亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于改進型Montgomery模塊的RSA算法及其Verilog模型的實現(xiàn)

        2014-09-17 18:05:02曾小波易志中丁士憬
        現(xiàn)代電子技術(shù) 2014年17期
        關(guān)鍵詞:優(yōu)化分析模型

        曾小波 易志中 丁士憬

        摘 要: 詳細分析了RSA加密算法的原理及優(yōu)化方法,提出一種高效可行改進型硬件模塊的實現(xiàn)方案,并給出了效率分析以及在硬件平臺上的仿真結(jié)果分析;通過仿真分析發(fā)現(xiàn),相比以往的算法模型,該方案在時序以及面積上均做到了相當程度的優(yōu)化,硬件的占用面積大幅度減少,具體的性能及功耗、穩(wěn)定性有較大提高,為工程應用提供了良好的借鑒。

        關(guān)鍵詞: RSA; 不對稱加密; 硬件實現(xiàn)成本; Montgomery算法

        中圖分類號: TN918.4?34 文獻標識碼: A 文章編號: 1004?373X(2014)17?0082?04

        Abstract: The principles and optimization method of RSA encryption algorithm are analyzed in detail in this paper. A feasible and efficient implementation scheme of modified hardware modules is proposed. The analyses of efficiency and simulation results on the hardware platform are conducted. The simulation results show that, compared with the previous algorithm models, the scheme has already been optimized to a certain extent in both the time sequence and the volume, reduced the area that the hardwares used to occupy significantly, improved performance, power consumption, stability greatly and provided a good reference for engineering applications.

        Keywords: RSA; asymmetric encryption; hardware implementation cost; Montgomery algorithm

        0 引 言

        作為首個較為完善的公開密鑰算法,RSA密鑰體系自1977年發(fā)布至今[1],仍然有能力為多個領(lǐng)域的數(shù)據(jù)傳輸提供良好的保密功能。但是受其自身密鑰體系的不對稱性,以及破解的手段日益成熟等多方面因素的制約,現(xiàn)已證實當前只有長度大于1 024位的RSA密鑰才有足夠能力提供相對可以接收的密保性[2]。相應地,大密鑰勢必要求較長的運算時間,同時增加其硬件實現(xiàn)的成本(速度,面積等)。本文旨在提出一種高效可行的由硬件實現(xiàn)RSA加密算法的方案,并給出其相應Verilog模型的仿真結(jié)果。

        4 結(jié) 語

        本文細致分析了RSA加密算法的原理及簡化過程,提出一種改進型硬件模塊的實現(xiàn)方案,并給出了效率分析以及在硬件平臺上的驗證結(jié)果。相較于以往的算法模型,該方案在時序以及面積上均做到了相當程度的優(yōu)化,在僅僅占用了一個CSA的Montgomery模型可減少50%左右在組合邏輯電阻中的傳輸延遲;該方法僅用一個類似于查找表的方案(4個預置寄存器,1個數(shù)選)替代了重組過程中的另一個CSA與大數(shù)乘法器,故硬件的占用面積亦可大幅度減少。

        參考文獻

        [1] RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and publick?key cryptosystems [J]. Communications of the ACM, 1978, 21(2): 120?126.

        [2] KOC C K. RSA hardware implementation [R]. Redwood City: RSA Laboratories, 1995.

        [3] RSA Laboratories. The publick?key cryptography standards (PKCS) [R]. [S.l.]: RSA Data Security, Inc., 1993.

        [4] VANDERSYPEN L M K. NMR quantum computing: Realizing Shor′s algorithm [J]. Nature, 2001, 414: 883?887.

        [5] TENCA A F, KOC C K. A scalable architecture for modular multipli?cation based on montgomery′s algorithm [J]. Lecture Notes in Computer Science, 1999, 1717: 94?108.

        [6] COOK D L, IOANNIDIS J, KEROMYTIS A D, et al. Cryptographics: Secret key cryptography using graphics cards [C]// Proceedings of RSA Conference. New York: Springer, 2005: 540?574.

        [7] CASTELLUCCIA C,MYKLETUN E, TSUDIK G. Improving secure server performance by Rebalancing SSL/TLS handshakes [EB/OL]. [2012?01?01]. http:// www.citeseerx.ist.psu.edu.

        [8] CHE Shuai, BOYER M, MENG Jia?yuan, et al. A performance study ofgeneral?purpose applications on graphics processors using CUDA [J]. Journal of Parallel and Distributed Computing, 2008, 68(10): 1370?1380.

