李清霞
(泉州幼兒高等師范??茖W(xué)校初等教育系,福建泉州362000)
可測(cè)空間上復(fù)值可測(cè)函數(shù)列的統(tǒng)計(jì)收斂與經(jīng)典收斂關(guān)系
李清霞
(泉州幼兒高等師范??茖W(xué)校初等教育系,福建泉州362000)
證明了可測(cè)空間(X,μ)上統(tǒng)計(jì)收斂的復(fù)值可測(cè)函數(shù)列一定存在某一子列幾乎處處收斂;反之,若復(fù)值可測(cè)函數(shù)列幾乎處處收斂必定能推出其是統(tǒng)計(jì)收斂的,也必定是依測(cè)度收斂的.
統(tǒng)計(jì)收斂;幾乎處處收斂;測(cè)度收斂;復(fù)值可測(cè)函數(shù)列
統(tǒng)計(jì)收斂概念由Fast在1951年引入[1],至今已經(jīng)成為二十世紀(jì)以來數(shù)學(xué)領(lǐng)域研究的熱點(diǎn)之一,利用泛函分析、凸分析、測(cè)度論等數(shù)學(xué)工具,統(tǒng)計(jì)收斂逐漸形成了一個(gè)龐大的理論體系,并為量子物理等提供一個(gè)理論基礎(chǔ).統(tǒng)計(jì)收斂是一般收斂的擴(kuò)展形式,統(tǒng)計(jì)收斂及其各種推廣形式已經(jīng)成為人們研究的熱點(diǎn).
設(shè)A是自然數(shù)集N的一個(gè)子集,A#表示A的基數(shù),An是A中不超過n的所有元素組成的集合.對(duì)于給定的實(shí)數(shù)列xn,令
且
1988年,Maddox[2]將統(tǒng)計(jì)收斂的概念推廣到局部凸空間中:設(shè)X是局部凸的T2空間,其拓?fù)涫怯蒟上連續(xù)半范數(shù)族Q所生成.對(duì)給定的X中序列{xn},如果對(duì)任意的ε>0,q∈Q,都有
稱{xn}統(tǒng)計(jì)收斂于x∈X.
后來,Maddox又引入了模函數(shù)的概念[3]:設(shè)f為給定的模函數(shù),如果存在x∈X,對(duì)任意的q∈Q,都有
則稱{xn}∈w(f);并證明了模函數(shù)下的收斂等價(jià)于統(tǒng)計(jì)收斂.
1989年,Connor[4]引入了A-統(tǒng)計(jì)收斂的概念:序列{xn}A-統(tǒng)計(jì)收斂于x∈X,如果?ε>0
其中,A=(aij)是一個(gè)無窮矩陣,滿足
J.A.Fridy和C.Orhan于1993年提出了缺項(xiàng)(Lacunary)統(tǒng)計(jì)收斂的定義;1994年,S.Pehlivan引入了一致收斂,L.Leindler和E.Savas引入了幾乎統(tǒng)計(jì)收斂、幾乎λ-統(tǒng)計(jì)收斂等概念.后來還出現(xiàn)了雙序列統(tǒng)計(jì)收斂、μ-稠密收斂、β-統(tǒng)計(jì)收斂等其他形式的統(tǒng)計(jì)收斂.2000年,J.Connor、M.Ganichev和V.Kadets在Banach空間中類似地給出統(tǒng)計(jì)收斂與弱統(tǒng)計(jì)收斂的定義.同年,P.Kostyrko、T.Salat等引入理想收斂的概念.此收斂為統(tǒng)計(jì)收斂最為一般的收斂形式.
經(jīng)過半個(gè)多世紀(jì)的發(fā)展,統(tǒng)計(jì)收斂已經(jīng)在許多數(shù)學(xué)領(lǐng)域內(nèi)得到廣泛地運(yùn)用,在測(cè)度理論[5]、矩陣求和[6]、級(jí)數(shù)[7]、Banach空間理論[4]、概率論[8]、局部凸空間[9-10]、Fourior分析[11]等都留下統(tǒng)計(jì)收斂的足跡,可以說統(tǒng)計(jì)收斂已經(jīng)形成了一個(gè)龐大的理論體系,可見統(tǒng)計(jì)收斂已經(jīng)成為二十世紀(jì)以來數(shù)學(xué)研究的熱門領(lǐng)域之一.本文將統(tǒng)計(jì)收斂從實(shí)數(shù)值函數(shù)列的收斂問題拓展到復(fù)值可測(cè)函數(shù)列.
定義1.1稱可測(cè)空間X中的復(fù)值可測(cè)函數(shù)列fn(x)統(tǒng)計(jì)收斂到f(x)∈X,若對(duì)任意的ε>0,有
其中An(ε)={k∈N:‖fn-f‖≥ε,k≤n},A#表示A的基數(shù),A(ε)={k∈N:‖fn-f‖≥ε},記作fn→Sf.
例如:設(shè)A={1,2p,3p,4p,…},其中p≥2,fn(x)=則序列{f(x)}統(tǒng)計(jì)收斂到f(x)=0.n
定理1.2若可測(cè)空間X中復(fù)值可測(cè)函數(shù)列{fn(x)}統(tǒng)計(jì)收斂到f(x)∈X,則對(duì)任意的ε>0,有
推論1.3可測(cè)空間X中的復(fù)值可測(cè)函數(shù)列{fn(x)}統(tǒng)計(jì)收斂到f(x)∈X,當(dāng)且僅當(dāng)對(duì)任意的ε>0,有μ(A(ε))=0.
