王璐1,戴思蘭1,金雪花1,2,黃河1,洪艷1
?
植物花青素苷轉(zhuǎn)運(yùn)機(jī)制的研究進(jìn)展
王璐,戴思蘭,金雪花,黃河,洪艷
1 北京林業(yè)大學(xué)園林學(xué)院,北京 100083 2 昆明理工大學(xué)現(xiàn)代農(nóng)業(yè)工程學(xué)院,云南昆明 650500
王璐, 戴思蘭, 金雪花, 等. 植物花青素苷轉(zhuǎn)運(yùn)機(jī)制的研究進(jìn)展. 生物工程學(xué)報(bào), 2014, 30(6): 848?863.Wang L, Dai SL, Jin XH, et al.Advances in plant anthocyanin transport mechanism. Chin J Biotech, 2014, 30(6): 848?863.
花青素苷的合成過程是生物學(xué)上研究得較為清楚的代謝通路之一,但其最后階段的分子機(jī)制即花青素苷從細(xì)胞質(zhì)被轉(zhuǎn)運(yùn)至中央液泡的過程卻仍不清晰。最近研究者們剛剛開始對(duì)類黃酮化合物的轉(zhuǎn)運(yùn)過程進(jìn)行動(dòng)態(tài)的描繪,迄今共提出了4種花青素苷轉(zhuǎn)運(yùn)模型,發(fā)現(xiàn)了4類與花青素苷轉(zhuǎn)運(yùn)過程相關(guān)的轉(zhuǎn)運(yùn)蛋白:谷胱甘肽轉(zhuǎn)移酶、多藥耐藥抗性相關(guān)蛋白、多藥和有毒化合物排出家族和同源于哺乳動(dòng)物的膽紅素易位酶同族體,并對(duì)這4種轉(zhuǎn)運(yùn)體及相關(guān)基因的功能進(jìn)行了初步研究。盡管已經(jīng)提出了不同的花青素苷轉(zhuǎn)運(yùn)模型,但仍然缺乏對(duì)不同物種不同類型花青素苷向液泡轉(zhuǎn)運(yùn)及在液泡中沉積的細(xì)胞學(xué)和亞細(xì)胞學(xué)研究。根據(jù)獲得的信息,可以通過開展基因序列分析、基因表達(dá)分析、亞細(xì)胞定位和互補(bǔ)試驗(yàn)等,探求轉(zhuǎn)運(yùn)蛋白的功能及其作用位置,更好地解析植物體內(nèi)花青素苷的轉(zhuǎn)運(yùn)機(jī)制。
花青素苷,轉(zhuǎn)運(yùn),轉(zhuǎn)運(yùn)蛋白,跨膜運(yùn)輸,液泡積累,谷胱甘肽轉(zhuǎn)移酶,多藥耐藥抗性相關(guān)蛋白,多藥和有毒化合物排出家族
花色是觀賞植物重要的觀賞性狀之一,花色改良一直是育種工作者重要的育種目標(biāo)。植物體內(nèi)人們可以感知有顏色的化合物被稱為色 素。植物體內(nèi)主要含有3大類色素,即類黃酮、類胡蘿卜素及生物堿類色素?;ㄇ嗨剀諏儆陬慄S酮化合物,是一類水溶性色素,在細(xì)胞質(zhì)中合成但在液泡中積累,產(chǎn)生的顏色范圍是從紅色到紫色?;ㄇ嗨馗鶕?jù)其基本結(jié)構(gòu)分類很多,至今已知的花青素超過550種,但92%是由矢車菊色素 (Cyanidin)、飛燕草色素 (Delphindin)、天竺葵色素 (Pelargonidin)、錦葵色素 (Malvidin)、芍藥色素 (Peonidin)、矮牽牛色素 (Petunidin) 6種花青素衍生而來的,其中以前3種最為常見 (圖1)?;ㄇ嗨剀盏慕Y(jié)構(gòu)、助色素、金屬離子和液泡pH值均影響花青素苷的顏色。被子植物中大約88%的科的花色是由花青素苷決定的。類胡蘿卜素位于質(zhì)體中,是一類脂溶性色素,它產(chǎn)生的顏色范圍是黃色—紅色,可以與花青素共同存在并決定花色。生物堿類色素包括小檗堿、罌粟堿和甜菜堿等,其中甜菜堿包括產(chǎn)生紅色或紫色的甜菜素和產(chǎn)生黃色的甜黃質(zhì),存在于藜科和石竹科植物中,不與花青素苷同時(shí)存在。
花青素苷的生物合成途徑包括近20步化學(xué)反應(yīng),涉及約15個(gè)結(jié)構(gòu)基因和3類轉(zhuǎn)錄因子。
圖1 花青素骨架結(jié)構(gòu)及常見的6種花青素[6]
在高等植物中普遍存在著花青素-3-葡萄糖苷的合成通路(圖2)。在不同物種中,花青素苷合成途徑上的相關(guān)結(jié)構(gòu)基因存在著表達(dá)差異,每種植物通常只表達(dá)1套特定的基因,合成底物特異性的酶,因此只積累有限種類的花青素,呈現(xiàn)出特定的花色。
花青素苷是由位于細(xì)胞質(zhì)內(nèi)的多酶復(fù)合體催化合成的,多酶復(fù)合體通過細(xì)胞色素單加氧酶P450固定在內(nèi)質(zhì)網(wǎng)上,但花青素苷卻在液泡中儲(chǔ)存且植物細(xì)胞內(nèi)分布廣泛,說明植物體內(nèi)存在高效的花青素苷轉(zhuǎn)運(yùn)機(jī)制,可以將其穿越不同的有膜區(qū)室。從植物自身角度講,一方面,植物組織要想呈現(xiàn)出具有吸引力的顏色,合成的花青素苷必須在液泡這個(gè)酸性細(xì)胞器中進(jìn)行區(qū)劃;另一方面,花青素苷具有很高的生物化學(xué)反應(yīng)活性,對(duì)細(xì)胞具有毒害作用,合成的花青素苷必須被轉(zhuǎn)運(yùn)到液泡中予以匯集與貯存,減少對(duì)細(xì)胞的損害。因此,人們推測(cè)植物細(xì)胞中存在可以將花青素苷從細(xì)胞質(zhì)轉(zhuǎn)運(yùn)至液泡的轉(zhuǎn)運(yùn)機(jī)制。
