亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氣候變化對(duì)作物礦質(zhì)元素利用率影響研究進(jìn)展

        2014-08-11 14:41:47李壟清吳正云王小恒張季慧楊一鳴王鶴齡
        生態(tài)學(xué)報(bào) 2014年5期
        關(guān)鍵詞:痕量礦質(zhì)利用率

        李壟清,吳正云,張 強(qiáng),王小恒,張季慧,楊一鳴,王鶴齡,烏 蘭,李 裕,,*

        (1. 四川大學(xué)輕紡與食品工程學(xué)院, 成都 610064; 2. 西北民族大學(xué)化工學(xué)院, 蘭州 730030;3. 中國(guó)氣象局蘭州干旱氣象研究所,甘肅省干旱氣候變化與減災(zāi)重點(diǎn)實(shí)驗(yàn)室,甘肅省氣象局,蘭州 730020;4.蘭州大學(xué)資源環(huán)境學(xué)院,蘭州 730000)

        氣候變化對(duì)作物礦質(zhì)元素利用率影響研究進(jìn)展

        李壟清1,吳正云1,張 強(qiáng)3,王小恒4,張季慧2,楊一鳴2,王鶴齡3,烏 蘭2,李 裕2,3,*

        (1. 四川大學(xué)輕紡與食品工程學(xué)院, 成都 610064; 2. 西北民族大學(xué)化工學(xué)院, 蘭州 730030;3. 中國(guó)氣象局蘭州干旱氣象研究所,甘肅省干旱氣候變化與減災(zāi)重點(diǎn)實(shí)驗(yàn)室,甘肅省氣象局,蘭州 730020;4.蘭州大學(xué)資源環(huán)境學(xué)院,蘭州 730000)

        作物礦質(zhì)元素利用率對(duì)氣候變化的響應(yīng)是目前全球變化研究中既重要、又復(fù)雜,且認(rèn)知最少的科學(xué)領(lǐng)域。這個(gè)科學(xué)問(wèn)題的研究關(guān)系到解密或預(yù)測(cè)陸地植物及農(nóng)作物礦質(zhì)脅迫對(duì)全球氣候變化響應(yīng)的機(jī)理,為將來(lái)農(nóng)業(yè)投入提供理論依據(jù),是應(yīng)對(duì)氣候變化的當(dāng)務(wù)之急。目前只有少數(shù)研究,通過(guò)模擬試驗(yàn),探索性地開(kāi)展了CO2濃度或溫度升高的環(huán)境條件下,礦質(zhì)元素在土壤-植物系統(tǒng)遷移、分布和儲(chǔ)存特征的研究。從相關(guān)的文獻(xiàn)報(bào)道來(lái)看,CO2濃度升高環(huán)境條件下,小麥和水稻作物籽粒中大量和痕量元素的富集水平一般呈下降趨勢(shì)。但溫度升高情況下,作物各器官對(duì)對(duì)礦質(zhì)元素的吸收情況則更為復(fù)雜。正由于氣候因素與植物礦質(zhì)元素利用率之間關(guān)系的復(fù)雜性,在氣候變化背景下,解密作物礦質(zhì)脅迫對(duì)全球氣候變化響應(yīng)的科學(xué)問(wèn)題,尚需改進(jìn)試驗(yàn)方法、手段,從土壤性質(zhì)、作物生態(tài)生理,以及農(nóng)業(yè)生態(tài)系統(tǒng)中礦質(zhì)元素在土壤—作物系統(tǒng)中遷移轉(zhuǎn)化的過(guò)程,全面考察作物礦質(zhì)元素利用率對(duì)氣候變化的響應(yīng)機(jī)理。

        氣候變化;礦質(zhì)脅迫;生物利用率;食品安全

        IPCC評(píng)估報(bào)告中的氣候變化是指氣候系統(tǒng)隨時(shí)間的變化(無(wú)論其原因是自然變化還是人類活動(dòng)的結(jié)果),而《聯(lián)合國(guó)氣候變化框架公約》中,氣候變化是指直接或間接歸因于改變?nèi)虼髿獬煞值娜祟惢顒?dòng)所引起的氣候變化[1]。IPCC第四次評(píng)估發(fā)現(xiàn)最近100年(1906—2005年)全球平均地表溫度上升了0.74℃,而且過(guò)去50 a升溫率接近過(guò)去100 a的2倍。在此背景下,科學(xué)家已經(jīng)開(kāi)展了全球變暖對(duì)農(nóng)業(yè)季節(jié)性、土壤質(zhì)量和作物產(chǎn)量等方面影響的研究,并取得了重要的進(jìn)展[2- 4]。遺憾的是,除了氮以外,對(duì)于氣候變化背景下作物礦質(zhì)脅迫問(wèn)題目前很少有人研究(表1)。

        表1 2012年12月分別以Elevated CO2,Global warming和crop,以及作物所必需的主要礦質(zhì)元素為主題在Web of science ISI檢索的所有期刊發(fā)表文章的數(shù)量

        Table 1 Database survey conducted in December 2012 (Web of Science, ISI) for journal articles dealing with elevated CO2and global warming as well as minerals of importance to crop nutrition

        主題Topic刊物文章數(shù)量NumbersofJournalarticles主題Topic刊物文章數(shù)量NumbersofJournalarticlesElevatedCO2,crop797Globalwarming,crop641ElevatedCO2,crop+N266Globalwarming,crop+N150ElevatedCO2,crop+P26Globalwarming,crop+P13ElevatedCO2,crop+K6Globalwarming,crop+K2ElevatedCO2,crop+Ca10Globalwarming,crop+Ca4ElevatedCO2,crop+Mg4Globalwarming,crop+Mg0ElevatedCO2,crop+Fe6Globalwarming,crop+Fe3ElevatedCO2,crop+Mn3Globalwarming,crop+Mn0ElevatedCO2,crop+Cu2Globalwarming,crop+Cu0ElevatedCO2,crop+Zn4Globalwarming,crop+Zn1ElevatedCO2,crop+B2Globalwarming,crop+B0ElevatedCO2,crop+Al2Globalwarming,crop+Al2ElevatedCO2,crop+Si1Globalwarming,crop+Si1

