亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一種自感知型電感同步開關(guān)能量采集電路*

        2014-09-06 10:48:03黃伯達(dá)曹景軍
        傳感技術(shù)學(xué)報 2014年11期
        關(guān)鍵詞:振動檢測

        唐 煒,黃伯達(dá),曹景軍,杜 昕

        (西北工業(yè)大學(xué)自動化學(xué)院,西安 710129)

        ?

        一種自感知型電感同步開關(guān)能量采集電路*

        唐 煒*,黃伯達(dá),曹景軍,杜 昕

        (西北工業(yè)大學(xué)自動化學(xué)院,西安 710129)

        電感同步開關(guān)能量采集(SSHI)電路可顯著提高壓電式振動能量采集裝置的工作效率,然而其開關(guān)控制需要外接傳感器和控制器。為此,文中提出了一種自感知電感同步開關(guān)能量采集電路(SS-SSHI),可完全不依賴外部檢測和控制設(shè)備,僅通過模擬電路即可自動實現(xiàn)SSHI電路開關(guān)的自動開閉和電壓翻轉(zhuǎn)。本文闡述了SS-SSHI電路的工作原理,分析了SS-SSHI電路工作狀態(tài)及功率變化。理論和實驗研究表明使用SS-SSHI電路能夠顯著的提高能量采集效率,相比于標(biāo)準(zhǔn)能量采集電路(SEH),最大輸出功率可提高99.23%。

        振動能量采集;電感同步開關(guān)采集電路;自感知;壓電特性

        能源問題是當(dāng)今世界廣泛關(guān)注的熱點問題,各國研究人員一直在努力尋找和開發(fā)新能源[1-2]。近年來,環(huán)境振動能量已成為研究者的“新寵”,被應(yīng)用在無線傳感器網(wǎng)絡(luò)的供電系統(tǒng)中,用以取代傳統(tǒng)的電池供電[3-6]。

        壓電能量采集因其具有轉(zhuǎn)化效率高、結(jié)構(gòu)簡單、易于實現(xiàn)機(jī)構(gòu)的微小化等諸多優(yōu)點而成為振動能量采集研究的熱點。然而壓電陶瓷片在振動環(huán)境中僅能輸出低功率、小電流的交流電,無法直接為電子器件供電。通常需要設(shè)計附加的能量采集電路,以便完成交直流轉(zhuǎn)換和能量存儲。如何盡可能提升能量采集電路的能量傳遞效率是該類電路研究中關(guān)心的主要問題。

        最早的能量采集電路由二極管橋式整流和大電容濾波構(gòu)成。它被成為AC-DC標(biāo)準(zhǔn)能量采集電路SEH(Standard Energy Harvesting),但該電路能量傳遞效率偏低,尤其是對機(jī)電耦合系數(shù)較低的能量采集裝置而言。為此,Guyomar等人提出了電感同步開關(guān)采集電路SSHI[7-11](Synchronized Switch Harvesting on Inductor),由于該電路設(shè)計可大幅提升能量傳遞效率,已成為當(dāng)前能量采集電路設(shè)計的主流方式。

        需要指出的是,傳統(tǒng)SSHI電路的原理是在振動位移達(dá)到最大或最小時,閉合開關(guān)使電壓翻轉(zhuǎn)。為了協(xié)調(diào)控制開關(guān)閉合,需要用外接供電的傳感器檢測位移,并用控制器控制開關(guān),顯然這種工作方式在采集能量的同時,還會消耗能量,有悖于環(huán)境能量采集的研究初衷。針對該問題,本文提出了一種完全不依賴外部檢測與控制設(shè)備的自感知型電感同步開關(guān)能量采集電路SS-SSHI(Self-Sensing Synchronized Switch Harvesting on Inductor)。該電路的優(yōu)點是僅依靠模擬電路即可完成檢測和控制,避免了對外界設(shè)備和能量的依賴。在該電路中,壓電片既是能量采集元件,又是傳感檢測元件,依靠其輸出電壓的峰值檢測與比較,可自動控制開關(guān)的閉合時機(jī)。同時,采用了一種模擬電子開關(guān)技術(shù)實現(xiàn)開關(guān)閉合。文中給出了電路的工作原理與功率分析,理論和實驗研究表明,相比于標(biāo)準(zhǔn)電路,SS-SSHI電路即能顯著提高能量采集效率,又可避免對外界設(shè)備和能量的依賴。