圖2 類黃酮類色素的生物合成途徑[12]
花青素苷的轉(zhuǎn)運(yùn)和積累很大程度上影響植物的顏色表型,但花青素苷從細(xì)胞質(zhì)被轉(zhuǎn)運(yùn)至液泡的過程卻仍不清晰。目前共提出了4種花青素苷轉(zhuǎn)運(yùn)模型,發(fā)現(xiàn)了4類蛋白即GST、MRP、MATE和BTL-homologue可能參與花青素苷向液泡的轉(zhuǎn)運(yùn)。這4種模型可能并不是相互排斥的。
1.1 GST和MRP共同介導(dǎo)的花青素苷的轉(zhuǎn)運(yùn)
最完整的一種可能的花青素苷轉(zhuǎn)運(yùn)機(jī)制是由位于細(xì)胞質(zhì)的谷胱甘肽轉(zhuǎn)移酶 (Glutathione-Transferase, GST) 和位于液泡膜上的多藥耐藥抗性相關(guān)蛋白 (Multidrug resistance- associated protein, MRP) 共同完成的?;ㄇ嗨剀赵诩?xì)胞質(zhì)合成后,GST催化谷胱甘肽(Glutathione, GSH) 和花青素苷共價(jià)結(jié)合,形成谷胱甘肽交聯(lián)復(fù)合物 (Glutathione-conjugate)。這相當(dāng)于給花青素苷加了標(biāo)簽,其可被液泡膜上的MRP (一種谷胱甘肽-交聯(lián)結(jié)合泵 (GSH-conjugate (GS-X) pump)) 識(shí)別,MRP通過疏水基間的交互作用結(jié)合花青素苷,將其跨膜轉(zhuǎn)運(yùn)至液泡。然而,這個(gè)機(jī)制仍不清晰,有研究表明,是GST蛋白本身而不是GST的催化活性,為花青素苷轉(zhuǎn)運(yùn)所必需。即GST不是催化GSH同花青素苷結(jié)合,而是直接和花青素苷結(jié)合,充當(dāng)花青素苷的運(yùn)輸載體,將花青素苷轉(zhuǎn)運(yùn)至液泡膜,再由位于液泡膜上的MRP將花青素苷跨膜轉(zhuǎn)運(yùn)至液泡。
1.1.1 GST
在每種植物中均以基因超家族的形式出現(xiàn),如擬南芥中有47個(gè)成員,但功能各異,主要表現(xiàn)在底物特異性和轉(zhuǎn)運(yùn)靶向 (液泡、胞外等) 不同。很多研究表明,GST參與花青素苷的轉(zhuǎn)運(yùn)(表1)。玉米是最早發(fā)現(xiàn)與花青素苷轉(zhuǎn)運(yùn)有關(guān)的家族成員,其編碼谷胱甘肽轉(zhuǎn)移酶GSTIII,可以把谷胱甘肽 (GSH) 轉(zhuǎn)移到花青素苷上,形成一個(gè)谷胱甘肽交聯(lián)復(fù)合物,將花青素苷轉(zhuǎn)運(yùn)至液泡膜。功能分析表明,對(duì)花青素苷在液泡中的扣押是必需的,缺失,花青素苷不能被運(yùn)輸進(jìn)液泡而保留在細(xì)胞質(zhì)中。矮牽牛編碼谷胱甘肽轉(zhuǎn)移酶GSTI,是Bronze2的同源蛋白,可以結(jié)合花青素苷并運(yùn)輸至液泡膜。相較于Bronze2將GSH同花青素苷結(jié)合,矮牽牛中AN9蛋白直接和花青素苷結(jié)合,沒有谷胱甘肽交聯(lián)復(fù)合物的形成。矮牽牛突變體的表型可以轉(zhuǎn)玉米基因互補(bǔ)。擬南芥編碼一個(gè)谷胱甘肽轉(zhuǎn)移酶,可以將花青素苷運(yùn)輸至液泡膜。突變體的花青素苷轉(zhuǎn)運(yùn)功能可以通過表達(dá)矮牽?;蚧パa(bǔ),但其只能彌補(bǔ)花青素苷的積累,而不能彌補(bǔ)原花青素的積累,即種皮中沒有褐色色素的積累,表明只參與花青素苷的轉(zhuǎn)運(yùn),而既參與花青素苷的轉(zhuǎn)運(yùn),又參與原花青素的轉(zhuǎn)運(yùn)。
表1 不同植物中與花青素苷轉(zhuǎn)運(yùn)有關(guān)的GST家族成員信息
1.1.2 MRP
多藥耐藥抗性相關(guān)蛋白 (Multidrug resistance-associated protein, MRP/ABCC) 亞家族屬于ABC (ATP-binding cassette) 超家族。ABC超家族是一類數(shù)量多、功能廣泛的蛋白質(zhì),其不同的亞家族在植物次生代謝產(chǎn)物的跨膜轉(zhuǎn)運(yùn)中起著不同但重要的作用。擬南芥ABC轉(zhuǎn)運(yùn)蛋白總共可分為13個(gè)亞家族。其中屬于全分子ABC轉(zhuǎn)運(yùn)蛋白的有4個(gè)亞家族:MDR (22)、MRP (15)、PDR (13) 和AOH (1);屬于半分子ABC轉(zhuǎn)運(yùn)蛋白的有5個(gè)亞家族,分別為:PMP (2),WBC (29),ATH (16),ATM (3) 和TAP (2);屬于可溶性ABC轉(zhuǎn)運(yùn)蛋白的可分為3個(gè)亞家族:RLI (2)、GCN (5) 和SMC (4)。另外還有15個(gè)可溶性蛋白由于在其他生物中沒有發(fā)現(xiàn)同源蛋白,被歸入NAP亞家族。
