沈立軍,杜楊松,王樹星,李大鵬,4,葛松勝,5,王開虎
(1. 山東省煤田地質(zhì)規(guī)劃勘察研究院,山東泰安 271000; 2. 中國地質(zhì)大學(xué)(北京),北京 100083;3. 山東省第八地質(zhì)礦產(chǎn)勘查院,山東日照 276826; 4. 山東省地質(zhì)科學(xué)研究院,山東濟南 250013;5. 中國科學(xué)院地質(zhì)與地球物理研究所,北京 100029; 6. 中化地質(zhì)礦山總局,北京 100101)
新疆西天山智博鐵礦巖漿-熱液成礦作用—來自安山巖礦物學(xué)的證據(jù)
沈立軍1,2,杜楊松2,王樹星3,李大鵬2,4,葛松勝2,5,王開虎6
(1. 山東省煤田地質(zhì)規(guī)劃勘察研究院,山東泰安 271000; 2. 中國地質(zhì)大學(xué)(北京),北京 100083;3. 山東省第八地質(zhì)礦產(chǎn)勘查院,山東日照 276826; 4. 山東省地質(zhì)科學(xué)研究院,山東濟南 250013;5. 中國科學(xué)院地質(zhì)與地球物理研究所,北京 100029; 6. 中化地質(zhì)礦山總局,北京 100101)
本文以智博鐵礦區(qū)內(nèi)的安山巖為研究對象,通過詳細的野外地質(zhì)調(diào)查,并利用電子顯微鏡和電子探針,對安山巖中的主要礦物進行了系統(tǒng)的巖相學(xué)觀察和礦物學(xué)研究。研究表明,智博安山巖中斜長石主要為Na-高鈉長石,具低TiO2,高Na2O和Al2O3的特點;輝石主要為普通輝石,具高TiO2,高Al2O3的特點;角閃石主要為鎂角閃石和陽起石,具低TiO2和Al2O3,高MgO的特點;副礦物磁鐵礦具高TiO2,低MgO和Al2O3的特點。輝石、角閃石礦物化學(xué)特征表明,智博鐵礦安山巖的母巖漿屬于殼幔混源的玄武質(zhì)巖漿,構(gòu)造環(huán)境為火山島弧環(huán)境。智博安山巖中單斜輝石結(jié)晶溫度為1225℃左右,結(jié)晶壓力約0.795GPa,結(jié)晶深度約26km。智博鐵礦后期的熱液作用也參與了磁鐵礦成礦,對智博鐵礦的成礦有一定的貢獻。
安山巖 巖相學(xué) 礦物學(xué) 成巖成礦 智博鐵礦
Shen Li-jun,Du Yang-song,Wang Shu-xing,Li Da-peng,Ge Song-sheng,Wang Kai-hu.Magmatic and hydrothermal mineralization of the Zhibo iron deposit in the western Tian Shan,Xinjiang:Evidence from andesite mineralogy[J].Geology and Exploration,2014,50(2):0321-0331.
智博鐵礦位于新疆和靜縣西北約200km,是西天山阿吾拉勒成礦帶中近年來新發(fā)現(xiàn)的大型鐵礦床之一。前人對該區(qū)域進行了大量的地質(zhì)研究(姜常義等,1996;王永新等,2003;劉寬厚等,2003),而本礦床由于發(fā)現(xiàn)時間較短,對其研究相對薄弱。田敬全等(2009)通過野外地質(zhì)調(diào)查,認為智博鐵礦為火山熱液型鐵礦床;而馮金星等(2010)通過詳細的巖石地球化學(xué)研究,認為智博鐵礦為巖漿(主成礦期)-熱液(次成礦期)復(fù)合型礦床,并指出礦石與玄武質(zhì)安山巖之間有密切聯(lián)系,玄武質(zhì)巖漿很可能為成礦母巖漿。前人對區(qū)域上與成礦有關(guān)的中基性火山巖做過大量的巖石地球化學(xué)研究(盧宗柳等,2006;徐國端等,2008),尤其是大哈拉軍山組安山巖,并取得了一些共識,普遍認為該地層火山巖為一套鈣堿性系列的火山巖建造,形成于陸緣島弧環(huán)境(李注蒼等,2006;張江蘇等,2006;張學(xué)奎等,2008),其巖漿活動受控于B型俯沖作用(姜常義等,1996)。但相比之下,對該套火山巖的巖相學(xué)和礦物學(xué)研究較為欠缺,為此本文以智博鐵礦區(qū)內(nèi)的安山巖為研究對象,通過詳細的野外地質(zhì)調(diào)查、并利用電子顯微鏡和電子探針,對安山巖中的主要礦物進行了系統(tǒng)的巖相學(xué)觀察和礦物學(xué)研究,以探討安山巖的礦物化學(xué)特征、巖石成因條件以及大地構(gòu)造背景,為進一步研究該礦床的成礦機制奠定良好的基礎(chǔ)。
智博鐵礦位于伊犁地塊東北部的阿吾拉勒-伊什基里克晚古生代裂谷帶內(nèi)(圖1a)。早石炭世的巖漿活動受控于B型俯沖作用,形成于大陸型島弧的內(nèi)側(cè),分布有大面積鈣堿性火山巖套和鈣堿性花崗巖(姜常義等,1996);早二疊世-晚二疊世的巖漿活動均為板內(nèi)拉張作用的產(chǎn)物,形成于裂谷化的初期階段,產(chǎn)生了大量的雙峰式火山巖和A型花崗巖(張作衡等,2008;馮金星等,2010)。
受火山機構(gòu)及北側(cè)NW向區(qū)域性大斷裂控制,區(qū)內(nèi)構(gòu)造行跡較為復(fù)雜,巖層劈理、節(jié)理發(fā)育,韌性變形復(fù)雜,但主要構(gòu)造為一單斜構(gòu)造,此單斜構(gòu)造走向NW315°左右,傾角60°左右。礦區(qū)內(nèi)出露的地層主要為下石炭統(tǒng)大哈拉軍山組第三亞組(C1dc)火山巖和第四系冰川及其堆積物(圖1b)?;鹕綆r主要包括安山巖、玄武巖、玄武質(zhì)安山巖、玄武質(zhì)凝灰?guī)r、粗面安山巖以及少量的粗面巖和英安巖,鐵礦體主要賦存于安山巖中。區(qū)內(nèi)晚古生代火山活動頻繁,古火山機構(gòu)發(fā)育,巖漿巖以華力西期中晚期為主,侵入巖巖體主要有淺肉紅色的花崗閃長巖和灰色的石英閃長巖,巖脈主要為后期侵入于礦區(qū)西北部石英閃長巖中的輝綠巖脈(李小軍,1994;馮金星等,2010)。
