亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        L-R-Smash Products for Hopf Quasigroups

        2014-08-07 11:38:14LIShihongLIGuanghu
        關(guān)鍵詞:瑞芳王勇浙江大學(xué)

        LI Shihong, LI Guanghu

        (College of Science,Nanjing Agricultural University,Nanjing 210095,Jiangsu)

        1 Introduction and preliminaries

        It is well-known that the only parallelizable spheres areS1,S3,S7.The first two are groups andS7is something weaker(a Moufang loop or Moufang Quasigroup).Recently Klim and Majid in[1]introduced the concept of Hopf quasigroup and Hopf coquasigroup in order to capture the quasigroup features of the(algebraic)7-sphere.These are generalizations of Hopf algebras that are not required to be(co)associative.The lack of(co)associativity is compensated by conditions involving the antipode.

        In this paper,we first introduce the concept of LR-smash products for Hopf quasigroups.Then we give a necessary and sufficient condition making L-R-smash product into Hopf quasigroups.

        We work over a fixed fieldk.Unadorned tensor product symbol represents the tensor product ofk-vector spaces(see[2-11]).In what follows,we recall some definitions for Hopf quasigroups and Hopf coquasigroups used in this paper from[1,12-19].

        Definition 1.1A Hopf quasigroup is a possibly-nonassociative but unital algebraHwith productμ:HH?Hand unit 1:k?Hequipped with algebra homomorphismsΔ:H?HH,ε:H?kforming a coassociative coalgebra and a linear mapS:H?Hsuch that

        Definition 1.2A Hopf coquasigroup is a unital associative algebraAwith counital algebra homomorphismsΔ:A?AA,ε:A?kand a linear mapS:A?Asuch that

        We use Sweedler notation for coproduct:for allh∈H,Δ(h)=h1h2(summation implicit).Thus,in terms of the Sweedler notation,the Hopf quasigroup condition(1)and(2)can be expressed by

        for allg,h,h1,h2∈H.Dually,the Hopf coquasigroup conditions(3)and(4)come out as

        In this paper,the above mapSin Definition 1.1 or Definition 1.2 is called an antipode.A Hopf quasigroupHis flexible if for allg,h,h1,h2∈H,h1(gh2)=(h1g)h2;and alternative if also for allg,h,h1,h2∈H,h1(h2g)=(h1h2)g,h(g1g2)=(hg1)g2;and Moufang if for allf,g,h∈H,h1(g(h2f))=((h1g)h2)f.

        Definition 1.3LetHbe a Hopf quasigroup.A vector spaceVis called a leftH-quasimodule if there is a linear mapα:HV?Vwritten asα(hv)=h?vsuch that

        for allh∈H,v∈V.

        Similarly,we can define a rightH-quasimodule,that is,there is a linear mapβ:VH?Vwritten asβ(vh)=v?hsuch that

        for allh∈H,v∈V.If a vector spaceVis both a leftH-quasimodule and rightH-quasimodule,and for allh,g∈H,v∈V,the following condition

        holds,then we call it anH-biquasimodule.

        Definition 1.4An algebraA(not necessarily associative)is a leftH-quasimodule algebra ifAis a leftH-quasimodule and the following conditions hold:

        for allh∈H,a,b∈A.

        Similarly,we give the concept of a rightH-quasimodule algebra,that is,Ais a rightH-quasimodule and the following conditions hold:

        for allh∈H,a,b∈A.

        LetHbe a Hopf quasigroup with antipodeS,andAan(not necessarily associative)algebra.ThenAis called anH-biquasimodule algebra if the following conditions hold:

        1)Ais anH-biquasimodule with the leftH-quasimodule structure map“?”and the rightH-quasimodule structure map“?”;

        2)Ais not only a leftH-quasimodule algebra with the leftH-quasimodule action“?”but also a rightH-quasimodule algebra with the rightH-quasimodule action“?”.

        Definition 1.5A coalgebraCis a leftH-quasimodule coalgebra ifCis a leftH-quasimodule and

        for allh∈H,c∈C.

        Similarly,we give the concept of a rightH-quasimodule coalgebra,that is,Cis a coalgebra and a rightH-quasimodule and the following conditions hold:

        for allh∈H,c∈C.

        LetHbe a Hopf quasigroup with antipodeS,andCa coalgebra.ThenCis called anH-biquasimodule coalgebra if the following conditions hold:

        1)Cis anH-biquasimodule with the leftH-quasimodule structure map“?”and the rightH-quasimodule structure map“?”;

        2)Cis not only a leftH-quasimodule coalgebra via the action“?”but also a rightH-quasimodule coalgebra via the action“?”.

