亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        黃單胞菌III型分泌系統(tǒng)效應(yīng)蛋白的研究進展

        2014-09-23 17:14:48易杰祥景曉輝吳倫英
        熱帶農(nóng)業(yè)科學 2014年8期

        易杰祥+景曉輝+吳倫英

        摘 要 黃單胞菌借助保守的III型分泌系統(tǒng),將多個效應(yīng)蛋白注入植物細胞,克服宿主的防衛(wèi),利于黃單胞菌在植物體內(nèi)發(fā)揮毒性功能。最近對III型效應(yīng)蛋白致病機理開展了大量研究,結(jié)果發(fā)現(xiàn)具有酶功能的效應(yīng)蛋白在黃單胞菌及其宿主間的相互作用中發(fā)揮非常重要的作用。此外,黃單胞菌存在一類獨特的III型效應(yīng)蛋白(AvrBs3家族)。迄今為止,僅在黃單胞菌和雷爾氏菌(Ralstonia solanacearum)中發(fā)現(xiàn)AvrBs3家族效應(yīng)蛋白,AvrBs3家族通過模擬轉(zhuǎn)錄激活子來操縱寄主植物易感基因的表達。

        關(guān)鍵詞 黃單胞菌 ;III型分泌系統(tǒng) ;效應(yīng)蛋白 ;AvrBs3 ;類轉(zhuǎn)錄激活子

        分類號 S432.42

        Research Advances on Xanthomonas Type III Secretion System Effectors

        YI Jiexiang1) JING Xiaohui2) WU Lunying2)

        (1 Hainan Province Tropical Crops Research Institute for Baoting, Baoting, Hainan 572311

        2 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources,

        Hainan University, Haikou, Hainan 570228, China)

        Abstract Pathogenicity of Xanthomonas and most other Gram-negative phytopathogenic bacteria depends on a conserved type III secretion (T3S) system which injects several different effector proteins into the plant cell. Extensive studies in the last years on the molecular mechanisms of type III effector function revealed that effector proteins with enzymatic functions seem to play important roles in the interaction of Xanthomonas with its host plants. In addition, Xanthomonas express a unique class of type III effectors to pursue another strategy. Effectors of the AvrBs3 family, so far only identified in Xanthomonas spp. and Ralstonia solanacearum, mimic plant transcriptional activators and manipulate the plant transcriptome.

        Keywords Xanthomonas ; type III secretion system ; effector ; AvrBs3 ; transcriptional activators

        黃單胞菌屬的致病細菌能夠侵染包括重要農(nóng)作物在內(nèi)的多種宿主植物。例如,水稻白葉枯病可由X. oryzae pv. oryzae(Xoo)引起。細菌可通過植物天然的孔口(氣孔、水孔或傷口)進入,進而在植物組織繁殖。病原細菌III型分泌系統(tǒng)在病原菌與其宿主的相互作用中發(fā)揮重要作用。黃單胞菌含有革蘭氏陰性細菌中所有已知的蛋白分泌系統(tǒng)——信號肽(信號識別粒子)和TAT通路,I型、II型、III型、IV型等不同類型的分泌系統(tǒng),V型自動轉(zhuǎn)運分泌系統(tǒng),兩個伴侶分泌系統(tǒng),和一個VI型分泌系統(tǒng)[1-2]。其中III型分泌系統(tǒng)在動植物病原菌中高度保守且對黃單胞菌的致病性非常重要[3-4]。大多數(shù)III型分泌系統(tǒng)效應(yīng)蛋白,借助病原菌形成的“分子注射器”直接轉(zhuǎn)運至植物細胞,然而,大多數(shù)III型分泌系統(tǒng)分泌的III型效應(yīng)蛋白及其在細菌毒性中發(fā)揮的功能尚未完全可知[5]。本文主要綜述了近幾年有關(guān)黃單胞菌III型效應(yīng)蛋白的研究,主要關(guān)注它們在植物細胞中的作用模式。