        1 壓電振子電學(xué)模型

        壓電振子的電學(xué)模型可以等效為一個電流源和等效電容并聯(lián),如圖1所示。圖中Cp為壓電片的夾持電容,Rp為壓電片等效內(nèi)部電阻,一般為幾十兆歐或更大,ieq為等效電流源電流,可視為恒流源。

        圖1 壓電能量采集模型

        假設(shè)壓電振子的等效電流源的電流為ieq,那么它和振動速度關(guān)系如下:

        (1)

        其中αe是外力—電壓因子,x(t)為壓電振子位移。

        2 壓電振子電學(xué)模型

        壓電振子一般產(chǎn)生的都是交流電,而我們要供電的負(fù)載大部分則是要求直流電,這就使得在給外界負(fù)載供電之前需要對其進(jìn)行整流,提高能量采集效率是該類電路設(shè)計中首要考慮的問題。

        2.1 標(biāo)準(zhǔn)能量采集電路

        標(biāo)準(zhǔn)能量采集電路SEH(Standard Energy Harvesting)是最常見的轉(zhuǎn)換電路。它由標(biāo)準(zhǔn)的整流電路和濾波電容構(gòu)成,一般選擇的濾波電容Cr要足夠大以保證整流電壓VDC是一個保持不變的直流電壓,即時間常數(shù)RCr遠(yuǎn)大于振蕩周期。電路原理圖如圖2所示。

        圖中Cr為濾波電容,RL為等效負(fù)載,電路輸出功率等于負(fù)載的輸入功率。如果壓電片電壓|Vp|

        圖2 標(biāo)準(zhǔn)能量采集電路

        電容兩端電壓和電量的關(guān)系為:

        q=C·V

        (2)

        式中q為電容兩端電荷,C為電容大小,V為電容兩端電壓。

        當(dāng)電容兩端電壓為固定值時,電容上儲存的能量W為:

        W=V·q

        (3)

        根據(jù)(2)和(3)可以得出標(biāo)準(zhǔn)電路的能量采集功率PSEH為:

        (4)

        這里f0=ω/2π是振動頻率,Cp為壓電元件夾持電容,VDC為整流直流電壓,VOC,org為原始開路電壓幅值,VD為二極管壓降。

        2.2 電感同步開關(guān)能量采集電路

        傳統(tǒng)的經(jīng)典能量采集電路由于電路一直處于通路狀態(tài),電路本身損耗比較大,加之電路本身的結(jié)構(gòu)缺陷,導(dǎo)致能量采集效率低下。為了解決這個問題,研究人員提出了一種基于電感的同步開關(guān)的能量采集電路SSHI(Synchronized Switch Harvesting on Inductor),該電路包括一個電子控制開關(guān),當(dāng)壓電結(jié)構(gòu)的位移達(dá)到最大值或最小值這個開關(guān)就被觸發(fā),研究表明SSHI電路的能量采集效率遠(yuǎn)高于標(biāo)準(zhǔn)電路。該類電路又分為并聯(lián)同步開關(guān)電路(P-SSHI)和串聯(lián)同步開關(guān)電路(S-SSHI)。

        傳統(tǒng)的SSHI電路原理圖如圖3所示,電路的大部分時間斷開的,這樣能量采集電路本身的損耗就比較小,可以很好的提高能量采集效率。開關(guān)只有在位移達(dá)到最大值或最小值時才閉合,此時組成一個L-Cp振蕩回路,電路振蕩周期遠(yuǎn)小于機(jī)械振蕩周期,每次開關(guān)閉合后,存儲在壓電片Cp上的能量便通過整流橋和電感L轉(zhuǎn)移到電容Cr上來。

