亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Triebel-Lizorkin Spaces and Besov Spaces Associated with Different Homogeneities and Boundedness of Composition Operators

        2014-07-18 11:55:35WangHongbin
        淄博師專論叢 2014年4期

        Wang Hongbin

        (Department of Mathematical and Physical Science, Zibo Normal College, Zibo 255130, China)

        Triebel-Lizorkin Spaces and Besov Spaces Associated with Different Homogeneities and Boundedness of Composition Operators

        Wang Hongbin

        (Department of Mathematical and Physical Science, Zibo Normal College, Zibo 255130, China)

        In this paper, the author introduces new Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities and proves that the composition of two Calderón-Zygmund singular integral operators with different homogeneities is bounded on these new Triebel-Lizorkin spaces and Besov spaces.

        Triebel-Lizorkin spaces; Besov spaces; Calderón-Zygmund operators; composition; discrete Calderón’s identity

        1 Introduction and statement of main results

        Forx=(x′,xn)∈n-1×and δ>0, we consider two kinds of homogeneities onN

        δ°e(x′,xn)=(δx′,δxn),

        δ°h(x′,xn)=(δx′,δ2xn).

        The first are the classical isotropic dilations occurring in the classical Calder n-Zygmund singular integrals, while the second are non-isotropic and related to the heat equations (also Heisenberg groups). Lete(ζ) be a function onnhomogeneous of degree 0 in the isotropic sense and smooth away from the origin. Similarly, suppose thatH(ζ)is a function onnhomogeneous of degree 0 in the non-isotropic sense, and also smooth away from the origin. Then it is well-known that the Fourier multipliersT1defined by(ζ)=e(ζ)(ζ)andT2givenby(ζ)=h(ζ)(ζ) are both bounded onLpfor 1

        To state more precisely our main results, we first recall some notions and notations. Forx=(x′,xm)∈m-1×we denote |x|e=(|x′|2+|xm|2)and |x|h=(|x′|2+|xm|.Wealsousenotationsj∧k=min{j,k}andj∨k=max{j,k}.LetΨ(1)∈s(m)with

        (1.1)

        (1.3)

        (1.5)

        where the convergence of series inL2(m) andS′/P(m) (the space of tempered distributions modulo polynomials) follows from the results in the classical case. See [1] for more details.

        Now, we give the definition of Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities.

        Definition 1.1 Let 0

        where

        where

        Thesingularintegralsconsideredinthispaperaredefinedby

        Definition 1.2 A locally integrable functionK1onRn{0} is said to be a Calderón- Zygmund kernel associated with the isotropic homogeneity if

        (1.6)

        for all |α|≥0 and

        (1.7)

        for all 0

        We say that an operatorT1is a Calderón-Zygmund singular integral operator associated with the isotropic homogeneity ifT1(f)(x)=p.v.(K1*f)(x), whereK1satisfies conditions of (1.6) and (1.7).

        (1.8)

        forall|α|≥0,β≥0and

        and

        (1.9)

        forall0

        WesaythatanoperatorT2isaCalderón-Zygmundsingularintegraloperatorassociatedwiththenon-isotropichomogeneityifT2(f)(x)=p.v.(K2*f)(x),whereK2satisfiesconditionsof(1.8)and(1.9).

        Ourmainresultsarethefollowing

        Theorem 1.1 LetT1andT2be Calder n-Zygmund singular integral operators with isotropic and non-isotropic homogeneity, respectively. Then for 0

        2 Some lemmas

        Intheproofofourmainresult,wewillusethefollowinglemmas.

        ×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm),

        where the series converges inL2(m),S∞(m),andS′/P(m).

        Lemma 2.2 (Almost orthogonality estimates[2]) Suppose thatΨj,kandφj′,k′satisfy the same conditions in (1.1)-(1.4). Then for any given integersLandM, there exists a constantC=C(L,M)>0 such that

        DenotebyMsthestrongmaximaloperatordefinedby

        wherethesupremumistakenoverallopenrectanglesinmthatcontainthepointx.

        SimilartotheproofofLemma3.2in[2],wehavethefollowingestimateofthediscreteversionofthemaximalfunction.