        礦質(zhì)脅迫是指陸地植物生長(zhǎng)發(fā)育過(guò)程中對(duì)營(yíng)養(yǎng)元素的不足利用,或?qū)Ψ菭I(yíng)養(yǎng)礦質(zhì)元素(尤其是Al, Na, Cl, Mn和其它痕量元素)毒性的負(fù)反饋反應(yīng)[5]。自然生態(tài)系統(tǒng),農(nóng)業(yè)耕地、林地和牧場(chǎng),尤其在欠發(fā)達(dá)國(guó)家,很大程度上處于多種礦質(zhì)元素脅迫狀態(tài)。比如大多數(shù)陸地植被和作物受到土壤中Ca、Zn等營(yíng)養(yǎng)元素缺乏脅迫,以及酸性土壤Al和堿性土壤Mn的毒性脅迫。不理解植物生長(zhǎng)的礦物脅迫的機(jī)理,我們將無(wú)法理解或預(yù)測(cè)生態(tài)系統(tǒng)對(duì)全球氣候變化的響應(yīng)。在農(nóng)業(yè)領(lǐng)域,雖然經(jīng)過(guò)綠色革命的努力,至今人類并未從根本上解決作物痕量元素礦質(zhì)脅迫問(wèn)題。在氣候變化背景下,更是增加了預(yù)測(cè)和解決這一問(wèn)題的難度。但這一科學(xué)問(wèn)題是應(yīng)對(duì)未來(lái)氣候變化,預(yù)測(cè)未來(lái)農(nóng)業(yè)投入、糧食和食品安全問(wèn)題的理論依據(jù),也是全球變化中既重要、又復(fù)雜,并且目前認(rèn)知最少的領(lǐng)域。

        礦質(zhì)元素中,大量元素如N、P對(duì)作物的營(yíng)養(yǎng)脅迫問(wèn)題,發(fā)達(dá)國(guó)家(包括我國(guó)在內(nèi)的新興發(fā)展中國(guó)家)的現(xiàn)代農(nóng)業(yè)通過(guò)施肥基本上緩解。但土壤痕量元素營(yíng)養(yǎng)缺乏或?qū)ψ魑锏亩拘悦{迫仍是世界上絕大多數(shù)農(nóng)業(yè)耕地較為普遍的問(wèn)題[6- 7]。并且,一些痕量元素以其獨(dú)特的生理特性,尤其通過(guò)食物鏈直接或間接地對(duì)人體產(chǎn)生健康危害長(zhǎng)期以來(lái)都是科學(xué)關(guān)注的焦點(diǎn)[7- 9]。比如Zn,因其在細(xì)胞分裂、繁殖和免疫等方面扮演的重要角色,以及其所具有的多種生物功能[10- 11],加上世界范圍30%以上耕地鋅不足供給[12],決定了鋅缺乏尤其是兒童臨界鋅缺乏已成為遍及全球的營(yíng)養(yǎng)問(wèn)題[13]。保守估計(jì),世界范圍內(nèi)超過(guò)10億的人口存在缺鋅風(fēng)險(xiǎn)[14],僅美國(guó)就有10%的居民的鋅攝入量不及推薦膳食攝入量的一半[15]。若氣候變化能夠增加作物對(duì)Zn的富集并降低對(duì)Cd的積累,那我們就有可能從氣候變化中受益。不幸地是Fangmeier等[16]已經(jīng)發(fā)現(xiàn)小麥籽粒中Zn等元素的濃度隨CO2濃度升高而下降,警示全球變化有可能加重地區(qū)性鋅營(yíng)養(yǎng)不良的食品安全問(wèn)題。從這個(gè)意義上講,氣候變化背景下,對(duì)作物礦質(zhì)元素利用率科學(xué)問(wèn)題的研究具有重要的實(shí)踐意義。

        1 研究進(jìn)展

        以往的研究認(rèn)為,影響作物對(duì)土壤中礦質(zhì)元素利用率的環(huán)境因子主要包括物理因子,如土壤的薄厚、貧瘠和持水性能,以及化學(xué)因子,如礦質(zhì)元素的有效態(tài)含量、酸堿性、土壤含鹽量,以及毒性金屬含量[8,17- 18]。一般情況下,堿性土壤(pH>7.5),作物對(duì)P和痕量元素(Fe,Cu和Zn)的利用率低是主要特征。而酸性土壤(pH<5.0),缺P加上Al對(duì)作物的毒性為主要特征[5]。在全球環(huán)境變化的條件下,比如溫度和二氧化碳濃度升高背景下,情況又如何呢?

        根據(jù)Cough trey和Thorne[19]、Ehlken和Kirchner[20]等文獻(xiàn),分析認(rèn)為土壤-植物系統(tǒng)中礦質(zhì)元素的輸入和輸出,以及與植物礦質(zhì)元素利用率密切相關(guān)的土壤理化性質(zhì)、土壤中有機(jī)質(zhì)轉(zhuǎn)化和礦質(zhì)元素形態(tài)的改變等多數(shù)過(guò)程受到溫度,濕度,風(fēng),降水量等氣象要素影響(圖1)。圖1說(shuō)明,之所以植物礦質(zhì)脅迫問(wèn)題一直是科學(xué)上尚未徹底解決的難題,復(fù)雜多變的氣候影響可能是主要的原因。盡管全球變化已經(jīng)加速土壤侵蝕[21- 22], 減少土壤容量并加重養(yǎng)分的流失[23],直接影響到植物(作物)對(duì)土壤中礦質(zhì)元素的利用率。但氣候變化的主要特征是全球變暖,而驅(qū)動(dòng)全球變暖的主要?jiǎng)恿κ荂O2濃度升高。因此,選擇溫度和CO2因素作為研究氣候變化對(duì)植物礦質(zhì)脅迫影響的突破口,才有可能從根本上解密氣候變化與植物礦質(zhì)元素利用率之間的關(guān)系。

        圖1 礦質(zhì)元素在土壤-植物系統(tǒng)的轉(zhuǎn)移過(guò)程示意圖Fig.1 Schematic of the processes involved in the transfer of mineral elements from soil to plants紅色箭頭示意其對(duì)氣候因素敏感