MRP亞家族的某些成員充當(dāng)液泡膜上的谷胱甘肽-交聯(lián)結(jié)合泵,參與花青素苷的跨膜轉(zhuǎn)運(yùn)。Lu等發(fā)現(xiàn),擬南芥、均參與花青素苷的跨膜轉(zhuǎn)運(yùn)。Goodman等提出玉米與花青素苷轉(zhuǎn)運(yùn)有關(guān),抑制的表達(dá),花青素苷的積累量下降,這是目前較為完整的一個(gè)花青素苷轉(zhuǎn)運(yùn)相關(guān)MRP候選蛋白的報(bào)道。Zhu等提出,水稻是玉米的一個(gè)同源基因,可能與花青素苷的轉(zhuǎn)運(yùn)有關(guān)。在葡萄中,ABCC1被認(rèn)為是定位于液泡膜上負(fù)責(zé)向液泡轉(zhuǎn)運(yùn)花青素3-O-葡萄糖苷的轉(zhuǎn)運(yùn)體。目前只在這4種植物中找到可能與花青素苷轉(zhuǎn)運(yùn)有關(guān)的MRP亞家族成員 (表2)。
雖然對(duì)與花青素苷轉(zhuǎn)運(yùn)有關(guān)的MRP亞家族成員研究的比較少,但其所屬的ABC超家族跨膜轉(zhuǎn)運(yùn)蛋白的工作模型已非常清晰,是以直接水解ATP供能介導(dǎo)的次生代謝物的轉(zhuǎn)運(yùn):高親和力的底物與跨膜域結(jié)合導(dǎo)致ABC轉(zhuǎn)運(yùn)蛋白復(fù)合物的構(gòu)象改變,進(jìn)而引起ATP水解,由此導(dǎo)致被轉(zhuǎn)運(yùn)的底物分子轉(zhuǎn)移到一個(gè)低親和力的結(jié)合位點(diǎn)。之后底物分子被釋放到膜外間隙或者膜的另一側(cè)。隨之,第二個(gè)ATP結(jié)合位點(diǎn)上的ATP水解使ATP轉(zhuǎn)運(yùn)蛋白恢復(fù)至原來的構(gòu)象,為結(jié)合另一個(gè)底物分子做準(zhǔn)備。ABC轉(zhuǎn)運(yùn)蛋白的核心單元由4個(gè)結(jié)構(gòu)域組成:2個(gè)跨膜結(jié)構(gòu)域 (Transmembrane domain, TMD) 和2個(gè)核苷酸結(jié)合區(qū)域 (Nucleotide binding domains, NBD)(圖3)。
表2 不同植物中與花青素苷轉(zhuǎn)運(yùn)有關(guān)的MRP亞家族成員信息
圖3 ABC轉(zhuǎn)運(yùn)蛋白的二級(jí)結(jié)構(gòu)[47]
1.2 MATE介導(dǎo)的花青素苷轉(zhuǎn)運(yùn)機(jī)制
另外一種可能的花青素苷轉(zhuǎn)運(yùn)機(jī)制是通過定位在液泡膜上的多藥和有毒化合物排出家族 (Multidrug and toxic compound extrusion, MATE) 完成的。其介導(dǎo)的花青素苷跨膜轉(zhuǎn)運(yùn)機(jī)制是依賴于H/Na的逆向轉(zhuǎn)運(yùn)機(jī)制。ATP存在時(shí),液泡膜上的MATE轉(zhuǎn)運(yùn)蛋白利用膜兩側(cè)的H/Na濃度梯度作為推動(dòng)力,將花青素苷向液泡內(nèi)轉(zhuǎn)運(yùn),同時(shí)將質(zhì)子泵出液泡外(圖4,圖5)。
1.2.1 MATE
MATE轉(zhuǎn)運(yùn)蛋白是一類跨膜轉(zhuǎn)運(yùn)蛋白,在大多數(shù)原核生物和真核生物中執(zhí)行著相對(duì)保守、基礎(chǔ)的轉(zhuǎn)運(yùn)功能。MATE花青素苷轉(zhuǎn)運(yùn)蛋白相關(guān)研究在擬南芥、葡萄和蒺藜苜蓿中都有報(bào)道(表3)。擬南芥中,MATE家族共有56個(gè)成員,其中編碼的MATE轉(zhuǎn)運(yùn)蛋白控制著內(nèi)種皮中原花青素向液泡轉(zhuǎn)運(yùn)的過程。Debeaujon等通過T-DNA技術(shù)克隆到了。該基因含有7個(gè)內(nèi)含子,外顯子編碼507個(gè)氨基酸,其蛋白有12個(gè)跨膜域,用于與液泡膜結(jié)合。在合成原花色素的細(xì)胞內(nèi)特異表達(dá),在液泡膜上作為質(zhì)子逆向轉(zhuǎn)運(yùn)蛋白調(diào)節(jié)花青素苷向液泡內(nèi)的轉(zhuǎn)運(yùn)。擬南芥突變體液泡中所積累的花青素苷要明顯少于正常植株。在葡萄中,MATE不能轉(zhuǎn)運(yùn)天竺葵素-3糖苷或矢車菊素-3糖苷,只能轉(zhuǎn)運(yùn)酰基化的花青素苷,意味著酰基化對(duì)MATE轉(zhuǎn)運(yùn)是必需的。
1.2.2 H-ATPase在花青素苷轉(zhuǎn)運(yùn)中的作用
由于MATE利用膜兩側(cè)的梯度 (植物中一般是H濃度梯度) 作為驅(qū)動(dòng)力完成底物的跨膜運(yùn)輸,故它們的功能和活性很大程度上依賴于不同類型的H-ATPase提供并保持液泡膜兩側(cè)的H濃度梯度。H-ATPase在花青素苷轉(zhuǎn)運(yùn)中起著重要作用,H-ATPase關(guān)鍵酶的突變會(huì)導(dǎo)致產(chǎn)生透明種皮 (Transparent testa,)表型或花朵顏色的變化。P型的H-ATPase提供并保持細(xì)胞質(zhì)膜兩側(cè)的H濃度梯度,而V型H-ATPase或液泡焦磷酸酶 (Vacuolar pyrophosphatase, V-PPase) 質(zhì)子泵提供并保持液泡膜兩側(cè)的H濃度梯度。
圖4 植物體內(nèi)MATE轉(zhuǎn)運(yùn)體的生理功能和推斷的模型[50]
圖5 MATE轉(zhuǎn)運(yùn)蛋白的二級(jí)結(jié)構(gòu)[47]
表3 不同植物中與花青素苷轉(zhuǎn)運(yùn)有關(guān)的MATE家族成員信息