        1 III型效應(yīng)蛋白是重要的毒性因子

        III型分泌系統(tǒng)缺失的病原菌不能在植物體內(nèi)很好的生長,且在感病寄主上不引發(fā)癥狀,這說明III型分泌系統(tǒng)分泌的效應(yīng)蛋白對病原菌致病至關(guān)重要[6-7]。雖然單個黃單胞菌菌株分泌多個III型效應(yīng)蛋白[1-8],但是只有少數(shù)效應(yīng)蛋白是重要的毒力因子,因為它們的敲除會顯著降低細菌毒力。例如,來自辣椒和西紅柿病原菌(X. campestris pv. vesicatoria,Xcv)的AvrBs2對寄主的致病性至關(guān)重要,AvrBs2的毒性功能依賴保守的glycerolphosphodiesterase(GDE)結(jié)構(gòu)域,AvrBs2強烈地促進細菌在植物體內(nèi)的增殖,而寄主抗性蛋白Bs2特異識別AvrBs2后調(diào)節(jié)Xcv的TTSS,進而抑制TTSS分泌的效應(yīng)蛋白[9-10]。Xcv效應(yīng)蛋白XopQ能夠抑制MAP kinase cascade MAPKKKα誘導的細胞死亡。XopQ 能夠抑制無毒Xcv在抗性胡椒(Capsicum annuum)上激發(fā)的ETI相關(guān)的細胞死亡,并促進在抗性胡椒和番茄(Solanum lycopersicum)上的細菌生長[11]。番茄蛋白14-3-3 SlTFT4 能夠與XopQ互作。TFT4在寄主植物對Xcv的抗性中發(fā)揮重要作用,沉默煙草NbTFT4也顯著降低 MAPKKKα誘發(fā)的細胞死亡,沉默胡椒CaTFT4也推遲ETI相關(guān)的細胞死亡表型[11]。XopQ 的毒性功能依賴于其與TFT4互作,進而抑制ETI及免疫相關(guān)的細胞死亡[11]。相比之下,編碼其他效應(yīng)蛋白(來自X. campestris pv. campestris的AvrXccC及XopXccN)基因的突變只會微弱地影響細菌的生長[12-13]。最新的多個研究表明,假單胞菌的許多效應(yīng)蛋白通過抑制植物的防衛(wèi)機制來發(fā)揮毒性功能[14]。至今只有少數(shù)Xanthomonas的III型效應(yīng)蛋白具有推測的防衛(wèi)抑制作用。如來自X. campestris pv. vesicatoria的XopX,它促進壞死斑的形成,這意味著XopX抑制植物的基礎(chǔ)防衛(wèi)反應(yīng)[15]。endprint

        2 黃單胞菌效應(yīng)蛋白的酶功能

        多個丁香假單胞菌的效應(yīng)蛋白表現(xiàn)出酶活性,通過修飾寄主蛋白來實現(xiàn)它們的生物學功能[14]。例如,HopAO1是丁香假單胞菌的一個效應(yīng)蛋白,它具有酪氨酸磷酸酶活性,而且抑制基礎(chǔ)防衛(wèi)和過敏性反應(yīng),現(xiàn)已發(fā)現(xiàn)與HopAO1具有同源性的效應(yīng)蛋白[16-17]。XopE1和XopE2屬于假谷氨酰胺酶的HopX家族 (AvrPphE),有對發(fā)揮其功能至關(guān)重要的基于半胱氨酸的具有催化活性的triad[18-19]。然而,黃單胞菌效應(yīng)蛋白已表現(xiàn)出酶活性,但是尚不清楚它們的毒力作用。