智博礦區(qū)的安山巖呈灰色、灰綠色,具交織結(jié)構(gòu)(圖2a)和斑狀結(jié)構(gòu),塊狀構(gòu)造。巖石由斑晶和基質(zhì)組成(圖2a、b)。斑晶主要有斜長石(10%~15%)、鉀長石(5%~10%)、輝石(10%~15%)、角閃石(5%~10%),斜長石和鉀長石(圖2b)斑晶呈半自形-自形板柱狀分布,單斜輝石和角閃石(圖2c)斑晶呈半自形-自形板片狀和粒狀分布。基質(zhì)主要由斜長石(15%~20%)、輝石(15%~20%)、鉀長石(3%~5%)、磁鐵礦(3%~5%)等組成,副礦物主要為榍石、磷灰石以及少量鋯石。安山巖中偶見杏仁構(gòu)造(圖2b),被后期方解石充填??拷V體部分的安山巖蝕變較強,主要蝕變有鉀長石化(圖2c)、綠簾石化(圖2c)、硅化、綠泥石化和陽起石化。其中和礦體相鄰的安山巖鉀長石化和硅化蝕變異常強烈,呈條帶狀分布。
磁鐵礦主要賦存于智博礦區(qū)安山巖中,根據(jù)前人研究(馮金星等,2010;蔣宗勝,2012;王志華,2012)、野外及鏡下觀察,智博鐵礦既具有巖漿成因的一些典型特征,如存在隱爆角礫狀礦石,礦體與圍巖接觸截然,廣泛發(fā)育氣孔、杏仁狀構(gòu)造等;又存在廣泛的熱液蝕變與磁鐵礦密切聯(lián)系,因此將磁鐵礦成礦期次大體上劃分為兩期:巖漿期與熱液期。巖漿期礦石主要為致密塊狀礦石(圖2d)、角礫狀礦石(圖2e)以及浸染狀礦石,發(fā)育杏仁、氣孔狀構(gòu)造,見星點狀黃鐵礦, 充填于磁鐵礦空隙(圖2f), 在礦體與圍巖接觸部位(圖2e)磁鐵礦膠結(jié)鉀長石化、綠簾石化的安山巖角礫,主要礦物組合為磁鐵礦-透輝石。熱液期礦石主要為條帶狀礦石(圖2g)、稀疏浸染狀礦石(圖2h)及網(wǎng)脈狀礦石,磁鐵礦與鉀長石、綠簾石密切共生(圖2i),見團塊狀、條帶狀黃鐵礦,還發(fā)育石英脈和碳酸巖脈切穿早期礦物,石英脈中可見黃鐵礦及黃銅礦。
圖1 智博鐵礦礦區(qū)地質(zhì)圖(據(jù)新疆地質(zhì)礦產(chǎn)勘查開發(fā)局第三地質(zhì)大隊,2011)Fig.1 Geological sketch map of the Zhibo iron deposit in Xinjiang(modified from No.3 Geological Team,Xinjiang Geology and Mineral Resources Exploration and Development Bureau,2011) 1-大哈拉軍山組第三亞組安山巖;2-石英閃長巖;3-花崗閃長巖;4-第四系沖積、坡積物;5-第四系冰積物;6-第四系冰川;7-磁鐵礦體;8-斷層;9-地質(zhì)界線1-Dahalajunshan Fm.3rd Subformation andesite;2-quartz diorite;3-granodiorite;4-Quaternary alluvium and diluvium;5-Quaternary glacial debris;6-Quaternary glacier;7-magnetite;8-fault;9-geological boundary
礦物電子探針分析測試在中國地質(zhì)大學(xué)(北京)科學(xué)研究院電子探針實驗室完成。儀器型號為EPMA-1600,工作條件是:加速電壓15kV,束流7×10-8A,束斑直徑1μm,修正方法為ZAF,測試中鐵離子全部視為三價鐵,依據(jù)林文蔚(1994)的分配方法原理對Fe2+和Fe3+進行調(diào)整,各礦物的礦物化學(xué)數(shù)據(jù)列于表1~表4。
4.1 斜長石
安山巖中斜長石含量約占45%左右,呈灰白色或暗灰色,半自形-自形板柱狀結(jié)構(gòu),正低突起,干涉色一級灰白,斜消光,可見聚片雙晶,不具環(huán)帶,斑晶斜長石粒度0.5~1mm,基質(zhì)中粒度0.2~0.3mm。
斜長石礦物學(xué)資料(表1)顯示,其具低TiO2,高Na2O和Al2O3的特點。其中SiO2(65.24%~68.52%), TiO2(0.00%~0.14%), Al2O3(19.38%~20.12%),F(xiàn)e2O3T(0.00%~0.62%),MnO(0.00%~0.05%),MgO(0.00%~0.07%),CaO(0.45%~0.84%),Na2O(12.11%~12.85%),K2O(0.00%~0.15%)。根據(jù)Smith & Brown(1974)的長石分類圖解(圖3)可知,本區(qū)斜長石全部落入Na-高Na長石區(qū),Na2O含量較高,Ab達到95%以上,洛多奇尼柯夫(1956)曾指出,巖漿巖中的鈉長石大多情況下是淺巖漿礦物,而火成巖中鈉長石往往是發(fā)生鈉長石化(去鈣長石化)的結(jié)果,這說明安山巖中的斜長石發(fā)生了鈉長石化。斜長石中TiO2較低(<0.15%),Keer(1998)通過實驗認為,TiO2的含量既與熔體的TiO2的含量有關(guān)又與熔體分異程度有關(guān),隨著熔體中Fe-Ti氧化物分異程度的增加,Ti的含量也將隨之降低,在分異晚期Ti的含量下降。這指示了安山巖中斜長石可能是在巖漿分異晚期形成的,但也可能是由于蝕變作用導(dǎo)致了長石中TiO2含量的降低。
圖2 安山巖與磁鐵礦樣品照片F(xiàn)ig.2 Photographs of andesite and magnetite ores a-安山巖中斜長石(Pl)定向排列成交織結(jié)構(gòu),正交偏光;b-安山巖中鉀長石(Kf)斑晶,見杏仁狀構(gòu)造,正交偏光;c-安山巖中綠簾石(Ep)化、鉀長石(Kf)化蝕變,單偏光;d-致密塊狀磁鐵礦,發(fā)育星點狀黃鐵礦(Py);e-角礫狀磁鐵礦石,角礫為蝕變安山巖;f-黃鐵礦(Py)充填于磁鐵礦(Mt)空隙,反射光;g-浸染狀磁鐵礦,發(fā)育綠簾石(Ep)化、鉀長石(Kf)化;h-鉀長石(Kf)與綠簾石(Ep)中磁鐵礦;i-半自形-自形磁鐵礦(Mt),單偏光a-plagioclase (Pl) in andesite displaying pilotaxitictexture,cross-polarized light;b-K-feldspar (Kf) phanerocryst in andesite,amygdaloidal