1.3 囊泡介導(dǎo)的花青素苷的轉(zhuǎn)運(yùn)
還有一種花青素苷的轉(zhuǎn)運(yùn)機(jī)制是由囊泡介導(dǎo)的花青素苷的轉(zhuǎn)運(yùn)。研究表明,花青素苷在內(nèi)質(zhì)網(wǎng)合成以后,首先在細(xì)胞質(zhì)聚集成有膜包裹的泡狀體 (Anthocyanoplast, ACPs),ACPs被包含在前液泡組成體 (Prevacuolar compartments, PVCs) 中。通過PVCs和中央大液泡的移動(dòng),ACPs被運(yùn)輸至中央大液泡。接著ACPs破裂,花青素苷在液泡中排列成條狀,最后形成具有不規(guī)則形狀的、動(dòng)態(tài)的、無膜包裹的花青素苷液泡內(nèi)涵體 (Anthocyanic vacuolar inclusions, AVIs)。除此之外,ACPs還可以被蛋白質(zhì)儲(chǔ)存泡 (Protein storage vacuoles, PSVs) 包裹并隨其移動(dòng)被運(yùn)輸至中央大液泡?;ㄇ嗨剀者€可通過高爾基體的囊泡運(yùn)輸網(wǎng)絡(luò)被轉(zhuǎn)運(yùn)至液泡。3種囊泡轉(zhuǎn)運(yùn)途徑均相互獨(dú)立(圖6)。對(duì)此轉(zhuǎn)運(yùn)機(jī)制的研究大多基于顯微鏡觀測(cè)。
這些不同的區(qū)室是怎么起始?基因、蛋白質(zhì)和植物化學(xué)物質(zhì)如何調(diào)控此轉(zhuǎn)運(yùn)機(jī)制?這些尚不清楚,還需要進(jìn)一步的研究給予解答。
1.3.1 AVIs
液泡中的花青素苷聚集于大小不一的AVIs中。AVIs主要存在于花瓣的表皮細(xì)胞中,其在花青素苷的積累而不是轉(zhuǎn)運(yùn)中發(fā)揮重要作用。雖然AVIs包含膜脂類及能同花青素苷結(jié)合的蛋白質(zhì),但AVIs是無膜包裹的、動(dòng)態(tài)的結(jié)構(gòu)。其內(nèi)部非常濃縮,外部則相對(duì)松散。研究表明,隨著液泡的成熟,AVIs的數(shù)量變少、體積增大。在甘薯細(xì)胞的懸浮培養(yǎng)中,大量小體積的AVIs逐漸融合形成體積較大的AVIs。
已在甘薯、鼠尾草、擬南芥、金魚草、石竹、桔梗、飛燕草、康乃馨、葡萄、玉米等植物中觀察到了AVIs。對(duì)藍(lán)灰色康乃馨和紫色龍膽中AVIs的研究表明,AVIs可以增深花朵顏色及產(chǎn)生藍(lán)移,其存在還能提高花青素苷的含量。藍(lán)移的花色表型在康乃馨中表現(xiàn)的尤為奇特,原本為粉色的天竺葵素卻產(chǎn)生了一種藍(lán)灰色的表型。對(duì)藍(lán)灰色康乃馨花瓣表皮細(xì)胞的鏡檢發(fā)現(xiàn),每個(gè)細(xì)胞液泡中只有1個(gè)深紅色的AVI,而在液泡的其他地方幾乎沒有色素。此外,研究表明,康乃馨花瓣細(xì)胞液泡中的AVIs可以優(yōu)先聚集糖基化和?;幕ㄇ嗨剀?。在懸浮培養(yǎng)的葡萄細(xì)胞中,AVIs選擇性地優(yōu)先聚集?;幕ㄇ嗨?苷。在誘導(dǎo)產(chǎn)生大量花青素苷的擬南芥植株中也發(fā)現(xiàn)了類似AVIs的結(jié)構(gòu)。擬南芥中,AVIs的形成與矢車菊3–葡萄糖苷及其衍生物有密切關(guān)系。在擬南芥花青素苷形成中缺少5-0位糖基化突變體中發(fā)現(xiàn),幾乎每個(gè)子葉表皮細(xì)胞中都有AVIs的積累,而在普通的野生型幼苗中只有一小部分細(xì)胞中有AVIs。自我吞噬過程缺失的擬南芥突變體中,AVIs的含量很少,花青素的積累也減少了,表明花青素苷從細(xì)胞質(zhì)進(jìn)入到液泡中可能與自噬小體的吞噬作用有關(guān)。
1.3.2 VP24介導(dǎo)的花青素苷在液泡中的積累
VP24 (24-kDa vacuolar protein) 是一種由893個(gè)氨基酸組成的前體蛋白,其位于AVIs中,C-末端前肽包含8個(gè)跨膜區(qū),含有多重跨膜結(jié)構(gòu)域。成熟VP24可能在含有大量花青素苷的液泡中參與AVIs的形成,通過與花青素苷的相互作用參與藍(lán)色顆粒的形成及大量轉(zhuǎn)運(yùn)至液泡的花青素苷的積累,但其C-末端區(qū)域的生物學(xué)功能迄今仍是未知。
在甘薯的AVIs中分離出了一個(gè)光誘導(dǎo)的金屬蛋白酶VP24,參加液泡中花青素苷的轉(zhuǎn)運(yùn)和匯集。光誘導(dǎo)3個(gè)不同甘薯細(xì)胞系的的表達(dá),通過免疫印跡法分析發(fā)現(xiàn),它們分別以不同的速率產(chǎn)生花青素苷,無VP24的細(xì)胞系的液泡不產(chǎn)生花青素苷,說明光誘導(dǎo)的表達(dá)與花青素苷的積累密切相關(guān)。在體外,VP24可以很容易與花青素苷結(jié)合。
目前,大多數(shù)研究者認(rèn)為GST及MRP介導(dǎo)的花青素苷轉(zhuǎn)運(yùn)、MATE介導(dǎo)的花青素苷跨膜轉(zhuǎn)運(yùn)和囊泡介導(dǎo)的花青素苷轉(zhuǎn)運(yùn)是植物體內(nèi)最主要的三種花青素苷轉(zhuǎn)運(yùn)方式(圖7)。
1.4 BTL-homologue介導(dǎo)的花青素苷的轉(zhuǎn)運(yùn)