        圖3

        式中,α為力因子,ω是振動角頻率,C0是壓電元件夾持電容,UM為壓電元件振動位移幅值,Qi為SSHI電路品質(zhì)因子。

        通過上式可以看出S-SSHI電路的最大輸出功率是SEH電路的(1+e-π/2Qi)/(1+e-π/2Qi)倍,顯然可以通過選擇合適的電路品質(zhì)因子Qi顯著的提高SSHI電路的最大輸出功率。

        3 自感知型電感同步開關(guān)能量采集電路

        圖4 電子開關(guān)

        然而傳統(tǒng)的SSHI電路的有一個致命的缺點:它不是一個自感知電路,即開關(guān)S的通斷,需要位移傳感器和數(shù)字控制器,這些都需要額外的能量供給,有悖于能量采集研究的初衷。為此,本文根據(jù)文獻(xiàn)[12]給出的電子開關(guān)設(shè)計(如圖4),提出了一種自感知的同步開關(guān)能量采集SS-SSHI(Self-Sensing Synchronized Switch Harvesting on Inductor)方法,僅依靠模擬電路就可以自動的根據(jù)壓電元件輸出電壓的變化控制開關(guān)的開閉。

        3.1 SS-SSHI電路工作原理

        在自感知同步開關(guān)電路設(shè)計中,我們使用了互補(bǔ)的晶體管拓?fù)浣Y(jié)構(gòu)來實現(xiàn)對壓電片兩端電壓Vp的直接包絡(luò)檢測:其中一部分用于最大值檢測,剩下的對稱部分用于最小值檢測。對SSHI電路的改進(jìn)電路SS-SSHI如圖5所示,圖中的主要元件的型號如表1。

        圖5 SS-SSHI電路原理圖

        表1 元件型號

        圖中Vp為壓電陶瓷片兩端電壓,Vc1和Vc2分別為電容C1和C2兩端電壓。和傳統(tǒng)的SSHI電路一樣,在每個周期內(nèi),伴隨著振動位移的變化,電子開關(guān)會在電壓Vp達(dá)到最大值時或者最小值時閉合。

        圖6 SS-SSHI電路電壓變化曲線

        由于我們采用的是互補(bǔ)拓?fù)浣Y(jié)構(gòu),所以電路中的最大值檢測和最小值檢測是對稱的。本文將重點討論最大值檢測原理(最小值檢測與此類似),結(jié)合電路工作的四個階段,給出SS-SSHI電路的工作特性。對于最大值檢測,開關(guān)R1,D1和C1組成包絡(luò)檢測器,T1作為比較器,而T3作為電子開關(guān)。四個階段的電壓變化如圖7所示。

        自然充電階段:電路剛開始工作時,由于壓電元件的電壓是從0開始增加的,所以要有一個自然充電階段。自然充電時的電流走向如圖8,電路導(dǎo)通部分為圖中藍(lán)線部分。在這個階段只有兩個包絡(luò)檢測器電路是導(dǎo)通的,而所有的三極管是斷開的。正向的等效電流ieq給Cp,C1和C2充電,這樣Vp,Vc1和Vc2也同時地增長。

        圖7 電壓Vp變化曲線

        圖8 自然充電

        第一次電壓翻轉(zhuǎn)階段:當(dāng)Vp達(dá)到它的最大值Vmax時,電容C1兩端的電壓為Vmax-VD,這里VD為二極管上面的壓降。接著,Vp開始下降,當(dāng)下降值達(dá)到VD+VBE,也就是Vp=V1(t1時刻)時,三極管T1導(dǎo)通。電容C1通過T1(ec),D3,T3(be),Crect,D8,Li和r開始放電,結(jié)果使得T3導(dǎo)通。由開關(guān)T3導(dǎo)通產(chǎn)生的感應(yīng)回路:D5,T3(ce),Crect,D8,Li和r使得Cp兩端迅速短路。Cp開始從電壓V1通過感應(yīng)回路迅速放電,直到Vp達(dá)到其局部最小值(t2時刻)。第一次電壓翻轉(zhuǎn)的電流走向如圖9所示,電路導(dǎo)通部分為圖中粗實線部分。

        圖9 第一次電壓翻轉(zhuǎn)

