劉唯一,傅朝金,陳靜,柯于勝
(1.咸寧職業(yè)技術(shù)學(xué)院 機電工程系,湖北 咸寧 437100;2.湖北師范學(xué)院 數(shù)學(xué)與統(tǒng)計學(xué)院,湖北 黃石 435002)
一類具有非線性收獲率的捕食者-食餌生態(tài)經(jīng)濟系統(tǒng)的分支分析
劉唯一1,2,傅朝金2,陳靜2,柯于勝2
(1.咸寧職業(yè)技術(shù)學(xué)院 機電工程系,湖北 咸寧 437100;2.湖北師范學(xué)院 數(shù)學(xué)與統(tǒng)計學(xué)院,湖北 黃石 435002)
研究了一類捕食者-食餌生態(tài)經(jīng)濟模型的動力學(xué)行為.該模型具有非線性收獲率,這使得模型更具一般性.選取經(jīng)濟利潤v作為分支參數(shù),通過局部參數(shù)化方法,Hopf分支理論和形式級數(shù)方法研究了系統(tǒng)的Hopf分支.同時,改進的參數(shù)化計算過程更簡單,能夠處理更復(fù)雜的模型.最后,通過MATLAB仿真證明了我們的結(jié)果.
微分代數(shù)方程;穩(wěn)定性;Hopf分支;非線性收獲率;改進的算法
近年來,捕食者-食餌生態(tài)經(jīng)濟系統(tǒng)受到數(shù)學(xué)工作者的廣泛關(guān)注和深入研究.文獻[1~4]研究了建立在微分方程基礎(chǔ)上具有人為收獲的捕食者-食餌系統(tǒng),得到了復(fù)雜的動力學(xué)行為,如平衡點的穩(wěn)定性[1~3],Hopf分支[2],Bogdanov-Takens分支[3],極限環(huán)[1,3,4]等.文獻[5~8]給出了基于微分代數(shù)方程的捕食者-食餌生態(tài)經(jīng)濟系統(tǒng),系統(tǒng)地研究了奇異誘導(dǎo)分支[6],狀態(tài)反饋控制[6],鞍結(jié)分支[6~8]等.文獻[9~11]研究了具有線性收獲率的捕食者-食餌生態(tài)經(jīng)濟系統(tǒng)的中心穩(wěn)定性和Hopf分支.然而,線性收獲率只是一種理想化的情形.本文研究一類具有非線性收獲率的系統(tǒng),模型如(1)式
(1)
內(nèi)討論系統(tǒng)(1).
本文將對系統(tǒng)(1)進行定性研究,以經(jīng)濟利潤v作為分支參數(shù),通過參數(shù)化方法,Hopf分支理論和形式級數(shù)方法討論系統(tǒng)的Hopf分支,然后通過MATLAB數(shù)值模擬驗證結(jié)果的正確性和合理性。
為了方便,令
對于系統(tǒng)(1),易求得平衡點為
在文獻[9~11]中,作者均對原系統(tǒng)作了一個線性變換,轉(zhuǎn)而去分析變換后系統(tǒng),事實上這是多余的,而且會導(dǎo)致后面的計算量增大.如果模型比較復(fù)雜,則很難計算出結(jié)果.所以我們?nèi)サ袅诉@一過程而直接分析系統(tǒng)(1).
現(xiàn)考慮如下所定義的系統(tǒng)(1)的局部參數(shù)化Ψ:
X=Ψ(v,Y)=X0(v)+U0Y+V0h(v,Y),g(v,Ψ(v,Y))=0
其中
h:2→是一個光滑映射.于是(1)的參數(shù)化系統(tǒng)為
即
(2)
關(guān)于上述參數(shù)化系統(tǒng)(2)的詳細定義可參見文獻[12].系統(tǒng)(1)的正平衡點X0對應(yīng)于參數(shù)化系統(tǒng)(2)的平衡點Y=0,參數(shù)化系統(tǒng)(2)在平衡點Y=0 處的特征方程為
λ2+a1(v)λ+a2(v)=0
(3)
其中
如果方程(3)存在零實部的特征根,系統(tǒng)(1)將會發(fā)生Hopf分支.
現(xiàn)在我們選擇經(jīng)濟利潤v作為分支參數(shù)來研究系統(tǒng)(1)的Hopf分支.在方程(3)中,令a1(v)=0,得分支值v0,滿足
事實上,如果令a12(v)<4a2(v) ,方程(3)有一對共軛根:
為了計算Hopf分支,根據(jù)文獻[12,13],當v=v0,X=X0時,需要求出系統(tǒng)(1)的如下標準型
(4)
可以證明參數(shù)化系統(tǒng)(2)當v=v0,X=X0時可寫為
(5)
由鏈式法則可求得
f2y1y2y2(v0,X0)=0f2y2y2y2(v0,X0)=0
對比(5)和(4),現(xiàn)對(5)進行如下非奇異線性變換
這樣就求出了標準型(4)的全部非零系數(shù),其中
根據(jù)Hopf分支理論[13],需要計算16σ0的值.