structure,cross-polarized light;c-epidotization (Ep) and kfeldsparization (Kf) in andesite,plan-polarized light;d-massive magnetite ore associated with scattered pyrite (Py);e-brecciated magnetite ore associated with altered andesite brecciate;f-pyrite (Py) filling lattice voids of magnetite,reflective light;g-disseminated magnetite ore associated with epidotization (Ep) and kfeldsparization (Kf);h-magnetite associated with epidote (Ep) and K-feldspar (Kf);i-hypidiomorphic-automorphic magnetite (Mt),reflective light
4.2 輝石
安山巖中的輝石含量約占10%左右,呈淺褐色,它形-半自形,不規(guī)則粒狀,多色性不明顯,正高突起,干涉色二級藍綠,節(jié)理發(fā)育,粒度0.2~0.4mm。
礦物學(xué)資料顯示(表2),其具高TiO2、高Al2O3的特點。其中SiO2(47.89%~49.07%),TiO2(1.34%~1.92%),Al2O3(2.81%~4.70%),F(xiàn)e2O3T(11.84%~13.47%),MnO(0.08%~0.58%),MgO(11.69%~12.65%),CaO(18.16%~20.24%),Na2O(0.52%~0.97%),K2O(0.00%~0.01%)。輝石Wo-En-Fs分類圖解(圖4)顯示,安山巖中的輝石為普通輝石和少量的次透輝石。Kushiro(1960)和Le bas(1962)研究表明,單斜輝石的成分取決于母巖漿的成分與結(jié)晶環(huán)境,火成巖中的Si與Al有互不相容的作用,其Si和Al可以作為確定母巖漿類型的標型元素(孫傳敏,1994),輝石Si-AlⅣ圖(圖5)顯示,大部分單斜輝石落入拉斑玄武巖區(qū)與不含似長石堿性巖區(qū)交匯區(qū)域。
圖3 智博安山巖中長石分類圖 (據(jù)Smith & Brown,1974)Fig.3 Classification of feldspars in the Zhibo andesite (after Smith & brown,1974)
4.3 角閃石
安山巖中的角閃石含量約25%左右,呈淺綠色,半自形-自形,板柱狀,多色性強,正中突起,干涉色二級藍,節(jié)理不發(fā)育,偶見閃石式節(jié)理,粒度0.1~0.2mm。
表1 智博鐵礦安山巖中斜長石的電子探針分析數(shù)據(jù)(%)Table 1 Electron microprobe analyses of plagioclase in andesite from the Zhibo iron deposit(%)
測試時間:2012年2月;測試單位:中國地質(zhì)大學(xué)(北京)。
圖4 智博安山巖輝石分類圖(據(jù)Morimoto et al.,1988)Fig.4 Classification of pyroxene in the Zhibo andesite (after Morimoto et al.,1988)
礦物學(xué)資料顯示(表3),角閃石具有低TiO2和Al2O3、高MgO,的特點。其中SiO2(49.67%~53.84%),TiO2(0.00%~0.24%),Al2O3(0.81%~4.92%),TFe2O3(14.42%~17.42%),MnO(0.05%~1.48%),MgO(12.98%~15.02%),CaO(10.99%~11.59%),Na2O(0.22%~1.15%),K2O(0.00%~0.54%),Mg/(Mg+Fe)為0.64~0.76。根據(jù)角閃石分類圖解(圖6)中,本區(qū)安山巖中角閃石為鎂角閃石和陽起石,鎂角閃石有變化到陽起石的趨勢,說明受到了后期熱液的蝕變;依據(jù)Giret (1980) 劃分的巖漿成因的角閃石和次生角閃石,陽起石的Ca+ AlⅣ= 1.90~1.95,小于2.5,屬次生角閃石,鎂角閃石Ca+AlⅣ=2.21~2.44,略小于2.5,說明鎂角閃石也受到了后期熱液的一定影響;在角閃石來源圖解(圖7)中,陽起石落入殼源區(qū),鎂角閃石落入殼?;煸磪^(qū)。但鑒于陽起石為蝕變礦物屬次生角閃石,故其母巖漿應(yīng)與鎂角閃石投點結(jié)果一致,為殼?;煸葱?。
圖5 智博安山巖輝石Si-AlⅣ圖(據(jù)Kushiro,1960)Fig.5 Si-AlⅣ diagram of pyroxene in the Zhibo andesite (after Kushiro,1960 ) 1-拉斑玄武巖;2-不含似長石的堿性巖;3-含似長石的堿性巖1-tholeiitic basalts;2-alkaline rocks without feldspathoid;3-alkaline rocks with feldspathoid