        第二次電壓翻轉(zhuǎn)階段:通過Li的電流開始翻轉(zhuǎn)其方向,但是T3(ce)這條回路由于D5的電流翻轉(zhuǎn)而立即阻塞。但由D7,Crect,T4(ce)和D6組成的回路還是可以導(dǎo)通的。因為即使T4是斷開的,在它的發(fā)射極和集電極總存在一個小的沒有充電的寄生電容。翻轉(zhuǎn)電流就通過這條回路,直到T4的發(fā)射極—集電極電容CCE充滿電,此時(t3時刻),Vp變?yōu)閂3。Vp的局部最小值也就是V2可能導(dǎo)致最小值開關(guān)的誤判。因此R2是必須的,以確保用來最小值檢測的C2的放電比Cp慢,這樣可以跳過局部最小值。圖10顯示了第二次電壓翻轉(zhuǎn)的電流走向,電路導(dǎo)通部分用加粗實線表示。第二次電壓翻轉(zhuǎn)在自感知的能量采集電路中起副作用,可以選擇小的發(fā)射極—集電極電容CCE可避免這種作用。然而,實際三極管中永遠(yuǎn)存在寄生電容。

        圖10 第二次電壓翻轉(zhuǎn)

        電荷中和階段:在t3時刻后,T3和T4都斷開了,但C2仍舊沒有結(jié)束放電,C2上剩余的電荷將流入Cp和C1直到他們擁有相同的電壓。這個電荷中和又導(dǎo)致Vp在進(jìn)入下半個周期即最小值檢測之前增大了一點至V4。C2實際放電是從t1時刻開始的,但是為了便于分析,假設(shè)電荷中和階段和其它3個階段一樣也是獨立的,電荷中和階段的電流走向如圖11,電路導(dǎo)通部分用粗實線表示。

        圖11 電荷中和

        最小值開關(guān)檢測可由電路中剩余的對稱部分完成,其原理和最大值檢測類似。只是對于最小值檢測,中間電壓就分別變?yōu)?V1,-V2,-V3和-V4。

        3.2 SS-SSHI電路分析

        3.2.1 開關(guān)相位延遲

        根據(jù)文獻(xiàn)[7]中SSHI電路的原理分析,開關(guān)動作應(yīng)該剛好發(fā)生在電壓Vp達(dá)到它的極值,也就是Vmax或Vmin。然而在SS-SSHI電路中,開關(guān)動作剛好在這一時刻是不可能的,由于包絡(luò)檢測器和比較器里的二極管和三極管的壓降,所以在開關(guān)動作時刻和最大值(最小值)Vp之間存在一個相位延遲。這個相位延遲可在圖6中看出為ψ,可由下式計算得:

        (5)

        通過圖(6),可以看出開關(guān)動作時刻和位移最大值(也就是ieq=0)時刻之間的相位差φ為:

        (6)

        其中θ是壓電片電壓最大值Vp,oc和ieq的0穿越點(從正到負(fù))之間的相位差。顯然,這個相位差異φ是變化的,然而在文獻(xiàn)[15]中它被當(dāng)成常數(shù)。

        3.2.2 電路工作中的電壓變化

        傳統(tǒng)的SSHI電路,在半個振動周期內(nèi)只存在兩個階段即自然充電和電壓翻轉(zhuǎn)階段,這兩個中間電壓可以通過這兩個過程中的充電和放電來計算。而在SS-SSHI電路中,由于自感知開關(guān)電路中各階段的交互作用,更多的階段需要區(qū)分開來以便更好地分析電路的特性。四個階段的電路工作原理在前面已敘述過,從圖7中可看出四個階段的電壓從V1到V4的變化。

        對于最大值的開關(guān)檢測,如果V1>Vref1,則Vp開始進(jìn)入第一次電壓翻轉(zhuǎn)。這里Vref1是參考電壓:

        Vref1=VCE(sat)+2VD+VDC

        (7)

        對于第一次電壓翻轉(zhuǎn)(從V1變到V2),Cp,C1,Li和r組成了一個RLC放電回路,它的品質(zhì)因子為:

        (8)