定理1.4[4]設(shè)X為Banach空間,則X為有限維的當(dāng)且僅當(dāng)X中每個(gè)弱統(tǒng)計(jì)0序列都有一個(gè)有界的子列.
先回顧一下經(jīng)典收斂中的幾種收斂在可測(cè)空間中的定義.
定義2.1設(shè)fk與f是度量空間() X,μ上的復(fù)值可測(cè)函數(shù),若對(duì)任意的ε>0,有
則稱fk在X上依測(cè)度收斂于f,記作fk→μf.
定義2.2設(shè)fk與f是度量空間(X,μ)上的復(fù)值可測(cè)函數(shù),若存在X中的點(diǎn)集Z,有
及則稱fk按測(cè)度幾乎處處收斂于f,記作
定理2.3設(shè)fn與f是度量空間(X,μ)上的復(fù)值可測(cè)函數(shù),若fn→μf,則一定存在fn的某子列
證明:對(duì)所有的k=1,2,…,選單調(diào)遞增序列{nk},使得
定義集合
顯然
對(duì)所有m=1,2,…,由上式可得
則收斂,則
因此,fn,k幾乎處處收斂.
定理2.4設(shè)fn與f是度量空間(X,μ)上的復(fù)值可測(cè)函數(shù),若
證明:對(duì)任意的ε>0,可知
由此可得
定理2.5設(shè)fn與f是度量空間(X,μ)上的復(fù)值可測(cè)函數(shù),若fnμ→-a.e.f,則fn→Sf.
證明:設(shè){nk}={k∈N:‖fk(x)-f(x)‖≤ε,k≤n},則
假設(shè)μ({nk})≠1,必有μ(N{nk})≠0,則存在
使得fm,kμ→-a.e.f.
取μ({mk})=0,將N分成m份,每份中挑一個(gè),然
μ-a.e.后每個(gè)中又有k個(gè),使得fm,k→f,顯然k?s=n,其中s∈N,則有μ({mk})=1,矛盾.
由此可得μ({mk})=1,即fn→Sf.
定理2.6設(shè)fn與f是度量空間(X,μ)上的復(fù)值可測(cè)函數(shù),若fn→Sf,則一定存在fn的某子列fn,kμ→-a.e.f.
證明:設(shè)
設(shè)
顯然
取
當(dāng)δ=2-k,w∈X Xε,δ時(shí),fn,k幾乎處處收斂f,即
以上證明了可測(cè)空間(X,μ)上統(tǒng)計(jì)收斂的復(fù)值可測(cè)函數(shù)列一定存在某一子列幾乎處處收斂;依測(cè)度收斂的復(fù)值可測(cè)函數(shù)列一定存在某一子列幾乎處處收斂;反之,若復(fù)值可測(cè)函數(shù)列幾乎處處收斂必定能推出其是統(tǒng)計(jì)收斂的,也必定是依測(cè)度收斂的.
[1]Fast H.Sur le convergence statistical[J].Colloq Math,1951,2,241-244.
[2]Maddox I J.Statistical convergence in a locally convex space[J].Math Proc Cambridge Philos Soc,1988,104,141-145.
[3]Maddox I J.Sequence spaces defined by a modulus[J].Math Proc Camb Philos Soc,1986,100,161-166.
[4]Connor J.A characterization of banach spaces with separable duals via weak statistical convergence[J].Journal of Mathematical Analysis and Applications,2000,244(1):251-261.
[5]Cheng L X,Lin G C,Lan Y Y,et al.Measure theory of statistical convergence[J].Sci China Ser A,2008,51(12):2285-2303.
[6]Connor J.On strong matrix summability with respect to a modulus and statistical convergence[J].Canad Math Bull,1989,32(2):194-198.
[7]Zygmund A.Trigonometric Series[M].2nd Edition.Cambridge:Camb Univ Press,1979.
[8]Sencimen C,Pehlivan S.Strong statistical convergence in probabilistic metric spaces[J].Stochastic Analysis and Applications,2008(26):651-664.
[9]Rath D.A note on the completeness of the spaces of bounded sequences with values in a Hausdorff locally convex topological vector space[J].J Anal,2000,8,27-30.
[10]Maddox I J.Statistical convergence in a locally convex space[J].Math Proc Cambridge Philos Soc,1988,104(1):141-145.
[11]Mo?ricz F.Statistical convergence of Walsh-Fouries series[J].Acta Math Acad Paedagog Nyha?zi,2004,20(2):165-168.
【編校:許潔】
The Relation of Statistical Convergence and Classical Convergence of Complex-valued Measurable Functions on Measurable Space
LI Qingxia
(Department of Primary Education,Quanzhou Preschool Education College,Quanzhou,Fujian 362000,China)
The fact that there is one subsequence which is almost convergence of complex-valued measurable functions which are statistical convergence on measurable space(X,μ)was proved.There is one subsequence which is almost convergence of complex-valued measurable functions which is measure convergence.Contrarily,complex-valued measurable functions which were almost convergence must be statistical convergence and measure convergence.
statistical convergence;almost convergence;measure convergence;complex-valued measurable functions
O189.13
A
1671-5365(2014)06-0023-03
2013-12-17修回:2014-04-08
李清霞(1980-),女,講師,本科,研究方向?yàn)榉汉治?/p>
時(shí)間:2014-04-16 16:51
http://www.cnki.net/kcms/detail/51.1630.Z.20140416.1651.010.html