        2.1 SUMO蛋白酶 XopD

        最近人們詳細研究了源自X. campestris pv. vesicatoria的效應(yīng)蛋白XopD。有趣的是,這個效應(yīng)蛋白利于細菌在番茄中生長,并推遲番茄感染后期的葉片缺綠及壞死[20]。XopD蛋白有一個模塊化結(jié)構(gòu),而且具有不同的生化活性。C末端包含一個C48家族的半胱氨酸蛋白酶域,它和酵母類泛素蛋白酶(ubiquitin-like protease,ULp1)具有同源性,ULp1是一個小的類泛素修飾因子(SUMO)蛋白酶[20]。已在離體及活體條件下證明XopD具有植物SUMO蛋白酶活性[20-21]。類似泛素共價結(jié)合,SUMO共價結(jié)合到靶蛋白,但是不同于泛素修飾,SUMO修飾靶蛋白后常增加蛋白的穩(wěn)定性。在植物中,SUMO修飾和deSUMOylation調(diào)控一系列生物學過程。例如,對非生物脅迫做出的反應(yīng),病原菌防衛(wèi),開花誘導等[23]。XopD在植物細胞的亞細胞核定位表明,它可能靶向核SUMO共軛蛋白。此外,XopD包含:N末端與DNA結(jié)合的螺旋-環(huán)-螺旋結(jié)構(gòu)域,還有EAR motif[20]。最近發(fā)現(xiàn),XopDXccB100 N端DNA結(jié)合結(jié)構(gòu)域能夠與正調(diào)植物先天免疫的擬南芥轉(zhuǎn)錄因子MYB30互作,穩(wěn)定MYB30蛋白,但改變MYB30的亞細胞定位,導致MYB30不能正常發(fā)揮轉(zhuǎn)錄激活的功能,進而抑制MYB30靶基因的表達,達到抑制擬南芥防衛(wèi)的目的[20]。2013年Kim等[21]發(fā)現(xiàn),XopDXcv催化番茄PTI信號通路正調(diào)因子SlERF4賴氨酸K53上SUMO的水解,導致SlERF4蛋白不穩(wěn)定,進而阻斷了植物對Xcv的PTI抗性。這進一步表明,XopD家族效應(yīng)蛋白功能的多樣,既可改變靶蛋白的亞細胞定位,又可降解靶蛋白,還能夠穩(wěn)定靶蛋白。

        2.2 YopJ/AvrRxv 家族效應(yīng)蛋白

        植物和哺乳動物病原菌中YopJ/AvrRxv家族的效應(yīng)蛋白常有SUMO蛋白酶的活性。在X. campestris pv. vesicatoria中有四個預測的C55肽酶YopJ/AvrRxv家族—AvrRxv、AvrXv4、AvrBsT和XopJ[9]。每個蛋白都含有推測的催化triad(組氨酸、谷氨酸和半胱氨酸)[9]。如果在植物體內(nèi)過表達AvrXv4,導致SUMO修飾蛋白的減少[22-23]。源自人類病原菌Yersinia spp.的YopJ(一個研究的最清楚的效應(yīng)蛋白),也降低SUMO修飾蛋白的數(shù)量[24-26]。然而,YopJ/AverRxv家族蛋白酶的作用是一個有爭議的問題,因為YopJ有乙酰轉(zhuǎn)移酶活性[27]。YopJ調(diào)控有絲分裂原激活的蛋白激酶(MAPK)中重要絲氨酸和蘇氨酸殘基的乙?;?,這種MAPK激酶在免疫反應(yīng)阻止YopJ磷酸化和活化。在AvrBsT的研究中證實,YopJ/AvrRxv家族成員是乙酰轉(zhuǎn)移酶[28]。植物中抗性基因介導的AvrBsT識別需要催化triad,這說明它依賴于效應(yīng)蛋白酶的功能[24,28]。Cunna等找出一種特異的抑制子—SOBER1(suppressor of AvrBsT-elicited resistance),它作用于AvrBsT導致的過敏反應(yīng),由離體試驗發(fā)現(xiàn)其編碼羧化酶,導致底物的去乙酰[28]。

        3 AvrBs3 家族:宿主轉(zhuǎn)錄的操控者

        部分效應(yīng)蛋白通過III型分泌系統(tǒng)進入真核生物細胞核,并在細胞核內(nèi)發(fā)揮轉(zhuǎn)錄因子的功能,激活靶基因的表達。最近,報道了源自Xanthomonas campestris pv. vesicatoria(Xcv)的AvrBs3具有類轉(zhuǎn)錄激活子(transcription activator-like-TAL)活性,起著轉(zhuǎn)錄因子的作用,直接誘導植物基因的表達[29-30]。AvrBs3家族是目前研究最清楚的、數(shù)量最多的一類具有TAL活性的III型效應(yīng)蛋白[31]。AvrBs3家族多個成員具有毒性功能。例如,AvrXa7、PthXo1和其他源自水稻白葉枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)的類AvrBs3蛋白強烈促進細菌在水稻的生長以及壞死斑的形成[32-37]。Avrb6和其他源自棉花病原菌X. campestris pv. malvacearum的 AvrBs3同源物,會促進葉片水浸斑的發(fā)展[38]。同樣會導致細菌從質(zhì)外體釋放到植物體[39]。源自Xcv的AvrBs3會導致葉肉細胞肥大,也會促使侵染后期植物表面細菌的擴散釋放[38],導致細菌在田間的擴散[40]。