有研究表明,在康乃馨的花瓣中發(fā)現(xiàn)了一種定位于液泡膜、同源于哺乳動(dòng)物的膽紅素易位酶同族體 (Bilitranslocase-homologue, BTL- homologue) 可能與花青素苷的跨膜轉(zhuǎn)運(yùn)有關(guān)。膽紅素易位酶是一類可以轉(zhuǎn)運(yùn)血紅素降解產(chǎn)物 (膽紅素) 和花青素苷的蛋白質(zhì)。在葡萄中,膽紅素易位酶同族體可能與花青素苷轉(zhuǎn)運(yùn)有關(guān) (圖8)。可能的花青素苷轉(zhuǎn)運(yùn)機(jī)制是BTL-homologue與吸收四溴酚酞磺酸鈉 (Bromosulfalein, BSP) 的產(chǎn)電過程有關(guān),與抗體一起對(duì)一段BTL序列呈現(xiàn)出交叉反應(yīng)性。但有關(guān)BTL-homologue介導(dǎo)的花青素苷轉(zhuǎn)運(yùn)的信息還很少,需要對(duì)其進(jìn)一步研究。
圖7 花青素苷轉(zhuǎn)運(yùn)模型[13]
圖8 葡萄中推測(cè)可能的類黃酮轉(zhuǎn)運(yùn)機(jī)制模型[65]
綜合近年來的研究進(jìn)展,我們推測(cè)了幾種可能的花青素苷轉(zhuǎn)運(yùn)機(jī)制:1) GST催化GSH和花青素苷結(jié)合或GST充當(dāng)運(yùn)輸載體將花青素苷從內(nèi)質(zhì)網(wǎng)運(yùn)輸至液泡膜,位于液泡膜上的MRP類轉(zhuǎn)運(yùn)蛋白識(shí)別花青素苷并將其跨膜轉(zhuǎn)運(yùn)至液泡;2) 液泡膜上的MATE轉(zhuǎn)運(yùn)蛋白將花青素苷跨膜轉(zhuǎn)運(yùn)到液泡中;3) 囊泡直接介導(dǎo)花青素苷的轉(zhuǎn)運(yùn);4) 液泡膜上的BTL-homologue介導(dǎo)花青素苷的跨膜轉(zhuǎn)運(yùn)。這幾種花青素苷轉(zhuǎn)運(yùn)機(jī)制可能共同存在并同時(shí)發(fā)生作用。實(shí)驗(yàn)證明,結(jié)構(gòu)基因及轉(zhuǎn)錄因子調(diào)控花青素合成量,而轉(zhuǎn)運(yùn)蛋白則對(duì)花青素苷的積累起著非常重要的作用,單個(gè)轉(zhuǎn)運(yùn)蛋白基因缺失會(huì)導(dǎo)致花青素和原花青素缺陷,并伴隨著中央液泡的功能紊亂。
近十多年來,有關(guān)花青素苷生物合成的結(jié)構(gòu)基因和調(diào)節(jié)基因在分子結(jié)構(gòu)和基因表達(dá)方面的研究取得了很大的進(jìn)步。尤其是合成途徑末期步驟中如ANS、修飾酶、轉(zhuǎn)運(yùn)體、液泡沉積與CHS、CHI、ANS三維結(jié)構(gòu)方面的研究給闡明花青素苷等類黃酮次生代謝物的生物合成提供了新的信息。然而,花青素合成后的修飾、轉(zhuǎn)運(yùn)、匯集及轉(zhuǎn)錄因子的相互作用機(jī)制等方面的研究尚處于起步階段。就花青素苷轉(zhuǎn)運(yùn)來說,到目前為止,仍不可能總結(jié)出所有花青素苷的轉(zhuǎn)運(yùn)機(jī)制。目前我們對(duì)花青素苷轉(zhuǎn)運(yùn)的了解僅僅關(guān)于花青素苷被轉(zhuǎn)運(yùn)至液泡的過程,對(duì)花青素苷如何流出液泡,進(jìn)出細(xì)胞,被轉(zhuǎn)運(yùn)至細(xì)胞核、葉綠體、亞細(xì)胞區(qū)室卻了解較少,但這些轉(zhuǎn)運(yùn)過程可能對(duì)植物生長(zhǎng)、發(fā)育、繁殖及抗逆都有重要的作用。只有我們了解更多介導(dǎo)次生代謝物流出液泡的轉(zhuǎn)運(yùn)體,才能知道細(xì)胞調(diào)控花青素苷進(jìn)出液泡的機(jī)制。對(duì)此一個(gè)可能的模型是在特定的細(xì)胞區(qū)室中代謝物積累到一定水平后能激活某個(gè)信號(hào)轉(zhuǎn)導(dǎo)途徑,繼而調(diào)控特定轉(zhuǎn)運(yùn)基因的表達(dá)。很多編碼轉(zhuǎn)運(yùn)體的基因,如ABC轉(zhuǎn)運(yùn)體就受到很多信號(hào)的調(diào)控。
雖然關(guān)于花青素苷轉(zhuǎn)運(yùn)還存在很多疑問,但基因組學(xué)的快速發(fā)展為更加快速地研究提供了希望。新的信息學(xué)手段加快了轉(zhuǎn)運(yùn)體的功能預(yù)測(cè)。能激活整個(gè)類黃酮合成和轉(zhuǎn)運(yùn)通路的轉(zhuǎn)錄因子,又能為候選基因的發(fā)掘提供有力工具。相信隨著生物化學(xué)、細(xì)胞生物學(xué)、分子生物學(xué)、蛋白質(zhì)組學(xué)的發(fā)展,轉(zhuǎn)錄因子的進(jìn)一步分離、鑒定,突變體資源以及基因工程技術(shù)應(yīng)用,將進(jìn)一步闡明花青素合成、轉(zhuǎn)運(yùn)、沉積的調(diào)控網(wǎng)絡(luò),有效地調(diào)控植物中花青素苷合成工作的開展,實(shí)現(xiàn)改良植物遺傳性狀的目標(biāo)。研究花青素苷的轉(zhuǎn)運(yùn)機(jī)制不僅對(duì)次生代謝產(chǎn)物轉(zhuǎn)運(yùn)機(jī)制的理論研究有一定積極意義,還能幫助理解和描繪花青素苷從合成到積累完整的代謝通路,此外還有利于類黃酮化合物代謝工程學(xué)的研究,達(dá)到提升作物農(nóng)學(xué)特性及食物營(yíng)養(yǎng)品質(zhì)的目的。