        V2和V1的關(guān)系可表示為:

        V2-Vref1=γ1(V1-Vref1)

        (9)

        (10)

        在第一次翻轉(zhuǎn)后,如果V2

        Vref2=-2VD-VDC

        (11)

        對于第二次翻轉(zhuǎn)(從V2到V3),Cp,CCE,Li和r串聯(lián)形成一個RLC放電回路,它的品質(zhì)因子為:

        (12)

        就可以得到V3和V2的關(guān)系:

        (13)

        γ2=-e-π/(2Q2)

        (14)

        假設(shè)C2的放電是在電壓Vp的兩次翻轉(zhuǎn)之后,電荷中和就可以被當(dāng)成一個獨立的階段。在電荷中和階段,Cp,C1和C2上的總電荷是要被放掉的??紤]到電荷守恒,則V4和V1,V2,V3的關(guān)系如下:

        (Cp+2Ced)V4=Ced(V1+V2)+CpV3

        (15)

        電荷中和結(jié)束后,自然充電階段又開始了。在剩下的半個周期內(nèi),直到Vp達(dá)到-V1,最小值開關(guān)開始工作。由于兩次翻轉(zhuǎn)和電荷中和階段的時間遠(yuǎn)小于半個振動周期,所以Vp的值可以近似為Vp,oc在開關(guān)時刻的值,所以這個階段的電壓關(guān)系如下:

        (16)

        結(jié)合線性方程(9),(13),(15)和(16),可以得出V1到V4關(guān)于VOC和VDC的解。

        3.2.3 功率分析

        根據(jù)(2)和(3)可以得出SS-SSHI電路的能量采集功率為:

        PSS-SSHI=2f0VDC[Cp(V1+V3-2V2)+Ced(V1-V2)]

        (17)

        這里f0=ω/2π是振動頻率。

        由于精確計算V1,V2,V3,V4的數(shù)值解較困難,所以采用等效法近似計算功率。考慮到電路第三階段和第四階段電壓的變化較小,即圖7中V2到V3,V3到V4變化相對于V1到V2的變化特別小,所以我們可以認(rèn)為V2=V3=V4,此時(17)可以近似為:

        PSS-SSHI=2f0VDC(Cp+Ced)(V1-V2)

        (18)

        又由于Rp的值一般都特別大,為數(shù)十兆或者更大,所以(16)可以近似為:

        -V1=V2-2VOCcosφ

        (19)

        這樣結(jié)合式(9)和(19)就可以得出V1和V2,帶入式(18)就可得出SS-SSHI電路的能量采集功率。

        PSS-SSHI=2f0VDC(Cp+Ced)(8VOC·cosφ-20-8VDC)

        (20)

        4 實驗與結(jié)果分析

        4.1 實驗系統(tǒng)與實驗方法

        為了驗證SS-SSHI電路的能量采集效果,我們設(shè)計了如圖12所示的實驗系統(tǒng)。圖中器件分別為1.函數(shù)信號發(fā)生器、2.示波器、3.激振器、4.壓電陶瓷片、5.激振器驅(qū)動電源、6.能量采集電路。

        圖12 能量采集系統(tǒng)

        在實驗中首先由信號發(fā)生器產(chǎn)生諧波激勵信號,并輸入至激振器驅(qū)動電源,用以驅(qū)動激振器以某一頻率振動,繼而帶動安裝在激振器上的壓電懸臂梁振動,通過正壓電效應(yīng),把機(jī)械能轉(zhuǎn)化為電能,并依靠能量采集電路進(jìn)行能量采集,最后通過示波器來觀察能量采集效果。

        整個系統(tǒng)的主要參數(shù)如表2所示。一般為了使采集的能量最大,都選擇在壓電體(懸臂梁)的共振頻率處激振,此時壓電體(懸臂梁)可產(chǎn)生更大形變,增大輸出功率。由于懸臂梁的固有模態(tài)比較高,為了降低諧振頻率,實驗中在懸臂梁的末端附加一個10gn的質(zhì)量塊(砝碼)。為了觀察諧振效果下的能量采集效率,本實驗選用了懸臂梁的一階模態(tài)頻率f=22.3 Hz作為激勵源信號的頻率。