        1.1 溫度升高的影響

        氣候變化對(duì)作物礦質(zhì)元素利用率影響的理論依據(jù),主要建立在其對(duì)土壤理化性質(zhì)影響的基礎(chǔ)上。Ehlken[20]認(rèn)為,控制土壤理化性質(zhì)的任何環(huán)境因子的變化,都會(huì)影響礦質(zhì)元素在土壤-植物之間的遷移行為?;谶@種理論,一個(gè)合理的推測(cè)認(rèn)為氣候變化可能引起土壤理化性質(zhì)的改變,或直接影響痕量元素的生物利用率。雖然這種推測(cè)具有一定的合理性,但定量預(yù)測(cè)氣候變化對(duì)作物礦質(zhì)元素利用率的影響非常困難,只有少數(shù)報(bào)道支持這種推測(cè),比如最近的研究發(fā)現(xiàn),氣候變化(溫度升高3℃)影響了土壤中痕量元素溶解性,使西旱1 號(hào)、2 號(hào)和3 號(hào)小麥籽粒中Cd 濃度相比對(duì)照組分別下降43.4%、11.1%和13.4%,Cu濃度相比對(duì)照處理分別下降了30.4%、25.1%和10.8%[24]。

        從植物生理方面分析,早期的研究認(rèn)為溫度升高改變了植物細(xì)胞離子隔膜脂類的組成[26]和細(xì)胞膜的通透性[27],直接影響到植物對(duì)礦質(zhì)元素的生物利用度,從而影響植被的生態(tài)型和作物生產(chǎn)力。然而,在一個(gè)正在變化的環(huán)境條件下,我們對(duì)于溫度與植物礦質(zhì)元素利用度之間的關(guān)系認(rèn)知很少。僅有的幾個(gè)研究,如Baghour[28]和Albrecht[29]研究發(fā)現(xiàn)幾種植物對(duì)Zn、Pb、Ag、Cr、Sb和Cd 的吸收速率隨土壤溫度升高而顯著提高。Ekvall and Greger[30]報(bào)道溫度升高引起生物量增加和水中大型植物迅速繁殖,導(dǎo)致植物生長(zhǎng)速率高于其對(duì)痕量元素的吸收速率。最近,一項(xiàng)在地中海灌木林模擬氣候變化溫度升高的試驗(yàn)研究,也發(fā)現(xiàn)1℃的升溫處理使1年生灌木E,multiora葉Cu和Zn濃度分別提高了57和 50%,使G,alypum葉Zn濃度提高了100%,但使E,multiora葉Cd和Pb濃度分別下降了67和43%[31]。這些研究都說(shuō)明氣候變化溫度升高對(duì)植物礦質(zhì)元素利用率有顯著影響。

        國(guó)內(nèi)李裕等[24]連續(xù)3a模擬氣候變化溫度升高1、2和3℃處理?xiàng)l件下,發(fā)現(xiàn)升溫處理提高了土壤中Cd、Pb、Cu、Zn和Mn的溶解性,改變了3種小麥籽粒對(duì)這些元素的吸收和轉(zhuǎn)移能力,并且轉(zhuǎn)移能力隨溫度升高的程度和品種差異而異。但在同樣的環(huán)境條件下,馬鈴薯葉比塊莖具有更強(qiáng)的金屬元素聚集能力。3℃的升溫處理導(dǎo)致馬鈴薯葉中Cu, Zn和Fe濃度分別提高了25, 27和24%,但使塊莖中Cd, Pb, Fe, Zn和Cu分別下降了27%, 55%,41%,29%和23%[9]。說(shuō)明氣候變化對(duì)痕量元素在作物體內(nèi)的分布造成了不對(duì)等的影響。

        這些對(duì)于植物(作物)礦質(zhì)元素利用率的研究,初步說(shuō)明,氣候變化溫度升高,增加了土壤中礦質(zhì)元素的溶解性,改變了礦質(zhì)元素在植物(作物)器官的分布特征,顯著地影響到作物可食部分中元素的富集水平。

        1.2 CO2濃度升高的影響

        大氣CO2濃度升高促進(jìn)了植物體內(nèi)碳的再分配過(guò)程,直接影響地下根的生長(zhǎng)、呼吸和分泌,一定程度上也會(huì)影響根對(duì)土壤礦物質(zhì)的捕獲,以及另外的地下生物過(guò)程,比如植物對(duì)土壤碳庫(kù)的捕獲過(guò)程。表2是文獻(xiàn)報(bào)道中列舉的幾種礦質(zhì)元素與植物生理過(guò)程對(duì)全球氣候變化的響應(yīng)。Loladze[41]綜述報(bào)道植物(19種草本植物和11種木本植物)葉對(duì)大量和痕量元素(如Fe, Zn, Mn 和 Cu等)的吸收隨CO2濃度升高而顯著下降。這些研究認(rèn)為絕大多數(shù)植物主要依靠蒸騰作用獲取土壤中水溶性Ca、Mg和Si營(yíng)養(yǎng),并受蒸騰作用驅(qū)動(dòng)力隨植物汁液輸送到莖、桿和葉[33- 34]。氣候變化CO2濃度升高,減少了C3植物葉面蒸騰,顯著地影響了植物對(duì)礦質(zhì)元素元素捕獲,并且在一年生作物和樹(shù)林冠層尤為顯著[33]。

        在作物研究方面,F(xiàn)angmeier等[16]發(fā)現(xiàn)CO2濃度升高顯著地減少了小麥對(duì)Ca和Zn的吸收。Manderscheid等[42]利用開(kāi)頂氣室法(OTCs)進(jìn)行的不同CO2濃度下兩種小麥對(duì)比實(shí)驗(yàn)研究發(fā)現(xiàn),小麥對(duì)大量和微量元素的吸收隨CO2濃度升高而下降,且秸稈比籽粒顯著。Hogy和Fangmeier[43]發(fā)現(xiàn),小麥和水稻籽粒中大量和微量元素的平均濃度隨大氣CO2濃度升高而下降了3.7%—18.3%。正是由于CO2濃度升高與作物礦質(zhì)元素利用率之間的反饋機(jī)制,直接影響到作物蛋白質(zhì)的合成,也改變了作物品質(zhì)[44]。Taub等[45]綜述了228篇關(guān)于CO2濃度升高(315—400ppm)對(duì)小麥、水稻等大田作物蛋白質(zhì)含量影響的研究,結(jié)論是CO2濃度升高使谷類作物籽粒中蛋白質(zhì)的含量減少了10%—15%,土豆塊莖中蛋白質(zhì)減少14%,豆類減少幅度最小,僅1.4%。至于蛋白質(zhì)等生理生化指標(biāo)的變化機(jī)理并不清楚,是否與作物痕量元素利用率降低有關(guān)?因?yàn)橐恍╇x子如Zn2+、Cu2+直接或間接地參與植物酶促反應(yīng)和生理功能。