        [9] WALTER C D. Precise bounds for montgomery modular multiplication and some potentially insecure RSA Moduli [M]. San Jose: CT?RSA, 2002.

        [10] SHAND M, VUILLEMIN J. Fast implementation of RSA cryptography [C]// Proceedings of 11th IEEE Synposium on Computer Arithmetic. [S.l.]: IEEE, 1993: 252?259.

        [11] LU Chenghuai, ANDRE L M. Implementation of fast RSA key generation on smart cards [C]// Proceedings of the 2002 ACM Symposium on Applied Computing. USA: ACS Press, 2002: 214?220.

        [12] BUNIMOV V, SCHIMMLER M, TOLG B. A complexity?effective version of Montgomery′s algorithm [C]// proceedings of Workshop on Complexity Effective Designs. Germany: Technical University of Braunschweig, 2002: 3?5.

        摘 要: 詳細分析了RSA加密算法的原理及優(yōu)化方法,提出一種高效可行改進型硬件模塊的實現(xiàn)方案,并給出了效率分析以及在硬件平臺上的仿真結(jié)果分析;通過仿真分析發(fā)現(xiàn),相比以往的算法模型,該方案在時序以及面積上均做到了相當程度的優(yōu)化,硬件的占用面積大幅度減少,具體的性能及功耗、穩(wěn)定性有較大提高,為工程應用提供了良好的借鑒。

        關(guān)鍵詞: RSA; 不對稱加密; 硬件實現(xiàn)成本; Montgomery算法

        中圖分類號: TN918.4?34 文獻標識碼: A 文章編號: 1004?373X(2014)17?0082?04

        Abstract: The principles and optimization method of RSA encryption algorithm are analyzed in detail in this paper. A feasible and efficient implementation scheme of modified hardware modules is proposed. The analyses of efficiency and simulation results on the hardware platform are conducted. The simulation results show that, compared with the previous algorithm models, the scheme has already been optimized to a certain extent in both the time sequence and the volume, reduced the area that the hardwares used to occupy significantly, improved performance, power consumption, stability greatly and provided a good reference for engineering applications.

        Keywords: RSA; asymmetric encryption; hardware implementation cost; Montgomery algorithm

        0 引 言

        作為首個較為完善的公開密鑰算法,RSA密鑰體系自1977年發(fā)布至今[1],仍然有能力為多個領(lǐng)域的數(shù)據(jù)傳輸提供良好的保密功能。但是受其自身密鑰體系的不對稱性,以及破解的手段日益成熟等多方面因素的制約,現(xiàn)已證實當前只有長度大于1 024位的RSA密鑰才有足夠能力提供相對可以接收的密保性[2]。相應地,大密鑰勢必要求較長的運算時間,同時增加其硬件實現(xiàn)的成本(速度,面積等)。本文旨在提出一種高效可行的由硬件實現(xiàn)RSA加密算法的方案,并給出其相應Verilog模型的仿真結(jié)果。

        4 結(jié) 語

        本文細致分析了RSA加密算法的原理及簡化過程,提出一種改進型硬件模塊的實現(xiàn)方案,并給出了效率分析以及在硬件平臺上的驗證結(jié)果。相較于以往的算法模型,該方案在時序以及面積上均做到了相當程度的優(yōu)化,在僅僅占用了一個CSA的Montgomery模型可減少50%左右在組合邏輯電阻中的傳輸延遲;該方法僅用一個類似于查找表的方案(4個預置寄存器,1個數(shù)選)替代了重組過程中的另一個CSA與大數(shù)乘法器,故硬件的占用面積亦可大幅度減少。

        參考文獻

        [1] RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and publick?key cryptosystems [J]. Communications of the ACM, 1978, 21(2): 120?126.

        [2] KOC C K. RSA hardware implementation [R]. Redwood City: RSA Laboratories, 1995.

        [3] RSA Laboratories. The publick?key cryptography standards (PKCS) [R]. [S.l.]: RSA Data Security, Inc., 1993.

        [4] VANDERSYPEN L M K. NMR quantum computing: Realizing Shor′s algorithm [J]. Nature, 2001, 414: 883?887.

        [5] TENCA A F, KOC C K. A scalable architecture for modular multipli?cation based on montgomery′s algorithm [J]. Lecture Notes in Computer Science, 1999, 1717: 94?108.