        表2 系統(tǒng)參數(shù)

        仿真電路圖5中所示的電子元件的具體參數(shù)詳見表3,在實驗中我們通過選用不同阻值的電阻來模擬不同的負(fù)載,然后通過示波器分別觀察SS-SSHI電路和SEH電路在負(fù)載端輸出的電壓,這樣就可以根據(jù)前文所述的理論求得它們實際的能量輸出功率。

        表3 SS-SSHI電路涉及的參數(shù)

        4.2 實驗結(jié)果分析

        我們可以通過示波器觀察SS-SSHI電路的工作狀態(tài),其結(jié)果如圖13所示,圖中給出了能量采集壓電片兩端電壓Vp的變化曲線和信號發(fā)生器輸入的諧波激勵信號。結(jié)果表明SS-SSHI電路實現(xiàn)了最大(最小)位移處的電壓翻轉(zhuǎn),達(dá)到了設(shè)計預(yù)期。

        圖13 SS-SSHI電路工作電壓曲線

        根據(jù)前述理論,盡可能提高電路的輸出功率是我們研究能量采集電路的主要目的。通過式(4)和(20)我們可以計算SEH電路和SS-SSHI電路的實際輸出功率。但在求SS-SSHI電路功率時需要知道相位差φ。為了測得該參數(shù),我們在懸臂梁正反兩面對稱粘貼兩片壓電片,其中一片用于能量采集,另一片則是作為傳感器,依靠其輸出電壓確定位移極值處所對應(yīng)的時刻,通過對比兩片壓電片的波形就可以確定φ值。通過實驗我們發(fā)現(xiàn)φ值會隨著不同負(fù)載的變化發(fā)生細(xì)小的變化,符合文獻(xiàn)[13]中認(rèn)為φ是固定不變的假設(shè)。在本實驗中測得相位差異φ=2π/11。由此,根據(jù)式(4)和(20),我們可以得到開路電壓幅值VOC,org=10.3 V時SS-SSHI電路和SEH電路的理論功率曲線如圖14所示。

        為了和理論結(jié)果進(jìn)行比較,分別采用多個電阻進(jìn)行實驗研究,不同的負(fù)載會導(dǎo)致電路輸出不同的直流電壓VDC,根據(jù)阻值大小,由公式P=U2/R可計算實際輸出功率。圖14表明,兩種電路的實測功率與理論分析結(jié)果相吻合,尤其是本文給出SS-SSHI電路的功率理論計算結(jié)果與實測值非常接近。

        圖14 理論和實驗功率曲線

        為了進(jìn)一步對比不同振動水平下,采集電路輸出功率的提高幅度,本文還開展了開路電壓VOC,org=2.6 V和VOC,org=6.5 V時的兩組實驗,結(jié)果如圖15所示。

        圖15 不同開路電壓下的能量采集功率

        由圖15可知:在振動幅度較小時,壓電片兩端的開路電壓幅值VOC,org=2.6 V(如圖15(a)),此時SS-SSHI電路在R=50 kΩ時功率達(dá)到最大,即0.007 mW;而SEH電路R=180 kΩ時功率達(dá)到最大,即0.008 mW。可知SS-SSHI電路的能量采集效率和SEH電路的能量采集效率相似。隨著振動幅度增大,開路輸出電壓亦增大,SS-SSHI電路的優(yōu)勢逐漸表現(xiàn)出來,在VOC,org=6.5 V時如圖15(b),SS-SSHI電路在R=30 kΩ時功率達(dá)到最大:0.110 4 mW;而SEH電路R=70 kΩ時功率達(dá)到最大:0.083 mW。此時SS-SSHI比SEH能量采集功率提高33%,而在VOC,org=10.3 V時如圖15(c),SS-SSHI電路在R=30 kΩ時功率達(dá)到最大:0.415 4 mW;而SEH電路R=70 kΩ時功率達(dá)到最大:0.208 5 mW。此時SS-SSHI比SEH能量采集功率提高99.23%。由此可見SS-SSHI電路更適合高輸入電壓情況下的能量采集。