        表2 氣候變化對(duì)植物礦質(zhì)元素利用率的影響

        由此看來(lái),CO2濃度升高模擬試驗(yàn)的結(jié)果同樣說(shuō)明,氣候變化CO2濃度升高也顯著地影響了植物(作物)對(duì)礦質(zhì)元素的利用率,對(duì)于作物來(lái)講,多數(shù)情況下以負(fù)反饋影響為主。

        1.3 氣候變化對(duì)土壤有機(jī)質(zhì)的影響

        土壤有機(jī)質(zhì)(SOM)通過(guò)對(duì)土壤理化性質(zhì),比如陽(yáng)離子交換量(CEC)、 pH、氧化還原電位,以及土壤濕度和結(jié)構(gòu)影響,在礦質(zhì)元素的土壤—植物轉(zhuǎn)移的過(guò)程中扮演著多種功能,是礦質(zhì)脅迫問(wèn)題中備受關(guān)注的重要問(wèn)題。Stevenson[46]報(bào)道土壤有機(jī)質(zhì)對(duì)CEC的貢獻(xiàn)在25到90%,Haynes和Naidu[47]估計(jì)在40%—50%,而 Loveland和Webb[48]估測(cè)為30%—60%。同時(shí),土壤有機(jī)質(zhì)也是控制土壤pH、氧化還原電位和土壤緩沖能力主要參數(shù)。

        一般情況下,SOM包括溶解有機(jī)物 (DOM, <0.45 mm), 顆粒有機(jī)物(POM>53 mm), 腐殖質(zhì)和木炭等惰性有機(jī)物(IOM)[49]。正常情況下輕質(zhì)的有機(jī)質(zhì)和POM在土壤中的轉(zhuǎn)化需要幾年的時(shí)間,而IOM可以在土壤中保持幾十年而不轉(zhuǎn)化[50]。氣候變化溫度或CO2濃度升高將改變現(xiàn)在土壤中有機(jī)質(zhì)組成,從而改變其對(duì)土壤結(jié)構(gòu)、陽(yáng)離子代換量、營(yíng)養(yǎng)組分和金屬離子的吸附作用[51]。Peterjohn等[52], Neff 和Hooper[53],Katterer等[54]已經(jīng)證實(shí)溫度升高導(dǎo)致土壤有機(jī)質(zhì)含量下降,而降雨增加情況下,土壤濕度提高和地溫的降低使土壤有機(jī)質(zhì)含量提高[55]。同時(shí),降水減少和地溫升高的情況下農(nóng)業(yè)土壤中的泥炭體積損失達(dá)到40%[56]。不僅如此,大量研究顯示,氣候變化溫度升高影響了地溫、微生物活性、土壤濕度,加快了土壤有機(jī)質(zhì)轉(zhuǎn)換速率[57- 59]。在這些研究結(jié)論的基礎(chǔ)上,結(jié)合圖1分析,認(rèn)為氣候變化對(duì)土壤有機(jī)質(zhì)含量的影響,將從根本上改變土壤理化性質(zhì)和礦質(zhì)元素形態(tài),對(duì)植物礦質(zhì)元素利用率構(gòu)成直接的、重要的影響。

        2 問(wèn)題分析

        首先,從研究進(jìn)展看,單因素試驗(yàn)研究,模擬氣候變化CO2濃度升高試驗(yàn)條件下,植物(包括一些作物如小麥和水稻籽粒中)對(duì)大量和痕量元素(如Fe, Zn, Mn 和 Cu等)的吸收一般隨CO2濃度升高而下降[43]。但模擬氣候變化溫度升高的試驗(yàn)結(jié)果卻與CO2濃度升高的不同[9,68],比如3℃的升溫處理使馬鈴薯葉Zn濃度提高了27%,但塊莖中Zn濃度反而下降了29%[9]。問(wèn)題是CO2濃度和溫度同時(shí)升高的情況下,作物對(duì)痕量元素利用率將如何變化?

        其次,文獻(xiàn)報(bào)道中對(duì)于作物痕量元素利用率的品種差異性,缺乏明確解釋。

        第三,在全球變化溫度和CO2,濃度升高的情況下,植物對(duì)痕量元素的親和性、選擇性,以及耐受性如何變化?目前很少有人回答這個(gè)科學(xué)問(wèn)題。

        第四,從機(jī)理上看,植物對(duì)Cd、Zn等痕量元素的吸收、分布、儲(chǔ)存和解毒,完全依靠幾大家族的組蛋白轉(zhuǎn)運(yùn)能力最終實(shí)現(xiàn)金屬元素在各器官內(nèi)的動(dòng)態(tài)平衡。這些轉(zhuǎn)運(yùn)蛋白最主要有運(yùn)送組蛋白如NRAMP、ZIP 和YSL、排泄組蛋白如P1BATPases,CDF、CAX和ABC[60]。一般情況下,ZIP家族是調(diào)節(jié)陽(yáng)離子攝取,特別是Zn2+和鐵離子吸收的最重要的蛋白組之一[60- 61]。例如,在水稻中的17種ZIP組蛋白,其中OsZIP1、OsZIP3和OsZIP4已經(jīng)確認(rèn)和Zn的運(yùn)輸有關(guān)[62- 63]。經(jīng)酵母菌表達(dá)試驗(yàn)和水稻定位試驗(yàn)發(fā)現(xiàn),OsZIP3對(duì)鋅離子有很強(qiáng)的親和性,動(dòng)力學(xué)測(cè)試也發(fā)現(xiàn)cDNAsOsZIP1和OsZIP3對(duì)Zn2+吸收的酶促反應(yīng)速率(Vmax)是OsZIP1的兩倍。不過(guò)Cd2+會(huì)通過(guò)對(duì)OsZIP1的競(jìng)爭(zhēng)而降低ZIP組蛋白對(duì)Zn2+的親和性[64]。Moreau[65]等在大豆ZIP蛋白質(zhì)轉(zhuǎn)運(yùn)金屬離子的研究中也發(fā)現(xiàn)GmZIP1以13.8μmol/L的Km值顯示對(duì)鋅離子具有的高度選擇性,而鎘離子則是唯一能抑制Zn攝取的金屬。這些研究在分子水平上很好地解釋了植物對(duì)一些痕量元素的利用的機(jī)理,只是缺乏對(duì)氣候變化響應(yīng)的研究。