        4 AvrBs3及其它相關(guān)效應(yīng)蛋白的靶標是植物啟動子

        AvrBs3和相關(guān)蛋白包含一中間重復結(jié)構(gòu)域,該重復域常由幾乎完全相同的34個氨基酸組成,并介導蛋白質(zhì)的二聚化[41]及DNA的結(jié)合[29]。該重復序列只在氨基酸位點的12位和13位存在差異,重復的數(shù)量及順序決定了蛋白質(zhì)與DNA的特異性結(jié)合[9,42]。另外,這些蛋白質(zhì)的C末端包含核定位信號(Nuclear Localization Signal, NLS)和酸激活結(jié)構(gòu)域(Acidic Activation Domain, AD),它們分別介導效應(yīng)蛋白進入細胞核及激活植物基因的表達,對蛋白質(zhì)的功能很重要[9]。最近對水稻的微陣列分析識別了Xoo中幾個類AvrBs3蛋白的靶基因[43-44]。例如,受PthXo1誘導的Os8N3。因為這個植物基因是細菌毒性所必需的,所以它被認為是感病基因[43]。UPA20編碼堿性螺旋-環(huán)-螺旋(basic helix-loop-helix, bHLH)家族的轉(zhuǎn)錄因子,bHLH家族是AvrBs3引起的植物細胞肥大的關(guān)鍵調(diào)節(jié)子[29]。啟動子分析顯示在UPA20及其他AvrBs3靶基因存在一個保守的AvrBs3反應(yīng)元件,即UPA框,該UPA框直接和效應(yīng)蛋白結(jié)合[29-30]。迄今為止,AvrBs3是唯一的已證實直接結(jié)合植物啟動子的TAL效應(yīng)蛋白。然而,我們相信AvrBs3的同源物具有一樣的分子作用機理,即啟動子為它們的直接靶標。endprint

        5 植物抵御TAL效應(yīng)蛋白的防衛(wèi)策略

        為應(yīng)對TAL效應(yīng)蛋白毒性的分子機理,植物進化出了一個復雜的識別策略,即利用抗性基因啟動子作為分子誘捕。特定的TAL效應(yīng)蛋白激活啟動子,進而誘導抗性基因的表達及隨后的細胞死亡[30,45]。Bs3和Bs3-E分別識別AvrBs3和AvrBs3的衍生物AvrBs3Δrep16,研究證實了Bs3和Bs3-E啟動子序列的差異(UPA框附近存在一個13 bp的缺失),而不是編碼區(qū)存在的差異引起相應(yīng)抗性胡椒植物中各個效應(yīng)蛋白的特異結(jié)合[30]。相反,水稻的遺傳抗性基因Xa13賦予的抗性不是由抗性基因啟動子誘導的,而是依賴于誘導性的喪失[46]。Xa13與易感基因Os8N3極可能是等位基因,Os8N3是由TAL效應(yīng)蛋白PthXo1誘導的[43]。啟動子序列差異導致xa13的誘導,因此水稻對依賴于PthXo1作為毒力因子的Xoo菌株表現(xiàn)出抗性[42,45]。有趣的是,這種抗性可以被另外一種TAL效應(yīng)蛋白(AvrXa7)克服,AvrXa7并不誘導Os8N3,很可能誘導水稻中另一個易感基因[43]??傊?,對于Bs3和Xa13(Os8N3),植物抗性是由效應(yīng)蛋白靶啟動子突變介導的。然而,對Bs3來說,抗性的結(jié)果是誘導一個自殺基因的表達[31]或者喪失基因誘導[43,46]。