樣號SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OTotalZB0748.91.372.8113.470.3611.6920.240.670.0099.5ZB0848.41.924.4613.430.3211.7419.280.520.00100.08ZB0947.891.723.9313.410.3212.2819.110.640.0099.3ZB1049.071.343.7613.110.4112.6518.530.690.0199.58ZB1148.611.704.4013.430.5812.0918.160.970.0099.94ZB1248.971.834.7011.840.0811.8919.520.690.0099.52以6個氧原子為基準計算的陽離子數(shù)樣號SiAlⅣAlⅥFe3+TiFe2+MnMgCaNaKTotalWoEnFsZB071.8330.1240.0000.0850.0390.3040.0110.6530.8130.0490.0003.91145.9136.9017.19ZB081.7960.1950.0000.0270.0540.3590.0100.6500.7670.0370.0003.89543.1836.5920.24ZB091.7950.1740.0000.0940.0480.2940.0100.6860.7670.0460.0003.91443.9239.2716.81ZB101.8250.1650.0000.0590.0370.3180.0130.7010.7380.0500.0003.90742.0139.9118.07ZB111.8050.1920.0000.0740.0470.3110.0180.6690.7220.0700.0003.90942.4339.3118.25ZB121.8170.1830.0220.0000.0510.3420.0030.6580.7760.0500.0003.90143.7037.0419.27
測試時間:2012年2月;測試單位:中國地質(zhì)大學(xué)(北京)。
表3 智博鐵礦安山巖中角閃石的電子探針分析數(shù)據(jù)(%)Table 3 Electron microprobe analyses of amphibole in andesite from the Zhibo iron deposit(in percentage)
測試時間:2012年2月;測試單位:中國地質(zhì)大學(xué)(北京);Mg#為Mg/(Mg+Fe2+)。
圖6 智博安山巖角閃石分類圖(據(jù)Leake et al.,1997)Fig.6 Amphibole classification of Zhibo andesite (after Leake et al.,1997)
圖7 智博安山巖角閃石來源投點圖(據(jù)姜常義等,1984)Fig.7 Projection diagram of the sources of amphibole in Zhibo andesite (after Jiang et al.,1984)
4.4 磁鐵礦
安山巖中磁鐵礦礦物的主要氧化物含量見表4,磁鐵礦具高TiO2,低MgO和Al2O3的特點。FeO含量多高于理論值(31.06%),F(xiàn)e2O3含量低于理論值(68.94%),其中SiO2(0.22%~0.37%),TiO2(9.67%~11.07%),F(xiàn)e2O3(45.48%~61.92%),F(xiàn)eO(30.32%~41.14%),MnO(0.07%~0.90%)。蝕變安山巖中磁鐵礦TiO2含量較低,僅為0.00%~0.02%,F(xiàn)eO、Fe2O3含量接近于磁鐵礦理論值,分別為Fe2O3(66.57%~68.16%),F(xiàn)eO(31.12%~31.77%)。另外,SiO2含量為0.07%~0.59%,兩種磁鐵礦化學(xué)成分上的差異,可能暗示其成因的不同。
5.1 巖石成因及構(gòu)造背景
單斜輝石的成分與巖漿和構(gòu)造環(huán)境有密切關(guān)系,特別是Ti、Al、Na等的含量對判斷巖漿系列和構(gòu)造環(huán)境有良好的指示作用(Le Base, 1962; Leterrieretal.,1982;sunetal.,1991)。孫傳敏(1994)研究指出火成巖中的Si與Al有互不相容的作用,其Si和Al可以作為確定母巖漿類型的標型元素。在輝石Si-AlⅣ圖(圖5)上大部分單斜輝石落入拉斑玄武巖區(qū)與不含似長石堿性巖區(qū)交匯區(qū)域,但在智博礦區(qū)以及整個大哈拉軍山組均無不含似長石的堿性巖發(fā)育(馮金星等,2010),因此輝石Si-AlⅣ圖(圖5)中單斜輝石應(yīng)屬于拉斑玄武巖區(qū),智博礦區(qū)安山巖的母巖漿應(yīng)為玄武質(zhì)巖漿。
表4 智博鐵礦安山巖中磁鐵礦的電子探針分析數(shù)據(jù)(%)Table 4 Electron microprobe analyses of magnetite in andesite from the Zhibo iron deposit(%)
測試時間:2012年2月;測試單位:中國地質(zhì)大學(xué)(北京)。
Nisbet等(1973)對單斜輝石的成分進行了多元統(tǒng)計分析,建立了用F1、F2劃分構(gòu)造環(huán)境的判別圖(圖8),其中:
在圖8中,部分單斜輝石在火山弧玄武巖+洋底玄武巖區(qū)域內(nèi),部分在洋底玄武巖+板塊內(nèi)拉斑玄武巖范圍內(nèi)。由于巖漿快速冷卻,導(dǎo)致TiO2和Al2O3的富集(Leterrieretal.,1982),使F2數(shù)據(jù)偏小。若不考慮TiO2和Al2O3的富集作用的影響,單斜輝石投點應(yīng)向上偏移,更傾向于火山弧玄武巖范圍內(nèi)。姜常義等(1995)巖石地球化學(xué)研究表明石炭紀火山巖形成于島弧環(huán)境,朱永峰等(2005)通過詳細的巖石學(xué)與巖石地球化學(xué)研究,認為大哈拉軍山組火山巖形成于古南天山洋的火山島弧。對于智博礦區(qū)火山巖,蔣宗勝等(2012)對其進行了詳細的巖石地球化學(xué)研究,結(jié)合馮金星等(2010)智博礦區(qū)火山巖地球化學(xué)數(shù)據(jù),在Th-Ta-Hf/3圖解、Zr/4-Y-Nb×2圖解、Nb/Th-Zr/Nb圖解及Nb/Yb-Th/Yb圖解中,均指示智博礦區(qū)火山巖具火山島弧玄武巖的特點。由此看來,輝石的礦物學(xué)特征與巖石地球化學(xué)特征指示的構(gòu)造背景具有一定的一致性,智博安山巖形成的構(gòu)造環(huán)境應(yīng)為火山島弧環(huán)境。