        Lemma 2.3 LetI,I′be dyadic cubes inm-1andJ,J′be dyadic intervals inwith the side lengthsl(I)=2-(j∧k),l(I′)=2-(j′∧k′)andl(J)=2-(J∧2k),l(J′)=22(j′∧2k′), and the left lower corners ofI,I′and the left end points ofJ,J′ are 2-(j∧k)l′,2-(j′∧k′)l″,2-(j∧2k)lmand,respectively.Thenforanyu′,v′∈I,um,vm∈J,any0

        whereC1=C2(m-1)(1/δ-1)(j′∧k′-j∧k)+2(1/δ-1)(j′∧2k′-j∧2k)+and (a-b)+=max{a-b,0}.

        and

        whereMisafixedlargepositiveintegerdependingonp,qands.Wealsoletφ(2)∈S(m)withsuppφ(2)?B(0,1),

        and

        ThediscreteCalderón-typeidentityisgivenbythefollowing

        Lemma 2.4 Letφ(1)andφ(2)satisfy conditions from (2.1) to (2.4) and Let 0

        ×(φj,k*h)(2-(j∧k)-Nl′,2-(j∧2k)-Nlm),

        wheretheseriesconvergesinL2(m),I are dyadic cubes inm-1andJare dyadic intervals inwith side-lengthl(I)=2-(j∧k)-Nandl(J)=2-(j∧2k)-N, and the left lower corners of I and the left end points of J are 2-(j∧k)-Nl′ and 2-(j∧2k)-Nlm, respectively. Moreover,

        and

        Proof By taking the Fourier transform, we have that forf∈L2(m),

        Applying Coifman's decomposition of the identity operator, we obtain

        ×(φj,k*f)(2-(j∧k)-Nl′, 2-(j∧2k)-Nlm)+RN(f)(x′,xm)

        ∶=TN(f)(x′,xm)+RN(f)(x′,xm),

        where

        wheretheseriesIare dyadic cubes inm-1andJare dyadic intervals inwith side-lengthl(I)=2-(j∧k)-Nandl(J)=2-(j∧2k)-N, and the left lower corners ofIand the left end points ofJare 2-(j∧k)-Nl′ and 2-(j∧2k)-Nlm, respectively.

        Similar to the proof of Theorem 4.1 in [2], we only need to prove

        whereCistheconstantindependentoffandN.

        Thisproves(2.8)andhenceLemma2.4follows.

        Similarly,toshowTheorem1.2,weneed

        Lemma 2.5 Let φ(1)and φ(2)satisfy conditions from (2.1) to (2.4) and let 0

        ×(φj,k*h)(2-(j∧k)-Nl′,2-(j∧2k)-Nlm),

        wheretheseriesconvergesinL2,Iare dyadic cubes inm-1andJare dyadic intervals inwith side-lengthl(I)=2-(j∧k)-Nandl(J)2-(j∧2k)-N, and the left lower corners ofIandtheleftendpointsofJare 2-(j∧k)-Nl′ and 2-(j∧2k)-Nlm, respectively. Moreover,

        and

        whereCis the constant independent offandN.

        3 Proof of Theorem 1.1

        Theorem 3.1 Let 0

        Proof Letf∈S′/P(m). We denotexI=2-(j∧k)l′ ,xJ=2-(j∧2k)lm,xI′=2-(j′∧k′)l″ andxJ′=.DiscreteCaldern'sidentityonS′/P(m)andthealmostorthogonalityestimatesyieldthatfor<δ

        whereinthelastinequalityweusethefactsthat(j′∧k′-j∧k)+≤|j-j′|(k-k′|,(j′∧2k′-j∧2k)+≤|j-j′|+2|k-k′|andwehavechosenL>max{m(1/δ-1)+|s1|,(m+1)(1/δ-1)+|s2|}sothat

        Applying Fefferman-Stein's vector-valued strong maximal inequality onLp/δ(lq/δ)yields

        Bysymmetry,wegettheconverseinequality.HencetheproofofTheorem3.1iscomplete.

        AsaconsequenceofTheorem3.1, L2(m)∩(m)isdensein(m).Indeed,wehavethefollowing

        Corollary 3.1 Let 0

        E={(j,k,l′,lm)∶|j|≤N,|k|≤N,|l′|≤N,|lm|≤N}

        and

        ×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm),

        whereΨj,kare the same as Lemma 2.1.

        SinceΨj,k∈S∞(m), we obviously havefN∈S∞(m). Repeating the same proof as in Theorem 3.1, we can conclude that≤C.ToseethatfNtendstofinm),bythediscreteCaldern'sidentityinS′/P(m)inLemma2.1,

        ×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm),

        wheretheseriesconvergesinS′/P(m).

        Therefore,

        Arguing as in the proof of Theorem 3.1, we derive

        Repeating the same proof as in Theorem 3.1, we have

        Corollary 3.2 Let 0

        whereφj,k,φj′,k′,handNarethesameasinLemma2.4.