        AnH-biquasimodule Hopf quasigroup is a Hopf quasigroup which is anH-biquasimodule algebra and anH-biquasimodule coalgebra.In a similar way,we can give the conception ofH-biquasimodule Hopf coquasigroups.

        2 L-R-Smash products for Hopf quasigroups

        In this section,we introduce L-R-smash products for Hopf quasigroups,and give a necessary and sufficient condition making the L-R-smash product into Hopf quasigroups,which generalizes some important results in several references.

        Lemma 2.1For any Hopf quasigroupH,Δ,εare the coproduct and counit ofHrespectively,andS:H?His a linear map satisfying(1)and(2).Then

        1)εS=ε;

        2)m(Sid)Δ=ε(h)1=m(idS)Δ;

        3)Sis antimultiplicative:S(hg)=S(g)S(h)for allh,g∈H;

        4)Sis anticomultiplicative:Δ(S(h))=S(h2)S(h1)for allh∈H.

        ProofSimilar to the standard Hopf algebras,we can easily prove 1).From[1],we can got the proof of 2)~4).

        In what follows,we always assume thatHis a Hopf quasigroup,andAanH-biquasimodule Hopf quasigroup,such that the following conditions hold:for allg,h∈Handa∈A,

        Theorem 2.2LetHbe a Hopf quasigroup,andAan alternativeH-biquasimodule Hopf quasigroup.Then the L-R-smash productA#Hbuilt onAHwith tensor coproduct and unit and for allg,h∈H,a,b∈A,

        is a Hopf quasigroup if and only if the following conditions hold:

        ProofSuppose(16)and(17)hold.To see thatΔis an algebra homomorphism,for alla,b∈A,h,l∈H,we compute

        It is easy to prove that the counitεA#HofA#His an algebra homomorphism.It remains to check the Hopf quasigroup identities(1)and(2)hold.For alla,b∈A,h,l∈H,we compute

        In the above equalities(?),(??)and(???)come from the conditions(16)and(17).Next,in a similar way,we have

        So,the relation(1)for the L-R-smash productA#Hholds.In a similar way,we can show the equality(2).

        Conversely,ifA#His a Hopf quasigroup,then from the fact thatΔis an algebra homomorphism,we have

        In the above equality(18),if takingh=1Handb=1A,then

        By applyingidAεHεAidHto both sides of(19),we have(17).

        In the above equality(18),if takingl=1Handa=1A,then

        By applyingεAidHidAεHto both sides of(20),we obtain(16).This completes the proof.

        In the above theorem,if the right quasiaction is trivial,then(17)holds.Hence we have the following corollary which is the main theorem in[13].

        Corollary 2.3LetHbe a Hopf quasigroup,Aa leftH-quasimodule Hopf quasigroup.Then a smash productA#Hbuilt onAHwith tensor coproduct,counit and unit,whose multiplication and antipode are given by

        is a Hopf quasigroup if and only if the conditions(12)and(16)hold.

        In particular,ifHis cocommutative and the quasimodule ofAis exactly a module,then(12)and(16)hold.So,A#His a Hopf quasigroup in[1].

        IfAandHin Theorem 2.2 are associative,they are usual Hopf algebras.Then we get the main result in[2].

        Corollary 2.4Let(A,?,?)be anH-bimodule bialgebra andA#Hthe L-R-smash product.ThenA#His a bialgebra if and only if(16)and(17)hold.

        In this case,ifAandHare Hopf algebras,thenA#His a Hopf algebra.

        Remark 2.5By the above duality,we can also give a necessary and sufficient condition making the LR-smash coproduct into a Hopf coquasigroup.

        [1]Klim J,Majid S.Hopf quasigroups and the algebraic 7-sphere[J].J Algebra,2010,323(11):3067-3110.

        [2]Zhang L Y.L-R smash products for bimodule algebras[J].Prog Nat Sci,2006,16(6):580-587.

        [3]Sweedler M E.Hopf Algebras[M].New York:Benjamin,1969.

        [4]蔡芝敏,張良云.Hopf模余代數(shù)結(jié)構(gòu)定理[J].四川師范大學(xué)學(xué)報:自然科學(xué)版,2007,30(4):485-487.

        [5]黃輝,牛瑞芳,張良云.弱Hopf代數(shù)與(s,i)雙代數(shù)的自由積[J].四川師范大學(xué)學(xué)報:自然科學(xué)版,2010,33(4):443-446.

        [6]李菲菲,陳園園,張良云.關(guān)于余模余代數(shù)的L-R-smash余積和L-R扭曲余積[J].浙江大學(xué)學(xué)報:理學(xué)版,2012,39(2):123-129.