圖8 智博安山巖單斜輝石F1-F2圖解(據(jù)Nisbet等,1973)Fig.8 F1 versus F2 diagram of clinopyroxene in Zhibo andesite (after Nisbet et al.,1973) WPT-板塊內(nèi)拉斑玄武巖;WPA-板塊內(nèi)部堿性玄武巖;VAB-火山弧玄武巖;OFB-洋底玄武巖WPT-within plate tholeiite;WPA-within plate alkali basalt;VAB-volcanic arc basin;OFB-ocean floor basalts
眾所周知,高壓含水情況下,玄武巖很容易結(jié)晶出角閃石或形成角閃巖,而在造巖礦物的演化過程中,角閃石出現(xiàn)于無水硅酸鹽向含水硅酸鹽轉(zhuǎn)化的最初階段,直接反映成巖作用物化條件的轉(zhuǎn)變,故角閃石可作為指示成巖作用的標型礦物(陳光遠等,1987)。巖石中的鈣質(zhì)角閃石的化學(xué)成分可以反映其母巖漿的性質(zhì)(馬潤則等,1997,2001;肖淵甫等,1998)。姜常義等(1984)指出角閃石中TiO2和Al2O3的含量可以指示其母巖漿性質(zhì),根據(jù)其建立的TiO2-Al2O3角閃石來源圖解(圖7),圖中顯示陽起石落入殼源區(qū),鎂角閃石落入殼幔混源區(qū)。而陽起石為后期熱液蝕變礦物,鎂角閃石才能較為真實反映其巖漿來源,所以其母巖漿應(yīng)屬殼幔混源系列。
由上述礦物學(xué)資料可知,智博鐵礦區(qū)安山巖的母巖漿屬于殼?;煸吹男滟|(zhì)巖漿,構(gòu)造環(huán)境為火山島弧環(huán)境。
5.2 溫壓條件
斜長石中Al的含量與壓力的大小有一定關(guān)系。前人研究表明,玄武巖巖漿在高壓結(jié)晶時,Al易于進入單斜輝石中,故高壓結(jié)晶的輝石富鋁,低壓結(jié)晶時Al易進入斜長石,因而低壓結(jié)晶的斜長石富鋁(Kushiro,1960;Thompson,1974;邱家驤,1987)。本區(qū)安山巖中斜長石中Al含量相對較高(>19.38%),表明斜長石可能為低壓環(huán)境下結(jié)晶的產(chǎn)物。
智博安山巖中角閃石主要為陽起石和鎂角閃石,礦物學(xué)數(shù)據(jù)顯示它們都受到不同程度熱液作用的影響,遭受熱液蝕變致使成分上發(fā)生了一定的變化,不能真實反映其溫壓條件,故采用輝石對溫壓進行估算。
Thompson(1974)通過大量實驗研究,建立了以單斜輝石Al含量為參數(shù)計算不同類型玄武巖中單斜輝石結(jié)晶溫度和壓力的公式,在此基礎(chǔ)上,周新民(1982)總結(jié)了堿性玄武巖中單斜輝石的溫壓回歸方程:P(0.1GPa)=-7.5382+83.1692Al,T(℃)=1056.8986+902.7978Al (Al,以6個氧原子計算陽離子數(shù))。據(jù)此對本區(qū)玄武質(zhì)安山巖中單斜輝石的結(jié)晶溫壓進行估算(見表5),結(jié)晶溫度為1205.677~1242.404℃,平均值為1225℃,結(jié)晶壓力為0.6168~0.9551GPa,平均值為0.795 GPa,對應(yīng)深度為26km(按1GPa≈33.0km換算結(jié)晶深度)。
表5 單斜輝石溫壓計算結(jié)果Table 5 Geothermobarometer calculations of clinopyroxene
由上所述,智博安山巖中單斜輝石結(jié)晶溫度為1225℃左右,結(jié)晶壓力約0.795GPa,結(jié)晶深度約26km。
5.3 熱液成礦作用
根據(jù)野外及鏡下觀察,智博礦區(qū)內(nèi)發(fā)育大量鉀長石化、綠簾石化等熱液蝕變,角閃石中陽起石也為蝕變礦物,說明智博鐵礦后期有大量熱液的侵入,并且離礦體越近蝕變越強烈,礦體中也發(fā)育大量綠簾石化、鉀長石化蝕變,條帶狀礦石(圖2g)、稀疏浸染狀礦石(圖2h)及網(wǎng)脈狀礦石即為熱液期形成的典型礦石,這些礦石中磁鐵礦與鉀長石、綠簾石密切共生(圖2i),表明熱液作用與智博礦區(qū)磁鐵礦成礦有密切的聯(lián)系。
磁鐵礦礦物化學(xué)特征表明智博安山巖中磁鐵礦明顯分為兩種類型,一種是安山巖中晶形較小的磁鐵礦,其Ti含量較高;另一種是蝕變較強烈的安山巖中的磁鐵礦,其Ti含量較低。陳光遠(1987)研究指出,在不同的地質(zhì)作用下,磁鐵礦具有明顯的專屬性,據(jù)前人(林師整,1982;陳光遠等,1984;闕梅英,1984)整理的磁鐵礦平均化學(xué)成分表,晶形較小的磁鐵礦化學(xué)成分接近于中基性至超基性巖中副礦物成分;而蝕變安山巖中磁鐵礦接近于熱液成因的磁鐵礦,表明后期的熱液作用也參與了磁鐵礦成礦。
綜合野外、鏡下觀察及磁鐵礦礦物化學(xué)特征,說明智博礦區(qū)后期的熱液作用也參與了磁鐵礦成礦,對智博鐵礦的成礦有一定的貢獻。
(1) 智博安山巖中斜長石主要為Na-高鈉長石,具低TiO2,高Na2O,高Al2O3的特點;輝石主要為普通輝石,具高TiO2,高Al2O3的特點;角閃石為鎂角閃石與陽起石,具低TiO2,高MgO,低Al2O3的特點;副礦物磁鐵礦具高TiO2,低MgO,低Al2O3的特點。
(2) 智博安山巖中輝石、角閃石礦物化學(xué)特征表明,智博鐵礦安山巖的母巖漿屬于殼?;煸吹男滟|(zhì)巖漿,構(gòu)造環(huán)境為島弧環(huán)境。
(3) 智博安山巖中單斜輝石結(jié)晶溫度為1225℃左右,結(jié)晶壓力約0.795GPa,結(jié)晶深度約26km。
(4) 智博礦區(qū)后期的熱液作用也參與了磁鐵礦成礦,對智博鐵礦的成礦有一定的貢獻。
致謝 野外工作得到了新疆自治區(qū)地質(zhì)調(diào)查院總工程師王磊、新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)勘查開發(fā)局教授級高工李鳳鳴、屈迅以及地礦局第三地質(zhì)大隊和十一地質(zhì)大隊的大力相助,匿名審稿專家認真細致地審閱了本文,并提出寶貴的修改建議,作者在此一并表示衷心的感謝!
[注釋]
① 新疆地質(zhì)礦產(chǎn)勘查開發(fā)局第三地質(zhì)大隊.2011.新疆和靜縣諾爾湖鐵礦詳查地質(zhì)報告[R].