        另外一種植物抗性機理是基于一個基礎(chǔ)轉(zhuǎn)錄元件的亞單位,它是水稻TAL效應(yīng)蛋白識別的成分。水稻隱性抗性基因Xa5編碼轉(zhuǎn)錄因子TFIIA的γ亞單位,TFIIA與易感等位基因Xa5的產(chǎn)物只存在一個氨基酸(E39V)的不同[47]。TFIIA γ參與到真核轉(zhuǎn)錄因子轉(zhuǎn)錄機制。來自Xoo的Avrxa5很可能是AvrBs3家族的成員[33],可能由于Avrxa5不能與Xa5蛋白互作,因此,在水稻Xa5/xa5中不能促進感病基因的轉(zhuǎn)錄。

        6 結(jié)論

        黃單胞菌常利用III型效應(yīng)蛋白提高致病性。迄今為止,在其他病原菌T3SS尚未發(fā)現(xiàn)這種新的活性。然而,XopD效應(yīng)蛋白以及YopJ/AvrRxv家族成員顯示了酶的活性,AvrBs3家族成員起著真核轉(zhuǎn)錄激活子的功能,而且通過結(jié)合靶基因啟動子的方式直接調(diào)節(jié)宿主基因的轉(zhuǎn)錄。對于III型效應(yīng)蛋白靶標的深入分析可進一步闡明黃單胞菌毒性機理,甚至可能有助于闡明到植物存在的普遍抗性機理。

        參考文獻

        [1] Thieme F, Koebnik R, Bekel T et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence[J]. JOURNAL OF BACTERIOLOGY BACTERIOLOGY,2005,187(21):7 254-7 266.

        [2] Shrivastava S, and Mande S S. Shrivastava S et al.Identification and functional characterization of gene components of type VI secretion system in bacterial genomes[J]. PLoS PLOS ONE ONE,2008, 3(8):e2955.

        [3] Buttner D, Noel L, Thieme F, and Bonas U.Genomic approaches in Xanthomonas campestris pv. vesicatoria allow fishing for virulence genes[J]. JOURNAL OF BIOTECHNOLOGYJ. Biotechnol. 2003, 106(2-3):203-214.

        [4] Tampakaki A P, Fadouloglou V E, Gazi A D Tampakaki AP et al.Conserved features of type III secretion[J]. CELLULAR MICROBIOLOGYCell Microbiol. 2004, 6(9):805-816.

        [5] Greenberg J T and Yao, Net al. The role and regulation of programmed cell death in plant–pathogen interactions[J]. CELLULAR MICROBIOLOGYCell Microbiol. 2004,6(3):201-211.

        [6] Bonas BONAS U, SCHULTE R, FENSELAU S et al. Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol. Plant- Microbe Interact 1991, 4(1): 81-88.

        [7] Lindgren P B. The role of hrp genes during plant-bacterial interactions[J]. ANNUAL REVIEW OF PHYTOPATHOLOGY Annu. Rev. Phytopathol. 1997, 35:129-152.endprint

        [8] He Y Q, Zhang L , Jiang B L et al. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris[J]. GENOME BIOLOGYGenome Biol. 2007, 8(10): R218.

        [9] Gurlebeck D, Thieme F and Bonas U et al.Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant[J]. JOURNAL OF PLANT PHYSIOLOGYJ Plant Physiol. 2006,163(3):233-255.

        [10] Doron Teper, Salomon D, Sunitha S et al. Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14–3–3 isoforms to suppress effector-triggered immunity[J]. PLANT JOURNALPlant J 2013,77(2):297-309.

        [11] Zhao B Y, Dahlbeck D, Krasileva K V Bingyu Zhao et al.Computational and Biochemical Analysis of the Xanthomonas Effector AvrBs2 and Its Role in the Modulation of Xanthomonas Type Three Effector Delivery[J]. PLOS PATHOGENS.Plos pathogen 2011,287(12): 735-744

        [12] Wang L F, Tang X Y and He C ZWang L et al. The bifunctional effector AvrXccC of Xanthomonas campestris pv. campestris requires plasma membrane-anchoring for host recognition[J]. MOLECULAR PLANT PATHOLOGYMol Plant Pathol. 2007, 8(4): 491-501.

        [13] Jiang B L, He Y Q, Cen W J Jiang B-L et al.The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence[J]. RESEARCH IN MICROBIOLOGY Res Microbiol. 2008, 159(3): 216-220.