        [7]張鵬,張良云,牛瑞芳.扭Smash積的整體維數(shù)[J].浙江大學(xué)學(xué)報:理學(xué)版,2011,38(1):1-3.

        [8]張良云.Lie余模和Lie雙代數(shù)的構(gòu)造[J].中國科學(xué),2008,38(3):249-259.

        [9]魏波,張良云.弱Hopf代數(shù)上的R-Smash積[J].數(shù)學(xué)半年刊,2008,25(1):67-75.

        [10]楊沖,王勇,張良云.由Lazy 2-余循環(huán)誘導(dǎo)的扭曲Hopf模的基本結(jié)構(gòu)定理[J].數(shù)學(xué)半年刊,2009,6(2):225-231.

        [11]李彥超,王勇,張良云.弱Hopf代數(shù)上的β-特征代數(shù)[J].南京師范大學(xué)學(xué)報:自然科學(xué)版,2009,32(4):36-41.

        [12]López M P,Nóvoa E V.The antipode and the(co)invariants of a finite Hopf(co)quasigroup[J].Appl Categor Stru,2013,21(3):237-247.

        [13]Brzeziński T,Jiao Z M.Actions of Hopf quasigroups[J].Commun Algebra,2012,4(2):681-696.

        [14]Brzeziński T,Jiao Z M.R-smash products of Hopf quasigroups[J].Arab J Math,2012,1(1):39-46.

        [15]Jiao Z M,Wang Y L.The smash coproduct for Hopf quasigroups[J].Inter Elect J Algebra,2012,12:94-102.

        [16]焦?fàn)庿Q,趙曉凡.幾乎余交換和擬三角Hopf余擬群[J].河南師范大學(xué)學(xué)報:自然科學(xué)版,2012,40(5):1-2.

        [17]Brzeziński T.Hopf modules and the fundamental theorem for Hopf(co)quasigroups[J].Inter Elect J Algebra,2010,8:114-128.

        [18]Klim J,Majid S.Bicrossproduct Hopf quasigroups[J].Commun Math Univ Carolinae,2011,51(2):287-304.

        [19]Fang S H,Wang S H.Twisted smash product for Hopf quasigroups[J].J Southeast University:Eng Ed,2011,27(3):343-346.

        猜你喜歡
        瑞芳王勇浙江大學(xué)
        何家英人物畫的愁緒之美
        老趙和瑞芳
        王勇智斗財主
        浙江大學(xué)農(nóng)業(yè)試驗站簡介
        浙江大學(xué)作物科學(xué)研究所簡介
        王勇:我的想法就是“堅持”
        金橋(2018年12期)2019-01-29 02:47:44
        MACROSCOPIC REGULARITY FOR THE BOLTZMANN EQUATION?
        TheElementaryExplorationofSapir—WhorfHypothesis
        崔瑞芳
        歡迎訂閱《浙江大學(xué)學(xué)報(農(nóng)業(yè)與生命科學(xué)版)》
        精品国产三级a∨在线欧美| 日本加勒比一区二区在线观看| 欧美性xxxx狂欢老少配 | 69搡老女人老妇女老熟妇| 日本高清长片一区二区| 日本一区二区三区免费| 日本视频在线观看一区二区| 极品嫩模大尺度av在线播放| 无码乱肉视频免费大全合集| 亚洲av无码一区二区三区天堂古代| 台湾佬自拍偷区亚洲综合| 人禽无码视频在线观看| 亚洲 成人 无码 在线观看| 亚欧免费视频一区二区三区| 在线亚洲精品国产成人二区| av国产免费在线播放| 19款日产奇骏车怎么样| 无遮掩无码h成人av动漫| 性高朝久久久久久久| 亚洲三级黄色| 偷拍区亚洲区一区二区| 一区二区三区精彩视频在线观看 | 久久无码av中文出轨人妻| 国产成人无码av在线播放dvd| 日韩成人精品在线| AV无码专区亚洲AVL在线观看| 国产av熟女一区二区三区蜜臀| 人妻一区二区三区在线看| 无码国内精品人妻少妇蜜桃视频| 2018国产精华国产精品| 伊人色综合九久久天天蜜桃| 2020最新国产激情| 亚洲av本道一本二本三区| 午夜免费观看日韩一级视频| 色偷偷av一区二区三区| 水蜜桃无码视频在线观看| 69精品免费视频| 福利一区二区三区视频在线| 色婷婷av一区二区三区丝袜美腿| 人妖一区二区三区四区| 国产精品久久久国产盗摄|