В.Н.Лодочников.1956.The main rock forming minerals [M].Beijing:Geological Publishing House:73-82(in Chinese)
Chen Guang-yuan,Li Mei-hua,Wang Xue-fang,Sun Dai-sheng,Sun Chuan-min,Wang Zu-fu,Su Yu-xuan,Lin Jia-xiang.1984.The genetic mineralogy of Gongchangling iron deposit:The second chapter magnetite [J].Minerals and Rocks,(2):14-41(in Chinese)
Chen Guang-yuan,Sun Dai-sheng,Yin Hui-an.1987.Genetic mineralogy and prospecting mineralogy [M].Chongqing:Chongqing Publishing House:1-294(in Chinese)
Dawoud M,Eliwa H A,Traversa G,Attia M S,Itaya T.2006.Geochemistry,mineral chemistry and petrogenesis of a neoproterozoic dyke swarm in the north Eastern Desert,Egypt[J].Geological Magazine,143(1):115 -135
Feng Jin-xing,Shi Fu-jng,Wang Bang-yao,Hu Jian-ming,Wang Jiang-tao,Tian Jing-quan.2010.The volcanic type iron ore in Awulale area,Western Tianshan Mountain [M].Beijng:Geological Publishing House:1-117(in Chinese)
Giret A,Bonin B,Leger JM.1980.Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-composition [J].Canadian Mineralogist,18(4):481-495Hammarstrom J M,Zen E A.1986.Aliunimun in horn-blende:an empirical igneous geobarometer [J].American Mineralogist,71:1297-1313
Hollister L S,Grissom G C,Peters E K,Stowell H H,Sisson V B.1987.Confirmation of the empirical correlation of Al in hornblende with products of solidification in calc-al-kaline plutons [J].American Mineralogist,72:231-239
Jiang Chang-yi,An San-yuan.1984.On chemical characteristics of calcic amphiboles from igneous rock and their petrogenesis significance [J].Journal of Mineralogy and Petrology,3:1-9(in Chinese with English abstract)
Jiang Chang-yi,Wu Wen-kui,Zhang Xue-ren,Cui Shang-sen.1995.The change from island arc to rift valley-evidence from volcanic rocks in Awulale area [J].Acta Petrologica Et Mineralogica,14(4):289-300(in Chinese with English abstract)
Jiang Chang-yi,Wu Wen-kui,Zhang Xue-ren,Cui Shang-sen.1996.Magma action and tectonic evolution in Awulale district,Western Tianshan Mountain [J].Journal of Xi’an Engineering University,18(2):18-24(in Chinese with English abstract)
Jiang Zong-Sheng,Zhang Zuo-Heng,Hou Ke-Jun,Hong Wei,Wang Zhi-Hua,Li Feng-Ming,Tian Jing-Quan.2012.Geochemistry and zircon U-Pb age of volcanic rocks from the Chagangnuoer and Zhibo iron deposits,western Tianshan,and their geological significance [J].Acta Petrologica Sinica,28(7):2074-2088(in Chinese with English abstract)
Jiang Zong-Sheng,Zhang Zuo-Heng,Wang Zhi-Hua,Li Feng-Ming,Tian Jing-Quan.2012.Alteration mineralogy,mineral chemistry and genesis of Zhibo iron deposit in western Tianshan Mountains,Xinjiang [J].Mineral Deposits,31(5):1051-1066(in Chinese with English abstract)
Keer A C.1998.Chemsitry of mull-morren teriary lava succession,Western Scotland[J].Mineralogical Magazine,62(3):295-312
Kushiro I.1960.Si-Al relation in clinopyroxenes from igneous rocks [J].American Journal of Science,258:518-551
Le Bas M J.1962.The rock of aluminium in igneous clinopyroxenes with relation to their parentage [J].American Journal of Science,260:267-288
Leake B E and 21 others.1997.Nomenclature of amphiboles,report of the subcommittee on amphiboles of the Internation Mineralogical Association Commission on New Minerals and Mineral Names [J].Mineral Mag,61:295-321
Leterrier J,Maury R C,Thonon P.1982.Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic seties [J].Earth and Planetary Science Letters,59:139-154
Li Xiao-jun.1994.The analysis of distribution law and mineral potential of main mineral resources in Awulale Mountain [J].Mineral Resources and Geology,8(5):344-347(in Chinese)
Li Zhu-cang,Li Yong-jun,Li Jing-hong,Luan Xin-dong,Guo Wen-jie.2006.Geochemical characteristics of the Dahalajunshan formation volcanic rocks and their implications on the tectonic setting in Awulale area [J].Xinjiang Geology,24(2):120-124(in Chinese with English abstract)
Lin Shi-zheng.1982.A contribution to the chemistry,origin and evolution of magnetite [J].Acta Mineralogica Sinica,(3):166-174(in Chinese with English abstract)Lin Wen-wei,Peng Li-jun.1994.The estimation of Fe3+and Fe2+contents in amphibole and biotite from EMPA data [J].Changchun College of Geology Journal,24(2):155-162(in Chinese with English abstract)
Liu Kuan-hou,Zhuang Dao-ze,Jiao Xue-jun.2006.The assessing and anomaly-checking countermeasures of 1∶500 000 regional geochemical exploration in the western Tianshan mountains,Xinjiang [J].Geology and Exploration,39 (6):6-9(in Chinese with English abstract)
Lu Zong-liu,Mo Jiang-ping.2006.Geological characters and ore genesis of Aulale iron-rich deposit in Xinjiang [J].Geology and Exploration,42(5):8-11(in Chinese with English abstract)
Ma Run-ze,Xiao Yuan-fu,Wei Xian-gui,Li You-guo.1997.Research on the geochemical property and genesis of basic and ultrabaisc rocks of Jinning period in the Micangshan area,Sichuan Province [J].Journal of Mineralogy and Petrology,17(supplementary issue):35-47(in Chinese with English abstract)