        [14] Gohre V and Robatzek S. Breaking the barriers: microbial effector molecules subvert plant immunity[J]. ANNUAL REVIEW OF PHYTOPATHOLOGY. 2008 ,46:189-215.

        [15] Metz M M, Dahlbeck D , Morales C Q et al. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana[J]. PLANT JOURNALPlant J. 2005, 41(6): 801-814.

        [16] Espinosa A, Guo M, Tam V C et al. The Pseudomonas syringae type III-secreted protein HopPtoD2 possesses protein tyrosine phosphatase activity and suppresses programmed cell death in plants[J]. MOLECULAR MICROBIOLOGYMol. Microbiol. 2003, 49(2):377-387.

        [17] Underwood W, Zhang S Q and He S Y et al. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana[J]. PLANT JOURNALPlant J. 2007, 52(4): 658-672.

        [18] Thieme F, Szczesny R, Urban A et al. et al. New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2007,20(10): 1 250-1 261.endprint

        [19] Nimchuk Z L, Fisher E J , Desveaux D et al. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2007,20(4): 346-357.

        [20] Canonne J, Marino D, Jauneau A et al. The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense[J]. PLANT CELLPlant Cell[J]. 2011, 23(9): 3498-3511.

        [21] Kim J G ,Stork W, Mudgett M B et al. Xanthomonas Type III Effector XopD Desumoylates Tomato Transcription Factor SlERF4 to Suppress Ethylene Responses and Promote Pathogen Growth[J]. Cell Host & Microbe[J], 2013, 13(2): 143-154.

        [22] Novatchkova M, Budhiraja R, Coupland G et al. SUMO conjugation in plants[J]. Planta 2004, 220(1): 1-8.

        [23] Roden J, Eardley L, Hotson A et al. Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol Plant- Microbe Interact 2004, 17(6):633-643.

        [24] Orth K, Xu Z H, Mudgett M B et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease[J]. SCIENCE.Science 2000, 290(5496): 1 594-1 597.

        [25] Zhou H, Monack D M, Kayagaki N et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kB activation[J]. JOURNAL OF EXPERIMENTAL MEDICINE. J. Exp Med 2005, 202(10):1 327-1 332.17: 1 192-1 200.

        [26] Sweet C R, Conlon J, Golenbock D T et al. YopJ targets TRAF proteins to inhibit TLR-mediated NF-kB, MAPK and IRF3 signal transduction[J]. CELLULAR MICROBIOLOGY . Cell Microbiol 2007, 9(11): 2 700-2 715. 20: 934-943.

        [27] Mukherjee S, Keitany G , Li Y et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation[J].SCIENCE.2006,312(5777):1211-1214.

        [28] Cunnac S, Wilson A, Nuwer J et al. A conserved carboxylesterase is a SUPPRESSOR OF AVRBST-ELICITED RESISTANCE in Arabidopsis[J]. PLANT CELL. Plant Cell 2007, 19(2):688-705.

        [29] Kay S, Hahn S, Marois E et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator[J]. SCIENCE .Science 2007, 318(5 850): 648-651.

        [30] Romer P, Hahn S, Jordan T et al. Plant-pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene[J]. SCIENCE .2007, 318(5850): 645-648.

        [31] Nissan G G, Manulis-Sasson S, Weinthal D et al. The type III effectors HsvG and HsvB of gall-forming Pantoea agglomerans determine host specificity and function as transcriptional activators[J]The type III effectors HsvG and HsvB of gall-forming for pollen development result in disease resistance in rice. MOLECULAR MICROBIOLOGYGenes Dev. 2006, 2061(5): 1 118-1 131,1 250-1 255.endprint

        [32] Bai J F, Choi S H, Ponciano G et al. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness[J]. MOLECULAR PLANT-MICROBE INTERACTIONS.Mol. Plant-Microbe Interact 2000, 13(12): 1 322-1 329.

        [33] Yang B et al and White F F. Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol. Plant-Microbe Interact 2004,,17(11): 1 192-2 000.

        [34] SWARUP S, DEFEYTER R, BRLANSKY R H Swarup S et al. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus[J]. PHYTOPATHOLOGY .Phytopathology 1991, 81(8):802-809.