        [6] COOK D L, IOANNIDIS J, KEROMYTIS A D, et al. Cryptographics: Secret key cryptography using graphics cards [C]// Proceedings of RSA Conference. New York: Springer, 2005: 540?574.

        [7] CASTELLUCCIA C,MYKLETUN E, TSUDIK G. Improving secure server performance by Rebalancing SSL/TLS handshakes [EB/OL]. [2012?01?01]. http:// www.citeseerx.ist.psu.edu.

        [8] CHE Shuai, BOYER M, MENG Jia?yuan, et al. A performance study ofgeneral?purpose applications on graphics processors using CUDA [J]. Journal of Parallel and Distributed Computing, 2008, 68(10): 1370?1380.

        [9] WALTER C D. Precise bounds for montgomery modular multiplication and some potentially insecure RSA Moduli [M]. San Jose: CT?RSA, 2002.

        [10] SHAND M, VUILLEMIN J. Fast implementation of RSA cryptography [C]// Proceedings of 11th IEEE Synposium on Computer Arithmetic. [S.l.]: IEEE, 1993: 252?259.

        [11] LU Chenghuai, ANDRE L M. Implementation of fast RSA key generation on smart cards [C]// Proceedings of the 2002 ACM Symposium on Applied Computing. USA: ACS Press, 2002: 214?220.

        [12] BUNIMOV V, SCHIMMLER M, TOLG B. A complexity?effective version of Montgomery′s algorithm [C]// proceedings of Workshop on Complexity Effective Designs. Germany: Technical University of Braunschweig, 2002: 3?5.

        摘 要: 詳細分析了RSA加密算法的原理及優(yōu)化方法,提出一種高效可行改進型硬件模塊的實現(xiàn)方案,并給出了效率分析以及在硬件平臺上的仿真結(jié)果分析;通過仿真分析發(fā)現(xiàn),相比以往的算法模型,該方案在時序以及面積上均做到了相當程度的優(yōu)化,硬件的占用面積大幅度減少,具體的性能及功耗、穩(wěn)定性有較大提高,為工程應用提供了良好的借鑒。

        關(guān)鍵詞: RSA; 不對稱加密; 硬件實現(xiàn)成本; Montgomery算法

        中圖分類號: TN918.4?34 文獻標識碼: A 文章編號: 1004?373X(2014)17?0082?04

        Abstract: The principles and optimization method of RSA encryption algorithm are analyzed in detail in this paper. A feasible and efficient implementation scheme of modified hardware modules is proposed. The analyses of efficiency and simulation results on the hardware platform are conducted. The simulation results show that, compared with the previous algorithm models, the scheme has already been optimized to a certain extent in both the time sequence and the volume, reduced the area that the hardwares used to occupy significantly, improved performance, power consumption, stability greatly and provided a good reference for engineering applications.

        Keywords: RSA; asymmetric encryption; hardware implementation cost; Montgomery algorithm

        0 引 言

        作為首個較為完善的公開密鑰算法,RSA密鑰體系自1977年發(fā)布至今[1],仍然有能力為多個領(lǐng)域的數(shù)據(jù)傳輸提供良好的保密功能。但是受其自身密鑰體系的不對稱性,以及破解的手段日益成熟等多方面因素的制約,現(xiàn)已證實當前只有長度大于1 024位的RSA密鑰才有足夠能力提供相對可以接收的密保性[2]。相應地,大密鑰勢必要求較長的運算時間,同時增加其硬件實現(xiàn)的成本(速度,面積等)。本文旨在提出一種高效可行的由硬件實現(xiàn)RSA加密算法的方案,并給出其相應Verilog模型的仿真結(jié)果。

        4 結(jié) 語

        本文細致分析了RSA加密算法的原理及簡化過程,提出一種改進型硬件模塊的實現(xiàn)方案,并給出了效率分析以及在硬件平臺上的驗證結(jié)果。相較于以往的算法模型,該方案在時序以及面積上均做到了相當程度的優(yōu)化,在僅僅占用了一個CSA的Montgomery模型可減少50%左右在組合邏輯電阻中的傳輸延遲;該方法僅用一個類似于查找表的方案(4個預置寄存器,1個數(shù)選)替代了重組過程中的另一個CSA與大數(shù)乘法器,故硬件的占用面積亦可大幅度減少。

        參考文獻

        [1] RIVEST R L, SHAMIR A, ADLEMAN L. A method for obtaining digital signatures and publick?key cryptosystems [J]. Communications of the ACM, 1978, 21(2): 120?126.