Ma Run-ze,Xiao Yuan-fu.2001.Study on rock-forming minerals in the basic-ultrabasic rocks of Jinning period from the Micangshan area [J].Journal of Chengdu University of Technology,28(1):34-39(in Chinese with English abstract)
Morimoto N,F(xiàn)abries J,F(xiàn)erguson AK.1988.Nomenslature of pyroxenes [J].Subcommittee on Pyroxenes.American Mineralogist,73:1123-1133
Nisbet E G,Pearce J A.1973.Clinopyroxene composition in mafic lavas from different tectonic settings [J].Contribution to Mineralogy and Petrology,63(2):149-160
Qiu Jia-xiang,Zeng Guang-ce.1987.The main characteristics and petrological significance of low pressure clinopyroxenes in the cenozoic basalts from Eastern China [J].Acta Petrologica Sinica,(4):1-9(in Chinese with English abstract)
Que Mei-ying.1984.The origin of Etouchang iron deposit and the characteristics of its iron minerals [J].Journal of Mineralogy and Petrology,1(1):57-70(in Chinese with English abstract)
Schmidt M W.1992.Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer [J].Mineralogy and Petrology,110:304 -310
Smith JV,Brown WL .Feldspar minerals [M].Germany:Springer-Verlag,1974:1-690Sun C M,Bertrand J.1991.Geochemistry of clinopyroxenes in plutonic and volcanic sequences from the Yanbian Proterozoic ophiolites (Sichuan Province,China):Petrogenetic and geotectonic implications [J].Schweiz Mineralogische Petrologische Mitteilungen,71:243-259
Sun Chuan-min.1994.Genetic mineralogy of pyroxenes from the Yanbian proterozoic ophiolites (Sichuan,China),and its geotectonic implications [J].Journal of Mineralogy and Petrology,14(3):1-15(in Chinese with English abstract)
Tian Jing-quan,Hu Jing-tao,Yi Xi-zheng,Dong Quan-hong,Liu Xing-zhong.2009.The minerogenic condition and prospecting analysis of the iron mine around Chagangnuoer-Beizhan region in Western Tianshan Mountain [J].West-China Exploration Engineering,(8):88-92(in Chinese)
Thompson R N.1974.Some high-pressure pyroxenes [J].Mineralogical Magazine,(39):768-787Wang Yong-xin,Tian Pei-ren.2003.Zoning and exploration significance of marine volcanic hotwater sedimentary deposits in Xinjiang [J].Geology and Exploration,39 (4):6-11(in Chinese with English abstract)
Wang Zhi-Hua,Zhang Zuo-Heng,Jiang Zong-Sheng,Hong Wei,Tian Jing-Quan.2012.Magnetite composition of Zhibo iron deposit in western Tianshan Mountains and its genetic significance [J].Mineral Deposits,31(5):983-998(in Chinese with English abstract)
Xiao Yuan-fu,Ma Run-ze,Wei Xian-gui,He Zheng-wei,Li You-guo.1998.The characteristics and genesis of the basic intrusive complex in chengjiang period,Micangshan,Sichuan [J].Journal of Chengdu University of Technology,25(4):537-542(in Chinese with English abstract)
Xu Guo-duan,Han Run-sheng.2006.Geology and ore exploration indication of Bayin copper deposit in the Hejing county,Xinjiang [J].Geology and Exploration,44(6):13-20(in Chinese with English abstract)
Xu Guo-feng,Shao Jie-lian.1979.Typomorphic characteristic and practical significance of magnetite [J].Geology and Exploration,3:30-37(in Chinese)
Zhang Jiang-su,Li Zhu-cang.2006.Tectonic setting of the Dahalajunshan formation volcanic rocks in awulale of west Tianshan [J].Gansu Geology,15(2):10-15(in Chinese with English abstract)
Zhang Xue-kui,Li Zhu-cang.2008.The geochemical characteristics of Dahalajunshan formation volcanic rocks in Western Tianshan Mountain [J].Gansu Science and Technology,24(3):32-35(in Chinese)
Zhang Zuo-heng,Wang Zhi-liang,Zuo Guo-chao,Wang Long-sheng,Liu Min,Gan Fu-ping,Wang Jian-wei,Zhang Chang-qing.2008.The geological evolution and copper polymetallic deposits’ mineralization environment of Western Tianshan Mountain,Xinjiang [M].Beijing:Geological Publishing House:180-202(in Chinese)
Zheng Qiao-rong.1983.Calculation of the Fe3+and Fe2+contents in silicate and Ti-Fe oxide minerals from EPMA data [J].Acta Mineralogica Sinica,(1):55-61(in Chinese with English abstract)
Zhou Xin-min,Chen Tu-hua,Liu Chang-shi,Xue Ji-yue.1982.Pyroxene and amphibole megacrysts in alkali basaltic rocks from southeastern coastal provinces of China [J].Acta Mineralogica Sinica,(1):13-20(in Chinese with English abstract)
Zhu Yong-feng,Zhang Li-fei,gu Li-Bing,Guo Xuan,Zhou Jing.2005.SHRIMP chronology and trace element geochemistry of the carboniferous volcanic rocks in the western Tianshan Mountains [J].Chinese Science Bulletin,50(18):2004-2014(in Chinese with English abstract)
[附中文參考文獻]
陳光遠,黎美華,汪雪芳,孫岱生,孫傳敏,王祖福,速玉萱,林家相.1984.弓長嶺鐵礦成因礦物學(xué)專輯 第二章 磁鐵礦[J].礦物巖石,(2):14-41
陳光遠,孫岱生,殷輝安.1987.成因礦物學(xué)與找礦礦物學(xué)[M].重慶:重慶出版社:1-294
馮金星,石福晶,汪幫耀,胡建明,王江濤,田敬全.2010.西天山阿吾拉勒成礦帶火山巖型鐵礦[M].北京:地質(zhì)出版社:1-117
姜常義,安三元.1984.論火成巖中鈣質(zhì)角閃石的化學(xué)組成特征及其巖石學(xué)意義[J].礦物巖石,3:1-9.