        5 結(jié)論

        微能源越來越受到人們的重視,而振動能作為最常見的能量存在形式受到人們的重視。壓電元件以其獨特的優(yōu)勢使得它在振動能量采集方面得到廣泛應(yīng)用。

        本文首先對壓電振動能量采集系統(tǒng)進(jìn)行電學(xué)模型等效建模,緊接著簡單分析了傳統(tǒng)的標(biāo)準(zhǔn)能量采集電路SEH的工作原理和采集效率。簡要闡述了SSHI電路的工作原理并針對其開關(guān)控制需要額外功能的缺點設(shè)計并實現(xiàn)了一種自感知的能量采集電路SS-SSHI。這種SS-SSHI電路不需要任何外界額外的能量供給就能實現(xiàn)開關(guān)的自行通斷,在振動位移(電壓)達(dá)到最大值或最小值時,開關(guān)打開使得壓電元件上的能量通過整流橋流入負(fù)載來達(dá)到能量采集的目的。通過理論分析和實驗驗證,這種SS-SSHI電路能夠顯著地提高能量采集功率,在VOC,org=10.3 V時,SS-SSHI比SEH能量采集功率提高達(dá)99.23%。實驗同樣表明在大輸入電壓情況下SS-SSHI電路的能量采集功率比SEH電路的能量采集功率更能得到顯著的提高。

        [1] Erturk A,Inman D J. Piezoelectric Energy Harvesting[M]. Hoboken,NJ:Wiley,2011.

        [2]陳文藝,孟愛華,劉成龍,等. 微型振動能量收集器的研究現(xiàn)狀及發(fā)展趨勢[J]. 微納電子技術(shù),2013,50(11):715-720. Chen Wenyi,Meng Aihua,Liu Chenglong. Research Status and Developing Trend of Micro Vibration-Based Energy Harvesters[J]. Micronanoelectronic Technology,2013,50(11):715-720.

        [3]Guyomar D,Badel A,Lefeuvre E,et al. Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,And Frequency Control,2005,52(4):584-595.

        [4]Lefeuvre E,Badel A,Richard C,et al. A Comparison between Several Vibration-Powered Piezoelectric Generators for Standalone Systems[J]. Sensors and Actuators A:Physical,2006,126(2):405-416.

        [5]文玉梅,江小芳,楊進(jìn),等. 采用復(fù)合磁電換能器的振動能量采集器研究[J]. 傳感技術(shù)學(xué)報,2009,22(9):1243-1248.

        [6]王光慶,金文平,展永政,等. 壓電振動能量采集器的力電耦合模型及其功率優(yōu)化[J]. 傳感技術(shù)學(xué)報,2013,26(8):1092-1100.

        [7]Shu Y C,Lien I C,Wu W J. An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting[J]. Smart Material and Structure,2007(16):2253-2264.

        [8]Lien I C,Shu Y C,Wu W J,et al. Revisit of Series-SSHI with Comparisons to other Interfacing Circuits in Piezoelectric Energy Harvesting[J]. Smart Mater Struct,2010(19):125009-125021.

        [9]Shu Y C,Lien I C. Analysis of Power Output for Pizeoelectric Energy Harvesting Systems[J]. Smart Material and Structure,2006(15):1499-1512.

        [10]Badel A,Benayad A,Lefeuvre E,et al. Single Crystals and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,And Frequency Control,2006,53(4):673-684.

        [11]Badel A,Guyomar D,Lefeuvre E,et al. Piezoelectric Energy Harvesting Using a Synchronized Switch Technique[J]. Journal of Intelligent Material Systems and Structures,2006,17(8-9):831-839.

        [12]Richard C,Guyomar D,Lefeuvre E. Self-Powered Electronic Breaker with Automatic Switching by Detecting Maxima or Minima of Potential Difference between Its Power Electrodes[P].France Patent,PCT/FR2005/003000,Jul.6,2007.

        [13]Lallart M,Guyomar D. An Optimized Self-Powered Switching Circuit for Non-Linear Energy Harvesting with Low Voltage Output[J]. Smart Material and Structure,2008,17(3):035030-035038.