        3 結(jié)語(yǔ)

        國(guó)內(nèi)外關(guān)于全球氣候變化對(duì)作物生長(zhǎng)發(fā)育影響的研究取得了一定進(jìn)展,但是有關(guān)未來(lái)全球氣候變化對(duì)農(nóng)業(yè)生態(tài)系統(tǒng)影響的許多內(nèi)容尚不清楚,還有許多重大的科學(xué)問(wèn)題急需研究和解決。礦質(zhì)脅迫問(wèn)題在大尺度上影響全球生態(tài)系統(tǒng)結(jié)構(gòu)和生態(tài)平衡,在小尺度上影響農(nóng)業(yè)種植結(jié)構(gòu)、作物營(yíng)養(yǎng)、農(nóng)業(yè)投入,直接影響糧食安全和食品安全。就目前的研究現(xiàn)狀,還不能回答將來(lái)氣候變化對(duì)作物營(yíng)養(yǎng)和毒性元素吸收、富集,以及由此引起的糧食和食品安全問(wèn)題。為此,建議今后的研究中加強(qiáng)以下幾個(gè)方面的重點(diǎn)與難點(diǎn)問(wèn)題的研究。

        (1)全球氣候變化溫度和CO2濃度升高,可能引起植物光合作用速率,蛋白質(zhì)生產(chǎn)等植物生理和生化方面的多種效應(yīng),從而影響到植物對(duì)包括痕量元素在內(nèi)的營(yíng)養(yǎng)和非營(yíng)養(yǎng)元素的吸收,可能直接影響糧食生產(chǎn)、作物品質(zhì)和食品安全。建議重點(diǎn)從未來(lái)農(nóng)業(yè)營(yíng)養(yǎng)元素投入、非營(yíng)養(yǎng)毒性元素的食品安全角度出發(fā)考慮解決問(wèn)題,為應(yīng)對(duì)氣候變化提供科學(xué)依據(jù)。

        (2)很少見(jiàn)將CO2濃度升高、溫度升高、降雨量變化等氣候因子組合,開(kāi)展多因子試驗(yàn),研究氣候變化對(duì)礦質(zhì)脅迫影響的文獻(xiàn)報(bào)道。多因子水平組合,能夠體現(xiàn)全球氣候變化的漸變過(guò)程,若能夠創(chuàng)造條件開(kāi)展多因子水平組合模擬試驗(yàn),將可能全面揭示氣候變化對(duì)礦質(zhì)元素利用率影響機(jī)理。

        (3)目前全球氣候變化對(duì)農(nóng)作物生理生態(tài)影響的研究,多采用OTC開(kāi)頂式氣室或人工氣候室法,是在人為控制條件下進(jìn)行的研究。而在適應(yīng)外界多因素漸變條件的FACE開(kāi)放式生態(tài)環(huán)境或田間條件下研究較少,也有不同的爭(zhēng)論。為了提高預(yù)測(cè)全球氣候變化對(duì)作物痕量元素利用率影響的準(zhǔn)確性,就要不斷改進(jìn)和完善試驗(yàn)方法,并加強(qiáng)多學(xué)科或交叉學(xué)科的研究以及技術(shù)集成研究,這將是當(dāng)前和未來(lái)研究的難點(diǎn)之一。

        (4)加快定量化研究氣候變化與土壤養(yǎng)分變化的關(guān)系問(wèn)題研究。這必將對(duì)預(yù)測(cè)未來(lái)農(nóng)業(yè)生產(chǎn)投資成本提供較為準(zhǔn)確的科學(xué)依據(jù)。但是,在氣候變化的時(shí)空尺度上、氣候和土壤質(zhì)地具有較大的差異性。因此,如何創(chuàng)新實(shí)驗(yàn)方法和手段,定量化研究土壤養(yǎng)分變化是一個(gè)具有挑戰(zhàn)性的課題。

        (5)我國(guó)黃土高原為中心的半干旱地區(qū)約占國(guó)土面積的1/8,耕地0.2億多hm2。由于地貌類型復(fù)雜,氣候條件多樣,形成了種類繁多的抗逆性生物資源,有利于開(kāi)展作物痕量元素利用率的對(duì)比研究。并且,前人利用半干旱地區(qū)遺傳資源優(yōu)勢(shì),已經(jīng)取得的關(guān)于作物對(duì)寒、旱、鹽和堿適應(yīng)的細(xì)胞內(nèi)平衡調(diào)節(jié)理論,對(duì)揭示作物對(duì)痕量元素利用率機(jī)理有一定科學(xué)啟發(fā)。

        [1] Qin D H, Chen Z L, Luo Y, Ding Y H, Dai X S, Ren J W, Zhai P M, Zhang X Y, Zhao Z C, Zhang D E, Gao X J, Shen Y P. Updated Understanding of Climate Change Sciences. Adv. Clim. Change Res., 2007, 3 (2): 63- 73.

        [2] Liu Y S, Liu Y, Guo L Y. Impact of climatic change on agricultural production and response strategies in China. Chinese Journal of Eco-Agriculture, 2010, 18(4): 905- 910.

        [3] Xiao G J, Zhang Q, Yao Y B, Yang S M, Wang R Y, Xiong Y C, Sun Z J. Effects of elevated CO2concentration, supplemental irrigation and nitrogenous fertilizer application on rain-fed spring wheat yield. Acta Ecologica Sinica, 2009, 29(4): 1408- 1535.

        [4] Zhang Qi, Deng Z Y, Zhao Y D. The impacts of global climatic change on the agriculture in northwest China. Acta Ecologica Sinica, 2008, 28(3):1210- 1218.

        [5] Lynch J P, St.Clair S B. Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Research, 2004, 90:101- 115.

        [6] Lynch J.The role of nutrient efficient crops in modern agriculture. J. Crop Prod,1998, 1: 241- 264.