姜常義,吳文奎,張學(xué)仁,崔尚森.1995.從島弧向裂谷的變遷—來自阿吾拉勒地區(qū)火山巖的證據(jù)[J].礦物巖石學(xué)雜志,14(4):289-300
姜常義,吳文奎,張學(xué)仁,崔尚森.1996.西天山阿吾拉勒地區(qū)巖漿活動與構(gòu)造演化[J].西安地質(zhì)學(xué)院學(xué)報,18(2):18-24
蔣宗勝,張作衡,侯可軍,洪為,王志華,李鳳鳴,田敬全.2012.西天山查崗諾爾和智博鐵礦區(qū)火山巖地球化學(xué)、鋯石U-Pb年齡及地質(zhì)意義[J].巖石學(xué)報,28(7):2075-2088
蔣宗勝,張作衡,王志華,李鳳鳴,田敬全.2012.新疆西天山智博鐵礦床蝕變礦物學(xué)、礦物化學(xué)特征及礦床成因探討[J].礦床地質(zhì),31(5):1051-1066
李小軍.1994.阿吾拉勒山主要礦產(chǎn)分布規(guī)律及成礦遠景淺析[J].礦產(chǎn)與地質(zhì),8(5):344-347
李注蒼,李永軍,李景宏,欒新東,郭文杰.2006.西天山阿吾拉勒一帶大哈拉軍山組火山巖地球化學(xué)特征及構(gòu)造環(huán)境分析[J].新疆地質(zhì),24(2):120-124
林師整.1982.磁鐵礦礦物化學(xué)、成因及演化的探討[J].礦物學(xué)報,(3):166-174
林文蔚,彭麗君.1994.由電子探針分析數(shù)據(jù)估算角閃石、黑云母中的Fe3+、Fe2+[J].長春地質(zhì)學(xué)院學(xué)報,24(2):155-162
劉寬厚,莊道澤,焦學(xué)軍.2003.新疆西天山1∶50 萬化探成果評估與異常查證對策[J].地質(zhì)與勘探,39(6):6-9
盧宗柳,莫江平.2006.新疆阿吾拉勒富鐵礦地質(zhì)特征和礦床成因[J].地質(zhì)與勘探,42(5):8-11
洛多奇尼柯夫.1956.最主要的造巖礦物[M].北京:地質(zhì)出版社:73-82
馬潤則,肖淵甫,魏顯貴,李佑國.1997.四川米倉山地區(qū)晉寧期基性超基性巖地球化學(xué)性質(zhì)及其成因研究[J].礦物巖石,17(增刊):35-47
馬潤則,肖淵甫.2001.米倉山地區(qū)晉寧期基性超基性侵入巖中造巖礦物研究[J].成都理工學(xué)院學(xué)報,28 (1):34-39
邱家驤,曾廣策.1987.中國東部新生代玄武巖中低壓單斜輝石的礦物化學(xué)及其巖石學(xué)意義[J].巖石學(xué)報,(4):1-9
闕梅英.1984.云南羅茨鵝頭廠鐵礦床主要貼礦物特征及礦床成因探討[J].礦物巖石,1(1):57-70
孫傳敏.1994.四川鹽邊元古代蛇綠巖中輝石的成因礦物學(xué)及其大地構(gòu)造意義[J].礦物巖石,14 (3):1-15
田敬全,胡敬濤,易習正,李明,董全宏,劉興忠.2009.西天山查崗諾爾—備戰(zhàn)一帶鐵礦成礦條件及找礦分析[J].西部探礦工程,(8):88-92
王永新,田培仁.2003.淺論新疆海相火山熱水沉積礦床的分帶及其找礦意義[J].地質(zhì)與勘探,39(4):6-11
王志華,張作衡,蔣宗勝,洪為,田敬全.2012.西天山智博鐵礦磁鐵礦成分特征及其礦床成因意義[J].礦床地質(zhì),31(5):983-998
肖淵甫,馬潤則,魏顯貴,何政偉,李佑國.1998.米倉山澄江期基性侵入雜巖特征及其成因探討[J].成都理工學(xué)院學(xué)報,25(4):537-542
徐國端,韓潤生.2008.新疆和靜縣巴音銅礦地質(zhì)特征與找礦標志[J].地質(zhì)與勘探,44(6):13-20
徐國鳳,邵潔漣.1979.磁鐵礦的標型特征及其實際意義[J].地質(zhì)與勘探,3:30-37
張江蘇,李注蒼.2006.西天山阿吾拉勒一帶大哈拉軍山組火山巖構(gòu)造環(huán)境分析[J].甘肅地質(zhì),15(2):10-15
張學(xué)奎,李注蒼.2008.西天山大哈拉軍山組火山巖地球化學(xué)特征及地質(zhì)意義[J].甘肅科技,24(3):32-35
張作衡,王志良,左國朝,王龍生,劉敏,干甫平,王見蓶,張長青.2008.新疆西天山地質(zhì)構(gòu)造演化及銅多金屬礦床成礦環(huán)境[M].北京:地質(zhì)出版社:180-202
鄭巧榮.1983.由電子探針分析值計算Fe3+和Fe2+[J].礦物學(xué)報,(1):55-61
周新民,陳圖華,劉昌實,薛紀越.1982.我國東南沿海堿性玄武質(zhì)巖石中輝石和角閃石巨晶[J].礦物學(xué)報,(1):13-20
朱永峰,張立飛,古麗冰,郭璇,周晶.2005.西天山石炭紀火山巖SHRIMP年代學(xué)及其微量元素地球化學(xué)研究[J].科學(xué)通報,50(18):2004-2014
Magmatic and Hydrothermal Mineralization of the Zhibo Iron Deposit in the Western Tian Shan,Xinjiang:Evidence from Andesite Mineralogy
SHEN Li-jun1,2,DU Yang-song2,WANG Shu-xing3,LI Da-peng2,4,GE Song-sheng2,5,WANG Kai-hu6
(1. Shandong Provincial Research Institute of Coal Geology Planning and Exploration, Taian, Shandong 271000; 2. China University of Geoscience, Beijing 100083; 3. The 8th Institute of Geology and Mineral Exploration of Shandong Province, Rizhao, Shandong 276826; 4. Shandong Geological Sciences Institute, Jinan, Shandong 250013;5. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029; 6. China Chemical Geology and Mine Bureau,Beijing 100101)
Petrographic and mineralogical characteristics of andesite from the Zhibo iron deposit have been investigated through field investigations,and electron microscope and EMPA observations.The results indicate that the plagioclase is dominated by albite,characterized by low TiO2and high Na2O,Al2O3content.The pyroxene is mainly augite and contains high TiO2and high Al2O3.The amphibole is magnesiohornblende or actinolite that has low TiO2and Al2O3,and high MgO.The magnetite includes more TiO2and less MgO and Al2O3.The parental magma of the Zhibo andesite is basaltic magma derived from mixing sources of crust and mantle.Its tectonic environment is a volcanic island arc.The clinopyroxene crystallization temperature is about 1225℃;the crystallization pressure is about 0.795 GPa,and its corresponding depth is 26 km.The later hydrothermal action in the Zhibo iron deposit also involved in the magnetite’s formation,and the hydrothermal metallogenesis had a certain contribution to the formation of the Zhibo iron deposit.
andesite,petrography,mineralogy,petrogenesis and mineralization,Zhibo iron deposit
2012-06-17;
2013-01-04;[責任編輯]郝情情。
中國地質(zhì)調(diào)查局天山成礦帶地質(zhì)礦產(chǎn)調(diào)查評價項目(編號1212011120497)資助。
沈立軍(1988年—),男,中國地質(zhì)大學(xué)(北京)在讀碩士研究生,礦產(chǎn)普查與勘探專業(yè)。E-mail:cugbslj@gmail.com。
P588.144+P575.1
A
0495-5331(2014)02-0321-11