        [35] Kanamori H et al and Tsuyumu S. Comparison of nucleotide sequences of canker-forming and non-canker-forming pthA homologues in Xanthomonas campestris pv. citri[J]. Annals of the Phytopathological Society of Japan. Ann Phytopathol Soc Jpn 1998, 64(5): 462-470.

        [36] El Yacoubi B , Brunings A M , Yuan Q et al. In planta horizontal transfer of a major pathogenicity effector gene[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY.Appl Environ Microbiol 2007, 73(5):1612-1621.

        [37] Al-Saadi A, Reddy J D, Duan Y P et al. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation[J]. MOLECULAR PLANT-MICROBE INTERACTIONS Mol Plant-Microbe Interact 2007, 20(8):934-943.

        [38] Marois E, Van den Ackerveken G and Bonas U et al. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host[J]. MOLECULAR PLANT-MICROBE INTERACTIONS .Mol Plant-Microbe Interact 2002, 15(7): 637-646.

        [39] Yang Y Y N,Yuan Q P,Gabriel D W et al. Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family[J]. MOLECULAR PLANT-MICROBE INTERACTIONS. Mol Plant-Microbe Interact 1996, 9(2):105-113.

        [40] Wichmann G et al and Bergelson J. Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field[J]. Genetics GENETICS.2004, 166(2):693-706.

        [41] Gurlebeck D, Szurek B, Bonas U. Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import[J]. PLANT JOURNAL.2005, 42(2): 175-187.endprint

        [42] Schornack S S, Meyer A, Romer P et al. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins[J]. JOURNAL OF PLANT PHYSIOLOGY. Plant Physiol 2006, 163(3):256-272.

        [43] Yang B et al, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA .Proc Natl Acad Sci U S A 2006, 103(27): 10 503-10 508.

        [44] Sugio A A, Yang Bing, Zhu T et al. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAg1 and OsTFX1 during bacterial blight of rice[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA .Proc Natl Acad Sci USA 2007, 104(25): 10 720-10 725.

        [45] Gu K K, Yang B, Tian D S et al. R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature NATURE.2005, 435(7045): 1 122-1 125.

        [46] Chu Z, Yuan M, Yao L L et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice[J]. GENES & DEVELOPMENT. Genes & Dev 2006, 20(10): 1 250-1 255.

        [47] Jiang G H H, Xia Z H, Zhou Y L et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5(Xa5) in comparison with its homolog TFIIAg1[J]. MOLECULAR GENETICS AND GENOMICS.Mol Genet Genomics 2006,275(4):1-13354-366.endprint

        天天爽天天爽天天爽| 噜噜中文字幕一区二区| 色婷婷av一区二区三区久久| 麻豆免费观看高清完整视频| 日日噜噜噜夜夜爽爽狠狠视频| 午夜亚洲国产理论片亚洲2020 | 久久久调教亚洲| 男人一插就想射的原因| 一本色道久久婷婷日韩| 337p日本欧洲亚洲大胆精品| 狠狠躁夜夜躁人人爽天天天天97| 亚洲AV日韩Av无码久久| 中文字幕专区一区二区| 日本不卡在线视频二区三区 | 人人妻人人澡人人爽人人精品97| 99热精品国产三级在线观看| 国产日产久久福利精品一区| 白白色最新福利视频二| 人人超碰人人爱超碰国产| 国产精品无码一本二本三本色| 亚洲一区爱区精品无码| av东京热一区二区三区| 亚洲乱妇熟女爽到高潮视频高清| 一本久久综合亚洲鲁鲁五月天| 国产精品久久久久久久久免费| 91精品国产91| 国产av午夜精品一区二区入口| 蜜桃精品人妻一区二区三区| 97人人模人人爽人人少妇| 中文字幕在线日韩| 美女被插到高潮嗷嗷叫| 亚洲国产精品成人av网| 国产精品v片在线观看不卡| 97久久久久人妻精品专区| 精品亚洲人伦一区二区三区| 五月婷婷开心六月激情| 欧美黑人又大又粗xxxxx| 一区二区三区国产亚洲网站| 国产成人精品免费视频大全| 国产精品视频白浆免费看| 国产在线视频一区二区天美蜜桃|