[1] Xu QY, Dai SL. Blue flowers’ molecular breeding. Molecular Plant Breeding, 2004, 2(1): 93–99 (in Chinese).徐清燏, 戴思蘭. 藍(lán)色花的分子育種. 分子植物育種, 2004, 2(1): 93–99.
[2] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J, 2008, 54(4): 733–749.
[3] Hu K, Han KT, Dai SL. Regulation of plant anthocyanin synthesis and pigmentation by environmental factors. J Integr Plant Biol, 2010, 45(3): 307–317 (in Chinese).胡可, 韓科廳, 戴思蘭. 環(huán)境因子調(diào)控植物花青素苷合成及呈色的機(jī)理. 植物學(xué)報(bào), 2010, 45(3): 307–317.
[4] Han KT, Zhao L, Tang XJ, et al. The relationship between the expression of key genes in anthocyanin biosynthesis and the color of chrysanthemum. Acta Hortic Sin, 2012, 39(3): 516–524 (in Chinese).韓科廳, 趙莉, 唐杏?jì)? 等. 菊花花青素苷合成關(guān)鍵基因表達(dá)與花色表型的關(guān)系. 園藝學(xué)報(bào), 2012, 39(3): 516–524.
[5] You Q, Wang B, Chen F, et al. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem, 2011, 125(1): 201–208.
[6] Ge CL, Huang CH, Xu XB. Research on anthocyanins biosynthesis in fruit. Acta Hortic Sin, 2012, 39(9): 1655–1664 (in Chinese).葛翠蓮, 黃春輝, 徐小彪. 果實(shí)花青素生物合成研究進(jìn)展. 園藝學(xué)報(bào), 2012, 39(9): 1655–1664.
[7] Weiss MR. Floral color change: a widespread functional convergence. Am J Bot, 1995: 167–185.
[8] Han KT, Hu K, Dai SL. Flower color breeding by molecular design in ornamentals. Molecular Plant Breeding, 2008, 6(1): 16–24 (in Chinese).韓科廳, 胡可, 戴思蘭. 觀賞植物花色的分子設(shè)計(jì). 分子植物育種, 2008, 6(1): 16–24.
[9] Hu K, Meng L, Han KT, et al. Isolation and expression analysis of key genes involved in anthocyanin biosynthesis of Cineraria. Acta Hortic Sin, 2009, 36(7): 1013–1022 (in Chinese).胡可, 孟麗, 韓科廳, 等.瓜葉菊花青素合成關(guān)鍵結(jié)構(gòu)基因的分離及表達(dá)分析. 園藝學(xué)報(bào), 2009, 36(7): 1013–1022.
[10] Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 2006, 57: 761–780.
[11] Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, et al. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol, 2007, 48(11): 1589–1600.
[12] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005, 10(5): 236–242.
[13] Zhao J, Dixon RA. The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci, 2010, 15(2): 72–80.
[14] Winkel-Shirley B. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plantarum, 1999, 107(1): 142–149.
[15] Grotewold E. The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta, 2004, 219(5): 906–909.