由上面的結(jié)果,有如下定理
定理1 對系統(tǒng)(1),存在一個正常數(shù)ε和正平衡點X0(v)的兩個充分小的鄰域O,P,其中0<ε?1,O?P.
情形1:如果16σ0>0,那么
1) 當v0 情形2:如果 16σ0<0,那么 1) 當v0-ε 例 我們?nèi)∠到y(tǒng)(1)的系數(shù)如下 a=0.5,b=2,d=2,r=1,p=4,c=1,k=2,m=0.1 于是系統(tǒng)(1)為 (6) 容易求得正平衡點為X0=(0.5000000,0.6779619,0.3381400)T,分支值為v0=0.30594 .由定理1,當v 在圖1中,系統(tǒng)(6)的平衡點X0(v) 是局部漸近穩(wěn)定的.在圖2中,系統(tǒng)(6)在X0(v) 處產(chǎn)生一個周期軌道.在圖3中,系統(tǒng)(6)的平衡點X0(v) 是不穩(wěn)定的. 圖1 當初值為x0=0.499 ,y0=0.666,e0=0.333 ,經(jīng)濟利潤v=0.27999 圖2 當初值為x0=0.499,y0=0.666,e0=0.333,經(jīng)濟利潤v=0.30590 圖3 當初值為x0=0.499,y0=0.666,e0=0.333,經(jīng)濟利潤v=0.31890>v0時的Hopf分支圖 [1]Gakkhar S,Singh B.The dynamics of a food web consisiting of two preys and a harvesting predator [J].Chaos,Solitons and Fractals,2007,34(4):1346~1356. [2]Kar T K,Pahari U K.Modeling and analysis of a prey-predator system with stage structure and harvesting [J].Nonlinear Analysis: Real World Applications,2007,8(2):601~609. [3]Xiao Dongmei,Li Wenxia,Han Maoan.Dynamics in ratio-dependent predator-prey model with predator harvesting [J].Journal of Mathematical Analysis and Applications,2006,324(1):14~29. [4]Yang Kuang,F(xiàn)eedman H I.Uniqueness of limit cycle in cause-type predator-prey systems [J].Mathematical Biosciences,1988,88(1):67~84. [5]Liu Chao,Zhang Qingling,Duan Xiaodong.Dynamical behavior in a harvested differential-algebraic prey-predator model with discrete time delay and stage structure [J].Journal of the Franklin Institute,2009,346(10):1038~1059. [6]張 悅,張慶靈,趙立純.階段結(jié)構(gòu)廣義生物經(jīng)濟模型的分岔及控制 [J].系統(tǒng)工程學(xué)報,2007,22(3):11~16. [7]張 悅,張慶靈.基于廣義生物經(jīng)濟系統(tǒng)的混沌控制 [J].控制與決策,2007,22 (4):445~448. [8]Zhang Xue,Zhang Qingling,Zhang Yue.Bifurcations of a class of singular biological economic models [J].Chaos,Solitons and Fractals,2009,40(3):1309~1318. [9]Liu Wei,F(xiàn)u Chaojin,Chen Boshan.Hopf bifurcation for a predator-prey biological economic system with Holling typeⅡ functional response [J].Journal of the Franklin Institute,2011,348(6):1114~1127. [10]Liu Wei,F(xiàn)u Chaojin,Chen Boshan.Hopf bifurcation and center stability for a predator-prey biological economic model with prey harvesting [J].Communications in Nonlinear Science and Numerical Simulation,2012,17(10):3989~3998. [11]Zhang Guodong,Zhu Lulu,Chen Boshan.Hopf bifurcation and stability for a differential-algebraic biological economic system [J].Applied Mathematics and Computation,2010,217(1):330~338. [12]陳伯山,廖曉昕.微分代數(shù)系統(tǒng)的標準型和分支 [J].應(yīng)用數(shù)學(xué)學(xué)報,2000,23(3):429~443. [13]Guckenheimer J,Holmes P.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields [M].New York:Springer-Verlag,1983. Bifurcationanalysisofapredator-preybiologicaleconomicsystemwithnonlinearharvestingrate LIU Wei-yi1,2,F(xiàn)U Chao-jin2,CHEN Jing2,KE Yu-sheng2 (1.Department of Mechanical and Electrical Engineering,Xianning Vocational Technical College,Xianning 437100,China;2.College of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China) In this paper,we analyze a biological economic system with harvesting effort on prey.Different from previous researchers' models,this model with nonlinear harvesting rate is more general.By employing local parameterization method,Hopf bifurcation theory and the formal series method,the Hopf bifurcation of the proposed system is investigated.Here we choose economic revenue as a positive bifurcation parameter.And the improved calculation process of parameterization is much more simple and it can handle more complex models which could not be dealt with by previous algorithms due to extensive calculation.Finally,by MATLAB simulation,the validity and feasibility of obtained results are illustrated. differential-algebraic equations;stability;Hopf bifurcation;nonlinear harvesting rate;improved algorithm 2013—12—11 劉唯一(1979— ),男,湖北黃石人,碩士研究生,主要研究方向為微分方程與控制論. O193 A 1009-2714(2014)02- 0046- 06 10.3969/j.issn.1009-2714.2014.02.0112 數(shù)值仿真