        [2] KOC C K. RSA hardware implementation [R]. Redwood City: RSA Laboratories, 1995.

        [3] RSA Laboratories. The publick?key cryptography standards (PKCS) [R]. [S.l.]: RSA Data Security, Inc., 1993.

        [4] VANDERSYPEN L M K. NMR quantum computing: Realizing Shor′s algorithm [J]. Nature, 2001, 414: 883?887.

        [5] TENCA A F, KOC C K. A scalable architecture for modular multipli?cation based on montgomery′s algorithm [J]. Lecture Notes in Computer Science, 1999, 1717: 94?108.

        [6] COOK D L, IOANNIDIS J, KEROMYTIS A D, et al. Cryptographics: Secret key cryptography using graphics cards [C]// Proceedings of RSA Conference. New York: Springer, 2005: 540?574.

        [7] CASTELLUCCIA C,MYKLETUN E, TSUDIK G. Improving secure server performance by Rebalancing SSL/TLS handshakes [EB/OL]. [2012?01?01]. http:// www.citeseerx.ist.psu.edu.

        [8] CHE Shuai, BOYER M, MENG Jia?yuan, et al. A performance study ofgeneral?purpose applications on graphics processors using CUDA [J]. Journal of Parallel and Distributed Computing, 2008, 68(10): 1370?1380.

        [9] WALTER C D. Precise bounds for montgomery modular multiplication and some potentially insecure RSA Moduli [M]. San Jose: CT?RSA, 2002.

        [10] SHAND M, VUILLEMIN J. Fast implementation of RSA cryptography [C]// Proceedings of 11th IEEE Synposium on Computer Arithmetic. [S.l.]: IEEE, 1993: 252?259.

        [11] LU Chenghuai, ANDRE L M. Implementation of fast RSA key generation on smart cards [C]// Proceedings of the 2002 ACM Symposium on Applied Computing. USA: ACS Press, 2002: 214?220.

        [12] BUNIMOV V, SCHIMMLER M, TOLG B. A complexity?effective version of Montgomery′s algorithm [C]// proceedings of Workshop on Complexity Effective Designs. Germany: Technical University of Braunschweig, 2002: 3?5.

        猜你喜歡
        優(yōu)化分析模型
        一半模型
        超限高層建筑結(jié)構(gòu)設(shè)計與優(yōu)化思考
        民用建筑防煙排煙設(shè)計優(yōu)化探討
        關(guān)于優(yōu)化消防安全告知承諾的一些思考
        一道優(yōu)化題的幾何解法
        隱蔽失效適航要求符合性驗證分析
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計的漸近分布
        電力系統(tǒng)不平衡分析
        電子制作(2018年18期)2018-11-14 01:48:24
        電力系統(tǒng)及其自動化發(fā)展趨勢分析
        精品亚洲天堂一区二区三区| 无码不卡一区二区三区在线观看| 无码啪啪人妻| 一区二区三区在线观看视频精品| 内射人妻无套中出无码| 日本50岁丰满熟妇xxxx| 亚洲AV成人无码国产一区二区| 久久免费精品视频老逼| 最好看的亚洲中文字幕| 久久成人国产精品免费软件 | 久久久久九九精品影院| 中文人妻av久久人妻18| 神马不卡一区二区三级| 国产精品亚洲二区在线| 狠狠色噜噜狠狠狠777米奇| 久久久久久国产精品美女| 人妻被猛烈进入中文字幕| 亚洲av毛片在线播放| 国产一区二区精品久久岳| 四虎影库久免费视频| 人妻系列无码专区久久五月天| 中文字幕午夜精品一区二区三区| 在线观看的网站| 中文字幕无线码中文字幕| 国产网友自拍亚洲av| 亚洲av成熟国产一区二区| 国内精品卡一卡二卡三| 亚洲视频99| 热综合一本伊人久久精品| 乱色欧美激惰| 亚洲一区二区观看播放| 亚洲av色香蕉一区二区蜜桃| 成人久久黑人中出内射青草| 国产成人亚洲精品| 国产精品亚洲片夜色在线| 国产一区二区三区尤物| 色一情一乱一伦一视频免费看| 天美麻花果冻视频大全英文版| 亚洲av乱码一区二区三区女同| 久久精品国产91精品亚洲| 久久精品国产亚洲av大全|