[16] Hrazdina G. Compartmentation in aromatic metabolism//Phenolic Metabolism in Plants. New York: Plenum Press, 1992: 1–23.
[17] Ibrahim RK. Immunolocalization of flavonoid conjugates and their enzymes//Phenolic Metabolism in Plants. New York: Plenum Press, 1992: 25–61.
[18] Marrs KA, Alfenito MR, Lloyd AM, et al. A glutathione-transferase involved in vacuolar transfer encoded by the maize gene. Nature, 1995, 395: 397–400.
[19] Klein M, Weissenb?ck G, Dufaud A, et al. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem, 1996, 271(47): 29666–29671.
[20] Li ZS, Alfenito M, Rea PA, et al. Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump. Phytochemistry, 1997, 45(4): 689–693.
[21] Grotewold E, Chamberlin M, Snook M, et al. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell, 1998, 10(5): 721–740.
[22] Zhao J, Dixon RA. MATE transporters facilitate vacuolar uptake of epicatechin 3′--glucoside for proanthocyanidin biosynthesis inand. Plant Cell, 2009, 21(8): 2323–2340.
[23] Pourcel L, Irani NG, Lu Y, et al. The formation of anthocyanic vacuolar inclusions inand implications for the sequestration of anthocyanin pigments. Mol Plant, 2010, 3(1): 78–90.
[24] Mueller LA, Goodman CD, Silady RA, et al. AN9, a petunia glutathione-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol, 2000, 123(4): 1561–1570.
[25] Goodman CD, Casati P, Walbot V. A multidrug resistance–associated protein involved in anthocyanin transport in. Plant Cell, 2004, 16(7): 1812–1826.
[26] Wagner U, Edwards R, Dixon DP, et al. Probing the diversity of the Arabidopsis glutathione-transferase gene family. Plant Mol Biol, 2002, 49(5): 515–532.
[27] Kitamura S, Shikazono N, Tanaka A.is involved in the accumulation of both anthocyanins and proanthocyanidins in. Plant J, 2004, 37(1): 104–114.
[28] Alfenito MR, Souer E, Goodman CD, et al. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione-transferases. Plant Cell, 1998, 10(7): 1135–1149.
[29] Zhao J, Huhman D, Shadle G, et al. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in. Plant Cell, 2011, 23(4): 1536–1555.
[30] Sun Y, Li H, Huang JR.TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol Plant, 2012, 5(2): 387–400.
[31] Yamazaki M, Shibata M, Nishiyama Y, et al. Differential gene expression profiles of red and green forms ofleading to comprehensive identification of anthocyanin biosynthetic genes. FEBS J, 2008, 275(13): 3494–3502.
[32] Conn S, Curtin C, Bézier A, et al. Purification, molecular cloning, and characterization of glutathione-transferases (GSTs) from pigmentedL. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot, 2008, 59(13): 3621–3634.
[33] Gomez C, Conejero G, Torregrosa L, et al. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J, 2011, 67(6): 960–970.
[34] Kitamura S, Akita Y, Ishizaka H, et al. Molecular characterization of an anthocyanin-related glutathione--transferase gene in cyclamen. J Plant Physiol, 2012, 169(6): 636–642.
[35] Sasaki N, Nishizaki Y, Uchida Y, et al. Identification of thegene responsible for flower color intensity in carnations. Plant Biotechnol, 2012, 29: 223–227.
[36] Jin XH, Hong Y, Huang H, et al. Isolation and expression analysis ofgene encoding glutathione-transferase from. Acta Hortic Sin, 2013, 40(6): 1129–1138 (in Chinese).金雪花, 洪艷, 黃河, 等. 瓜葉菊谷胱甘肽轉(zhuǎn)移酶基因的分離及表達(dá)分析. 園藝學(xué)報(bào), 2013, 40(6): 1129–1138.
[37] Rea PA. MRP subfamily ABC transporters from plants and yeast. J Exp Bot, 1999, 50(Special Issue): 895–913.
[38] Theodoulou FL. Plant ABC transporters. BBA-Biomembranes, 2000, 1465(1): 79–103.
[39] Yazaki K. Transporters of secondary metabolites. Curr Opin Plant Biol, 2005, 8(3): 301–307.
[40] Jin HB, Liu DH, Zuo KJ, et al. Plant ABC transporters and their roles in the transmembrane transport of secondary metabolites. J Agric Sci Technol, 2007, 9(3): 32–37 (in Chinese).金宏濱, 劉東輝, 左開井, 等. 植物ABC轉(zhuǎn)運(yùn)蛋白與次生代謝產(chǎn)物的跨膜轉(zhuǎn)運(yùn). 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào), 2007, 9(3): 32–37.
[41] Lu YP, Li ZS, Drozdowicz YM, et al. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell, 1998, 10(2): 267–282.
[42] Lu YP, Li ZS, Rea PA.gene ofencodes a glutathione-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci USA, 1997, 94(15): 8243–8248.
[43] Zhu QL, Xie XR, Zhang J, et al.analysis of a MRP transporter gene reveals its possible role in anthocyanins or flavonoids transport in. AJPS, 2013, 4: 555–560.
[44] Francisco RM, Regalado A, Ageorges A, et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3--glucosides. Plant Cell, 2013, 25(5): 1840–1854.
[45] Schulz B, Kolukisaoglu Hü. Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just holes in membranes? FEBS Lett, 2006, 580(4): 1010–1016.
[46] Verrier PJ, Bird D, Burla B, et al. Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci, 2008, 13(4): 151–159.
[47] Xie XD, Cheng TC, Wang GH, et al.ABC and MATE transporters of plant and their roles in membrane transport of secondary metabolites. Plant Physiol J, 2011, 47(8): 752–758 (in Chinese).謝小東, 程廷才, 王根洪, 等. 植物ABC和MATE轉(zhuǎn)運(yùn)蛋白與次生代謝物跨膜轉(zhuǎn)運(yùn). 植物生理學(xué)報(bào), 2011, 47(8): 752–758.