        SimilartotheproofofTheorem1.7in[2],wehave

        4 Proof of Theorem 1.2

        Theorem 4.1 Let 0

        Proof Letf∈S′/P(m). We denotexI=2-(j∧k)l′,xJ=2-(j∧2k)lm,xI′=2-(j′∧k′)l″ andxJ′=. Discrete Calderón's identity onS′/P(m) and the almost orthogonality estimates yield that for<δ

        |Ψj,k*f(xI,xJ)|

        When1≤q<∞,applyingH?lderinequalityandwhen0

        where in the last inequality we use the facts that (j′∧k′-j∧k)+≤|j-j′|+|k-k′|,

        (j′∧2k′-j∧2k)+≤|j-j′|+2|k-k′|,and we have chosenL>max{m(1/δ-1)+|s1|,(m+1)(1/δ-1)+|s2|} so that

        TheproofofTheorem4.1iscomplete.

        AsaconsequenceofTheorem4.1, L2(m)∩(m)isdensein(m). Indeed we have the following

        Corollary 4.1 Let 0

        E1={(j,k)∶|j|≤N,|k|≤N},E2={(l′,lm)∶|l′|≤N,|lm|≤N},

        and

        ×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm)

        whereΨj,kare the same as Lemma 2.1.

        SinceΨj,k∈S∞(m), we obviously havefN∈S∞(m). Repeating the same proof as in Theorem 4.1, we conclude that≤C.ToseethatfNtendstofinm),bythediscreteCaldern'sidentityinS′/P(m)inLemma2.1,

        ×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm)

        wheretheseriesconvergesinS′/P(m).

        RepeatingthesameproofofTheorem4.1,wehave

        Corollary 4.2 Let 0

        whereφj,k*φj′,k′handNarethesameasinLemma2.5.

        [1] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution, J. Func. Anal. 93 (1990), 34-170.

        [2] Y. Han, C.-C. Lin, G. Lu, Z. Ruan and E. Sawyer, Hardy spaces associated with different homogeneities and boundedness of composition operators, Rev. Mat. Iberoam. 29 (2013), 1127-1157.

        [3] D. H. Phong and E. M. Stein, Some further classes of pseudo-differential and singular-integral operators arising in boundary-value problems I, composition of operators, Amer. J. Math. 104 (1982), 141-172.

        [4] S. Wainger and G. Weiss, Proceedings of Symp. in Pure Math. 35 (1979).

        [5] X. Wu, Weighted Carleson Measure Spaces Associated with Different Homogeneities, Canad. J. Math.(2013), doi: 10.4153/CJM-2013-02-11.

        (責(zé)任編輯:胡安波)

        2014-06-21

        王洪彬(1981-),男,山東淄博人,博士,淄博師范高等專科學(xué)校數(shù)理系教師,主要從事調(diào)和分析方向研究。

        O174.2

        A

        (2014)04-0049-10

        注:本文為淄博師范高等??茖W(xué)校校級課題“變指標(biāo)Herz型空間中算子的有界性”[13xk023]的階段性研究成果。

        乱码1乱码2美美哒| 国产毛片一区二区三区| 女主播啪啪大秀免费观看 | av狠狠色丁香婷婷综合久久| 野花社区www高清视频| 精品欧美久久99久久久另类专区| 日美韩精品一区二区三区| 蜜桃视频网站在线观看一区| 亚洲中文字幕无码一久久区| 尤物99国产成人精品视频| 蜜桃av观看亚洲一区二区| 粉嫩的极品女神尤物在线| 伊人久久大香线蕉av色| 欧美婷婷六月丁香综合色| 在线a人片免费观看高清| 国产性色av一区二区| 国内免费高清在线观看| 久草热8精品视频在线观看| 最新永久无码AV网址亚洲| 亚洲中文字幕一区二区在线| 日韩少妇内射免费播放18禁裸乳| 人妻熟妇乱又伦精品视频app| 2021最新久久久视精品爱| 中文字幕人妻久久久中出| 欧美人与禽zozzo性伦交| 亚洲成av人最新无码| 成人免费视频自偷自拍| 国产亚洲人成在线观看| 柠檬福利第一导航在线| 日批视频免费在线观看| av一区二区三区观看| 亚洲av永久无码天堂网小说区| 免费现黄频在线观看国产| 亚洲中文字幕无线乱码va | 欧美大成色www永久网站婷| 国产成人精品三级麻豆| 日韩女同一区二区三区久久| 中文字幕一区二区三区四区五区| 日本高清色倩视频在线观看 | 国产欧美日韩一区二区三区在线| 亚洲综合色婷婷久久|