
LUO Sheng, LIU Guangshe,ZHANG Baoming,et al. Evaluation model of digital map quality based on cloud model[J].Journal of Geomatics Science and Technology,2008,25(2):123-126. (In Chinese)
[3] 劉業(yè)政,徐德鵬,姜元春.多屬性群決策中權(quán)重自適應(yīng)調(diào)整的方法[J].系統(tǒng)工程與電子技術(shù),2007(1):45-48.
LIU Yezheng, XU Depeng, JIANG Yuanchun.Method of adaptive adjustment weights in multi attribute group decisionmaking[J].Systems Engineering and Electronics,2007(1):45-48. (In Chinese)
[4] 張立軍,董艷青.科技成果獎勵評價(jià)中專家評議質(zhì)量的測度[J].科技進(jìn)步與對策,2009,26(8):119-121.
ZHANG Lijun, DONG Yanqing.The quality measure of experts assessment in technological achievements reward appreciation[J].Science & Technology Progress and Policy,2009,26(8):119-121. (In Chinese)
[5] 王瑛,趙謙,曹瑋.基于EBP神經(jīng)網(wǎng)絡(luò)的科技獎勵評價(jià)模型研究[J].科技進(jìn)步與對策, 2011,28(10):111-114.
WANG Ying, ZHAO Qian, CAO Wei. Based on EBP neural network model for intelligent evaluation of science and technology award[J].Science & Technology Progress and Policy,2011,28(10):111-114. (In Chinese)
[6] 王瑛,羅麗雯,歐陽顯斌.基于最小二乘支持向量機(jī)的科技獎勵評價(jià)模型[J].統(tǒng)計(jì)與決策,2013(6):51-53.
WANG Ying,LUO Liwen,OUYANG Xianbing.The application of LSSVM model in the evaluation of scientific and technological achievements[J].Statistics and Decision, 2013(6):51-53. (In Chinese)
[7] 王瑛,李自光,陳吳麗.基于改進(jìn)的DS證據(jù)理論的TOPSIS模型在科技獎勵評價(jià)中的應(yīng)用[J].統(tǒng)計(jì)與信息論壇,2013,28(2):93-97.
WANG Ying,LI Ziguang,CHEN Wuli.The application of TOPSIS model based on improved DS evidence theory inthe evalution of science and technological awaeds[J].Statistics & Information Forum,2013,28(2):93-97. (In Chinese)
[8] 金聰,彭嘉雄.科技獎勵的智能評審模型[J].軟科學(xué),2002,16(5):6-9.
JIN Cong, PENG Jiaxiong, An intelligent evalution model for the science and technology reward [J].Soft Science,2002,16(5):6-9. (In Chinese)
[9] 王碩,費(fèi)樹岷,夏安邦.關(guān)鍵科技選擇與評價(jià)的方法論研究[J].中國管理科學(xué),2000,8(11):69-75.
WANG Shuo, FEI Shumin, XIA Anbang.A research on the methods of keytechnology[J].Chinese Journal of Management Science,2000,8(11):69-75. (In Chinese)
[10]劉向陽.專家權(quán)威性權(quán)重與改進(jìn)的群體決策AHP法[J].中國管理科學(xué),1994(3):41-48.
LIU Xiangyang. Experts authoritative weight and improved AHP group decisionmaking method[J]. Chinese Journal of Management Science,1994(3):41-48. (In Chinese)
[11]DIAKOULAKID,MAVROTAS G,PAPAYANNAKIS L.Determing objective weights in multiple criteria promblems: the CRITIC method[J].Computers & Operations Research, 1995,22(7):763-770.
[12]曹瑋,王瑛.基于改進(jìn)的CRITICCPM的科技獎勵評價(jià)模型[J].科學(xué)學(xué)與科學(xué)技術(shù)管理,2012,33(2):17-20.
CAO Wei, WANG Ying.The improved CRITICCPM evaluation model in science and technological awards[J].Science of Science and Management of S & T,2012,33(2):17-20. (In Chinese)
[13]宋遠(yuǎn)駿,楊孝宗,李德毅,等.多機(jī)多任務(wù)實(shí)時系統(tǒng)云調(diào)度策略[J].計(jì)算機(jī)學(xué)報(bào),2000,23(10):1107-1113.
SONG Yuanjun,YANG Xiaozong,LI Deyi,et al.The cloud scheduler politics of multiprocessor multitask real time systems[J].Chinese Journal of Computers,2000,23(10):1107-1113. (In Chinese)
[14]LI Deyi, HAN Jiawei, SHI Xuemei. Knowledge representation and discovery based onlinguistic atoms [J].KnowledgeBased Systems, 1998, 10(7):431-440.
[15]張瑩,代勁,安世全.基于云模型的定性評價(jià)及在學(xué)評教中的應(yīng)用[J].計(jì)算機(jī)工程與應(yīng)用,2012,48(31):210-215.
ZHANG Ying, DAI Jin, AN Shiquan. Qualitative evaluation based on cloud model and application in student rating of teaching[J]. Computer Engineering and Applications, 2012, 48(31):210-215. (In Chinese)
[16]劉常昱,馮芒,戴曉軍,等.基于云X信息的逆向云新算法[J].系統(tǒng)仿真學(xué)報(bào),2004,16(11):2417-2420.
LIU Changyu,FENG Mang, DAI Xiaojun,et al.A new algorithm of backward cloud[J].Acta Simulata Systematica Sinica,2004,16(11):2417-2420. (In Chinese)
[17]羅勝,劉廣社,張保明,等.基于云模型的數(shù)字影像產(chǎn)品質(zhì)量綜合評價(jià)[J].測繪科學(xué)技術(shù)學(xué)報(bào),2008,25(2):123-126.
LUO Sheng, LIU Guangshe,ZHANG Baoming,et al. Evaluation model of digital map quality based on cloud model[J].Journal of Geomatics Science and Technology,2008,25(2):123-126. (In Chinese)