[48] Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, et al. Thegene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell, 2001, 13(4): 853–871.
[49] Marinova K, Kleinschmidt K, Weissenb?ck G, et al. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiol, 2007, 144(1): 432–444.
[50] Yazaki K, Sugiyama A, Morita M, et al. Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev, 2008, 7(3): 513–524.
[51] Gomez C, Terrier N, Torregrosa L, et al. Grapevine MATE-type proteins act as vacuolar H-dependent acylated anthocyanin transporters. Plant Physiol, 2009, 150(1): 402–415.
[52] Gaxiola RA, Fink GR, Hirschi KD. Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol, 2002, 129(3): 967–973.
[53] Verweij W, Spelt C, Di Sansebastiano GP, et al. An HP-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol, 2008, 10(12): 1456–1462.
[54] Zhang H, Wang L, Deroles S, et al. New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biol, 2006, 6(1): 29.
[55] Irani NG, Grotewold E. Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells. BMC Plant Biol, 2005, 5(1): 7.
[56] Markham KR, Gould KS, Winefield CS, et al. Anthocyanic vacuolar inclusions—their nature and significance in flower colouration. Phytochemistry, 2000, 55(4): 327–336.
[57] Conn S, Zhang W, Franco C. Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins inL. (grapevine) suspension culture. Biotechnol Lett, 2003, 25(11): 835–839.
[58] Wu J, Cheng JW, Yang FC. Transcriptional regulation of anthocyanin biosynthesis in plants. Chinese Journal of Cell Biology, 2006, 28: 453–456 (in Chinese).吳江, 程建徽, 楊夫臣. 植物花色素苷生物合成的轉(zhuǎn)錄調(diào)控. 中國(guó)細(xì)胞生物學(xué)學(xué)報(bào), 2006, 28: 453–456.
[59] Nozue M, Yamada K, Nakamura T, et al. Expression of a vacuolar protein (VP24) in anthocyanin-producing cells of sweet potato in suspension culture. Plant Physiol, 1997, 115(3): 1065–1072.
[60] Xu W, Moriya K, Yamada K, et al. Detection and characterization of a 36-kDa peptide in C-terminal region of a 24-kDa vacuolar protein (VP24) precursor in anthocyanin-producing sweet potato cells in suspension culture. Plant Sci, 2000, 160(1): 121–128.
[61] Nozue M, Baba S, Kitamura Y, et al. VP24 found in anthocyanic vacuolar inclusions (AVIs) of sweet potato cells is a member of a metalloprotease family. Biochem Eng J, 2003, 14(3): 199–205.
[62] Xu W, Shioiri H, Kojima M, et al. Primary structure and expression of a 24-kD vacuolar protein (VP24) precursor in anthocyanin-producing cells of sweet potato in suspension culture. Plant Physiol, 2001, 125(1): 447–455.
[63] Passamonti S, Cocolo A, Braidot E, et al. Characterization of electrogenic bromosulfophthalein transport in carnation petal microsomes and its inhibition by antibodies against bilitranslocase. FEBS J, 2005, 272(13): 3282–3296.
[64] Passamonti S, Vrhovsek U, Mattivi F. The interaction of anthocyanins with bilitranslocase. Biochem Bioph Res Co, 2002, 296(3): 631–636.
[65] Braidot E, Zancani M, Petrussa E, et al. Transport and accumulation of flavonoids in grapevine (L.). Plant Signal Behav, 2008, 3(9): 626–632.
[66] Naoumkina M, Farag MA, Sumner LW, et al. Different mechanisms for phytoalexin induction by pathogen and wound signals in. Proc Natl Acad Sci USA, 2007, 104(46): 17909–17915.
[67] Stein M, Dittgen J, Sánchez-Rodríguez C, et al.PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 2006, 18(3): 731–746.
[68] Jasinski M, Ducos E, Martinoia E, et al. The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and. Plant Physiol, 2003, 131(3): 1169–1177.
(本文責(zé)編 陳宏宇)
Advances in plant anthocyanin transport mechanism
Lu Wang, Silan Dai, Xuehua Jin, He Huang, and Yan Hong
1 College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China 2 Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
Anthocyanin biosynthesis is one of the thoroughly studied enzymatic pathways in biology, but little is known about the molecular mechanisms of its final stage: the transport of the anthocyanins into the vacuole. A clear picture of the dynamic trafficking of flavonoids is only now beginning to emerge. So far four different models have been proposed to explain the transport of anthocyanins from biosynthetic sites to the central vacuole, and four types of transporters have been found associated with the transport of anthocyanins: glutathione S-transferase, multidrug resistance-associated protein, multidrug and toxic compound extrusion, bilitranslocase-homologue. The functions of these proteins and related genes have also been studied. Although different models have been proposed, cellular and subcellular information is still lacking for reconciliation of different lines of evidence in various anthocyanin sequestration studies. According to the information available, through sequence analysis, gene expression analysis, subcellular positioning and complementation experiments, the function and location of these transporters can be explored, and the anthocyanin transport mechanism can be better understood.
anthocyanin, transport, transporter, membrane transport, vacuolar accumulation, glutathione-transferase, multidrug resistance- associated protein, multidrug and toxic compound extrusion
October 9, 2013; Accepted:December 10, 2013
National Natural Science Fundation of China (No.31071823).
Silan Dai. Tel:+86-82371556-8023; E-mail: silandai@sina.com
國(guó)家自然科學(xué)基金(No. 31071823) 資助。
網(wǎng)絡(luò)出版時(shí)間:2014-02-24
http://www.cnki.net/kcms/doi/10.13345/j.cjb.130515.html