        [7] Bank W. World Development Indicators. New York: The World Bank, 2002.

        [8] Li Y, Zhang Q, Wang R Y, Xiao G J, Wang S. The carcinogenic potential and bioavailability of cadmium (Cd) from food. Chinese Bulletin of Life Sciences, 2010, 22(2):179- 180.

        [9] Li Y, Zhang Q, Wang R Y, Gou X, Wang H L, Wang S. Temperature changes the dynamics of trace element accumulation inSolanumtuberosumL. Climatic Change, 2012, 112(3):655- 672.

        [10] Auld D S. Zinc coordination sphere in biochemical zinc sites. Biometals, 2001, 14:271- 313.

        [11] Frederickson C J, Koh J Y, Bush A I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci, 2005, 6:449- 462.

        [12] Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol, 2009, 50: 1156- 1170.

        [13] Graham R D, Welch R M, Saunders S A, Saunders D A, Ortiz-Monasterio I, Bouis H E, Bonierbale M, Haan S, Burgos G, Thiele G, Liria R, Meisner C A, Beebe S E, Potts M J, Kadian M, Hobbs P R, Gupta R K, Twomlow S J. Nutritious subsistence food systems. Adv Agron, 2007, 92:1- 74.

        [14] Maret W, Sandstead H H. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol, 2006, 20:3- 18.

        [15] Wakimoto P, Block G. Dietary intake, dietary patterns, and changes with age: an epidemiological perspective. J Gerontol A Biol Sci Med Sci, 2001, 56:65- 80.

        [16] Fangmeier A, Gruters U, Hogy P, Vermehren B, J?ger H J. Effects of elevated CO2nitrogen supply and tropospheric ozone on spring wheat. 2. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environ. Pollut,1997, 96(1):43- 59.

        [17] Chen H M, Zheng C R, Tu C, Zhu Y G. Heavy metal pollution in soils in China: status and countermeasures. Ambio. 1999, 28: 130- 134.

        [18] Nan Z R,Zhao C Y,Li J J,Chen F H,Sun W.Relations Between Soil Properties and Selected Heavy Metal Concentrations in Spring Wheat(TriticumAestivumL.)Grown in Contaminated Soil.Water, Air,and Soil Pollution,2000,13:205- 213.

        [19] Coughtrey P J, Thorne M C. Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems, a Critical Review of Data. A.A. Balkema, Rotterdam, The Netherlands,vols. 2 and 3, 1983.

        [20] Ehlken S, Kirchner G. Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. Journal of Environmental Radioactivity, 2002, 58:97- 112.

        [21] Armstrong A C, Mathews A M, Portwood A M. Modelling the effects of climate change on the hydrology and water quality of structured soils, NATO ASI Series 23//Rounsevell M D A, Loveland P J, eds. Soil Responses to Climate Change. Germany: Springer-Verlag, 1994: 113- 136.

        [22] Flurry M, Leuenberger M, Studer B. Pesticide Transport through Unsaturated Field Soils: Preferential Flow. CIBA Ltd., Basel, Switzerland, 1994: 293.

        [23] Rounsevell M D A, Evans S P, Bullock P. Climate change and agricultural soils: impacts and adaptation. Climatic Change,1999, 43: 683- 709.

        [24] Li Y, Zhang Q, Wang R Y, Liu N, Wang H L, Xiao G J, Ma Z Y. Influence of climatic warming on accumulation of trace elements in spring wheat (TriticumaestivumL.). Transactions of the Chinese Society of Agricultural Engineering, 2011,27(12):96- 104.

        [25] Li Y, Zhang Q, Gou X, Wang R Y, Xiao G J. Heavy metal contamination and its sources in rainfed agricultural and irrigated agricultural soils from central Gansu province. J Lanzhou University (Natural Sciences), 2011,47(6):56- 61.

        [26] Lynch D V, Steponkus P L. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings. Plant Physiol, 1987,83:761- 767.

        [27] Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press Limited, 1995.

        [28] Baghour M, Moreno D A, Hernàndez J. Influence of root temperature on phytoaccumulation of As, Ag, Cr and Sb in potato plants (SolanumtuberosumL. var.spunta). Journal of Environmental Science and Health. Part A. Toxic/Hazardous Substances & Environmental Engineering, 2001, 36(7):1389- 1401.

        [29] Albrecht A, Schultze U, Liedgens M, Flühler H, Frossard E. Incorporating soil structure and root distribution into plant uptake models for radionuclides: toward a more physically based transfer model. Journal of Environmental Radioactivity, 2002, 59(3):329- 350.

        [30] Ekvall L, Greger M. Effects of environmental biomassproducing factors on Cd uptake in two Swedish ecotypes ofPinussylvestris. Environmental Pollution, 2003, 121(3):401- 411.

        [31] Sardans J, Peňuelas J, Estiarte M. Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland. Chemosphere, 2008,70(5):874- 885.

        [32] Barber S A. Soil Nutrient Bioavailability: a Mechanistic Approach(2nd). New York USA: JohnWiley & Sons Inc,1995.

        [33] Elizabeth A A, Phillip A D, Carl J B, Orla C D Emily A H, David J M Patrick B M, Shawna L N, Hyung-shim Y R, Xin G Z, Peter S C, Stephen P L. A metaanalysisof elevated CO2effects on soybean (Glycinemax)physiology, growth and yield. Global Change Biol, 2002, 8: 695- 709.

        [34] Wullschleger S, Gunderson C, Hanson PJ, Wilson K, Norby R. Sensitivity of stomatal and canopy conductance to elevated CO2concentration—interacting variables and perspectives of scale. New Phytol, 2002, 153: 485- 496.

        [35] Gorissen A. Elevated CO2evokes quantitative and qualitative changes in carbon dynamics in a plant-soil system: mechanisms and implications. Plant Soil,1996, 187: 289- 298.

        [36] Gregory P J, Palta J A, Batts G R. Root systems and root:mass ratio-carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil, 1996, 187: 221- 228.

        [37] Rogers H H, Prior S A, Runion G B.Root to shoot ratio of crops as influenced by CO2. Plant Soil, 1996,187: 229- 248.

        [38] Hartwig U A, Luscher A, Nosberger J, Van Kessel C. Nitrogen- 15 budget in model ecosystems of white clover and perennial ryegrass exposed for four years at elevated atmosphericpCO2. Global Change Biol, 2002, 8: 194- 202.