        唐煒(1977-),男,漢族,湖北襄陽人,西北工業(yè)大學(xué)自動化學(xué)院副教授,碩士生導(dǎo)師。長期從事與振動相關(guān)的控制、測量研究。近年來,關(guān)注壓電振動相關(guān)的微能源采集與發(fā)電,tangwei@nwpu.edu.cn;

        黃伯達(dá)(1990-),男,陜西眉縣人,碩士研究生,研究方向能量采集電路設(shè)計。

        ANovelSelf-SensingSynchronizedSwitchHarvestingonInductor*

        TANGWei*,HUANGBoda,CAOJingjun,DUXin

        (School of Automation,Northwestern Polytechnical University,Xi’an 710072,China)

        It has been proved that by applying the SSHI(Synchronized Switch Harvesting on Inductor)can greatly improve the piezoelectric vibration energy harvesting efficiency. However,additional sensor and controller is needed to control the switch in the SSHI circuit. To reduce the dependence on external equipments,a new circuit called SS-SSHI(Self-Sensing Synchronized Switch Harvesting on Inductor)is proposed. It can achieve the switch-on-off of SSHI automatically through analog circuit without any external testing and control equipment. This paper elaborates the principles of SS-SSHI,analysis the work status and output power of SS-SSHI. Both theoretical and experimental results show that the harvested power can be significantly increased with SS-SSHI circuit,and the maximum poweroutput increased 99.23% compared to the SEH(Standard Energy Harvesting)circuit.

        vibration energy harvesting;SS-SSHI;self-sensing;piezoelectricity

        項目來源:國家自然科學(xué)基金項目(50905140);陜西省自然科學(xué)基礎(chǔ)研究計劃項目(2012JQ7003);長安大學(xué)高速公路筑養(yǎng)裝備與技術(shù)教育部工程研究中心開放基金項目(2013G1502054)

        2014-07-09修改日期:2014-09-05

        10.3969/j.issn.1004-1699.2014.11.005

        TM919

        :A

        :1004-1699(2014)11-1469-08

        猜你喜歡
        振動檢測
        振動的思考
        噴水推進(jìn)高速艇尾部振動響應(yīng)分析
        “不等式”檢測題
        “一元一次不等式”檢測題
        “一元一次不等式組”檢測題
        “幾何圖形”檢測題
        “角”檢測題
        This “Singing Highway”plays music
        振動攪拌 震動創(chuàng)新
        中國公路(2017年18期)2018-01-23 03:00:38
        中立型Emden-Fowler微分方程的振動性
        日本高清一级二级三级| 欧美激情精品久久999| 日本人妻系列一区二区| 国产精品久久久在线看| 永久黄网站免费视频性色| 男人无码视频在线观看| 国产一区二区在线观看我不卡| 手机在线免费观看av不卡网站| 久久久中日ab精品综合| 无码专区天天躁天天躁在线| 四虎国产精品免费久久麻豆| av黄色大片久久免费| 草草地址线路①屁屁影院成人 | 日本一区二区三区在线| 一本色道久在线综合色| 国产成人精品午夜视频| 欧美一级特黄AAAAAA片在线看| 日韩精品夜色二区91久久久| 在线日本看片免费人成视久网| 国产成熟人妻换╳╳╳╳| 成人午夜免费无码视频在线观看| 国产一区二区三区在线观看蜜桃| 精品无人区无码乱码毛片国产| 人人妻人人澡人人爽久久av| 亚洲男人天堂av在线| 少妇被猛烈进入中文字幕| 午夜免费啪视频| 国产一区二区三区在线观看精品| 亚洲视频不卡免费在线| 亚洲av综合国产av日韩| 亚洲一线二线三线写真| 欧美日韩一区二区三区视频在线观看| 国产中文字幕免费视频一区| 99久久精品费精品国产一区二| 初高中生精品福利视频| 国产自拍伦理在线观看| 少妇高潮惨叫久久久久电影69| 少妇内射高潮福利炮| 亚洲日本精品一区久久精品| 男女18视频免费网站| 香蕉久久福利院|