        [39] Krupa Z, Baszynski T. Some aspects of heavy metals toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactions. Acta Physiol Plant,1995,17: 177- 190.

        [40] Clijsters H, Cuypers A, Vangronsveld J. Physiological responses to heavy metals in higher plants; defence against oxidative stress. Z. Naturforsch. C: Biosci,1999, 54: 730- 734.

        [41] Loladze I. Rising atmospheric CO2and human nutrition: toward globally imbaalanced plant stoichiometry?. Trends Ecol. Evol, 2002,17: 457- 461.

        [42] Manderscheid R, Bender J, Jager H J, Weigel H J. Effects of season long CO2enrichment on cereals. II. Nutrient concentrations and grain quality Agriculture, ecosystems & environment, 1995, 54: 175- 185.

        [43] H?gy P, Fangmeier A. Effects of elevated atmospheric CO2on grain quality of wheat. Journal of Cereal Science, 2008, 48: 580- 591.

        [44] H?gy P, Wieser H, K?hler P, Schwadorf K, Breuer J, Erbs M, Weber S, Fangmeier A. Does elevated atmospheric CO2allow for sufficient wheat grain quality in the future?. Journal of Applied Botany and Food Quality, 2009, 82: 114- 121.

        [45] Taub D, Miller B, Allen H. Effects of elevated CO2on the protein concentration of food crops: a meta-analysis. Glob. Change Biol, 2008,14: 565- 575.

        [46] Stevenson F J. Humus Chemistry. Genesis, Composition, Reactions. New York: Wiley and Sons, 1994: 512.

        [47] Haynes R J, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 1998,51: 123- 137.

        [48] Loveland P, Webb J. Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil and Tillage Research, 2003, 70: 1- 18.

        [49] Skjemstad J O, Janik L J, Taylor J A. Non-living soil organic matter: what do we know about it?. Australian Journal of Experimental Agriculture, 1998, 38:667- 680.

        [50] Krull E S, Baldock J A B, Skjemstad J O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology, 2003, 30:207- 222.

        [51] Sholkovitz E R, Copeland D. The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co and humic acid in river water. Geochimica et Cosmochimica Acta, 1981, 45: 181- 189.

        [52] Peterjohn W T, Melillo J M, Steudler P A, Newkirk K M, Bowles F P, Aber J D. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications,1994, 4: 617- 625.

        [53] Neff J C, Hooper D U. Vegetation and climate controls on potential CO2, DOC and DON production inNorthern latitude soils. Global Change Biology, 2002, 8: 872- 884.

        [54] Katterer T, Reichstein M, Andren O. Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biology and Fertility of Soils,1998, 27: 258- 262.

        [55] Robinson C H, Wookey P A, Parsons A N, Welker J M, Callaghan T V, Press M C, Lee J A. Responses of plant litter decomposition and nitrogen mineralization to simulated climate change in a high arctic polar semidesert and a subarctic dwarf shrub heath. Oikos, 1995, 74: 503- 512.

        [56] Kuntze H. Bogs as sinks and sources of C and N. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 1993,69: 277- 280.

        [57] Knorr W, Prentice I C, House J I, Holland E A. Long-term sensitivity of soil carbon turnover to warming. Nature, 2005, 433: 298- 301.

        [58] Fang C M, Smith P, John B M, Smith J U. Similar responses of labile and resistant soil organic matter to changes in temperature. Nature,2005, 433: 57- 59.

        [59] Reichstein M, Katterer T, Andren O. Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences, 2005, 2: 317- 321.

        [60] Hall J L, Williams L E. Transition metal transporters in plants. J. Experim. Bot, 2003, 54: 2601- 2613.

        [61] Colangelo EP, Guerinot M L. Put the metal to the petal, metal uptake and transport throughout plants. Curr. Opin. Plant Biol.,2006, 9: 322- 330.

        [62] Chen W R, Feng Y, Chao Y E. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (OryzasativaL.) genotypes with different zinc efficiency. Russ. J. Plant Physiol, 2008, 55:400- 409.

        [63] Ramesh S A, Shin R, Eide D J. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol, 2003, 133: 126- 134.

        [64] Roosens N, Verbruggen N, Meerts P. Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens fromWestern Europe. Plant Cell Environment, 2003, 26: 1657- 1672.

        [65] Moreau S, Thomson R M, Kaiser B N. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem, 2002, 277: 4738- 4746.

        參考文獻(xiàn):

        [1] 秦大河,陳振林,羅勇,丁一匯,戴曉蘇,任賈文,翟盤茂,張小曳,趙宗慈,張德二,高學(xué)杰,沈永平.氣候變化科學(xué)的最新認(rèn)知.氣候變化研究進(jìn)展,2007, 3(2): 63- 73.

        [2] 劉彥隨,劉玉,郭麗英. 氣候變化對(duì)中國(guó)農(nóng)業(yè)生產(chǎn)的影響及應(yīng)對(duì)策略. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2010,18(4):905- 910.

        [4] 張強(qiáng), 鄧振鏞, 趙映東. 全球氣候變化對(duì)我國(guó)西北地區(qū)農(nóng)業(yè)的影響.生態(tài)學(xué)報(bào), 2008, 28(3):1210- 1218.

        [8] 李裕, 張強(qiáng),王潤(rùn)元,肖國(guó)舉,王勝. 鎘的致癌性與食品中鎘的生物有效性.生命科學(xué), 2010, 22(2):179- 180.

        [24] 李裕, 張強(qiáng), 王潤(rùn)元,劉寧,王鶴齡,肖國(guó)舉,勾昕,馬志英.氣候變暖對(duì)春小麥籽粒痕量元素利用率的影響.農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):96- 104.

        [25] 李裕,張強(qiáng),勾昕,王潤(rùn)元,肖國(guó)舉. 灌溉與雨養(yǎng)農(nóng)業(yè)土壤中的重金屬污染源.蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,47(6):56- 61.

        [66] 張強(qiáng), 韓永翔, 宋連春. 全球氣候變化及其影響因素研究進(jìn)展綜述. 地球科學(xué)進(jìn)展. 2005, 20(9): 990- 998.

        State-of-the-art review of the impact of climatic change on bioavailability of mineral elements in crops

        LI Longqing1,WU Zhengyun1, ZHANG Qiang3,WANG Xiaoheng4, ZHANG Jihui2, YANG Yiming2, WANG Heling3, WU Lan2,LI Yu2,3,*

        1CollegeofLightIndustry,TextileandFoodEngineering,Chengdu610064,China2CollegeofChemicalEngineering,NorthwestUniversityforNationalities,Lanzhou730030,China3ChinaInstituteofAridMeteorology,ChinaMeteorologicalAdministration;KeyLaboratoryofAridClimaticChangeandReducingDisasterofGansuProvince;KeyOpenLaboratoryofAridClimaticChangeandDisasterReductionofChinaMeteorologicalAdministration,Lanzhou730020,China4CollegeofEarthandEnvironmentalScience,LanzhouUniversity,Lanzhou730000,China

        We critically review the current state of understanding of how bioaccumulation and bioavailability of trace elements in crops might be affected by global warming and elevated CO2concentrations, and the interaction of different environmental processes in controlling the transfer, distribution and deposition of mineral elements in crops in a changing environment. The 4thIPCC Assessment report concludes that global climate change is occurring due to human activities and will have a significant impact on the earth′s natural systems. However, significant uncertainty over the likely magnitude of these changes and their impacts exists. While bioaccumulation of mineral elements in crops is recognized as a physiologically important process, and is affected by several different climate variables (e.g. temperature, CO2), we know little about how these variables interact with other climate variables affecting plant productivity (e.g. rainfall), and how mineral stresses at the individual plant level translate to impacts at the agroecosystem level. Several studies of crop plants grown at high root temperatures found higher uptakes of zinc, lead, cadmium, silver, chromium and antimony versus plants grown at low root temperatures. Numerous studies report that elevated CO2concentrations generally decreased the accumulation of mineral elements in spring wheat and rice. However, the vast majority of past research has focused on the isolated effects of elevated CO2concentrations and temperature rise on crop productivity. We still know relatively little about the influence of temperature raisingandelevated CO2concentrations on plant and mineral element interactions in a changing environment, making it very difficult to predict how food production will respond to future climate change. Furthermore, although we have a fairly good understanding of how mineral concentrations in plant tissue can affect herbivores, we know comparatively little about these effects influence pasture production. There is clear need to integrate our current understanding from quantitative experimental studies within process-based models of plant productivity that should include interactions among climate, mineral stress and herbivory in order to better predict the responses of crops and pastures to future global climate change.

        climate change; mineral stresses; bioavailability; food security

        國(guó)家自然科學(xué)基金(41261052);國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(2013CB430200,2013CB430206);2013年西北民族大學(xué)創(chuàng)新團(tuán)隊(duì)項(xiàng)目資助;公益性氣象行業(yè)科研專項(xiàng)(GYHY201106029)

        2013- 05- 14;

        2013- 09- 22

        10.5846/stxb201305141057

        *通訊作者Corresponding author.E-mail: liyuxbmd@126.com

        李壟清,吳正云,張強(qiáng),王小恒,張季慧,楊一鳴,王鶴齡,烏蘭,李裕.氣候變化對(duì)作物礦質(zhì)元素利用率影響研究進(jìn)展.生態(tài)學(xué)報(bào),2014,34(5):1053- 1060.

        Li L Q,Wu Z Y, Zhang Q,Wang X H, Zhang J H, Yang Y M, Wang H L, Wu L,Li Y.State-of-the-art review of the impact of climatic change on bioavailability of mineral elements in crops.Acta Ecologica Sinica,2014,34(5):1053- 1060.

        猜你喜歡
        痕量礦質(zhì)利用率
        簡(jiǎn)單和可控的NiO/ZnO孔微管的制備及對(duì)痕量H2S氣體的增強(qiáng)傳感
        鈮-鋯基體中痕量釤、銪、釓、鏑的連續(xù)離心分離技術(shù)
        化肥利用率穩(wěn)步增長(zhǎng)
        做好農(nóng)村土地流轉(zhuǎn) 提高土地利用率
        不同產(chǎn)地三葉青中27種礦質(zhì)元素的綜合評(píng)價(jià)
        中成藥(2018年11期)2018-11-24 02:57:08
        淺議如何提高涉煙信息的利用率
        板材利用率提高之研究
        ICP- MS 測(cè)定西藏土壤中痕量重金屬Cu、Pb、Zn、Cr、Co、Ni、Cd
        西藏科技(2015年1期)2015-09-26 12:09:23
        微波消解-ICP-MS法同時(shí)測(cè)定軟膠囊中10種痕量元素
        基于礦質(zhì)元素的絞股藍(lán)產(chǎn)地鑒別研究
        麻豆国产一区二区三区四区| 加勒比黑人在线| 国产一级黄色av影片| 少妇高潮久久蜜柚av| 免费a级毛片18禁网站app| 黄色成人网站免费无码av| 国产三级视频在线观看视主播| 91国产自拍精品视频| 久久亚洲av成人无码电影a片| 色欲aⅴ亚洲情无码av蜜桃| 在线观看精品视频一区二区三区| 国产成人av区一区二区三| 国产成人av在线免播放观看新| 国产95在线 | 欧美| 亚洲日日噜噜噜夜夜爽爽| 中文字幕综合一区二区| 一本一道人人妻人人妻αv| 亚洲国产精品久久久久久久 | 国产精品久久无码免费看| 少妇下面好紧好多水真爽| 在线看无码的免费网站| 丰满岳乱妇在线观看中字无码 | 国产精品特级毛片一区二区三区| 中文在线√天堂| 国产亚洲午夜高清国产拍精品不卡| 黄射视频在线观看免费| 男男啪啪激烈高潮cc漫画免费| 欧美a级在线现免费观看| 国产精品国产三级国产不卡| 亚洲自偷自拍另类第1页| 熟妇人妻无码中文字幕| 国产精品美女久久久久浪潮AVⅤ| 国产成人自拍视频播放| 成人午夜性a级毛片免费| 女高中生自慰污免费网站| 国产精品美女主播在线| 亚洲精品色午夜无码专区日韩| 亚洲国产精品一区二区久| 日本人妖一区二区三区| 日韩精品无码熟人妻视频| 中文字幕人妻中文av不卡专区|