何國(guó)朝, 王廣強(qiáng), 黃文婷, 鄒銀橋, 伍 靜, 梁華英, 張玉泉, Charllote M ALLEN
?
藏東玉龍斑巖銅礦帶扎拉尕含礦斑巖體鋯石U-Pb年齡及其地質(zhì)意義
何國(guó)朝1,2, 王廣強(qiáng)2,3, 黃文婷2,3, 鄒銀橋2,3, 伍 靜2*, 梁華英2, 張玉泉2, Charllote M ALLEN4
1. 廣西有色金屬集團(tuán) 資源勘查有限公司, 廣西 南寧 530022; 2. 中國(guó)科學(xué)院 廣州地球化學(xué)研究所 中國(guó)科學(xué)院礦物學(xué)與成礦學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州 510640; 3. 中國(guó)科學(xué)院大學(xué), 北京 100049; 4. Research School of Earth Sciences, Australian National University, Canberra ACT0200, Australia
玉龍斑巖銅礦帶扎拉尕斑巖銅鉬礦床位于玉龍斑巖銅礦帶中北部, 賦礦巖體侵入下二疊統(tǒng)火山巖及三疊系砂泥巖中, 主要由早階段為二長(zhǎng)花崗斑巖及晚階段正長(zhǎng)花崗斑巖組成。分析了早階段二長(zhǎng)花崗斑巖及晚階段正長(zhǎng)花崗斑巖鋯石LA-ICP-MS U-Pb年齡。早階段二長(zhǎng)花崗斑巖該年齡為(38.5±0.2) Ma, MSWD=1.12, 晚階段正長(zhǎng)花崗斑巖該年齡為(38.5±0.2) Ma, MSWD=1.08, 早階段和晚階段含礦斑巖體鋯石U-Pb年齡完全一致。這表明早晚兩階段成礦巖體是在很短的時(shí)間間隔內(nèi)形成的。扎拉尕賦礦斑巖體形成年齡為(38.5±0.2) Ma。據(jù)扎拉尕斑巖礦床形成時(shí)代及藏東地區(qū)在始新世至漸新世地質(zhì)構(gòu)造背景, 提出扎拉尕斑巖礦床和玉龍斑巖銅礦帶的形成與印度板塊-歐亞板塊碰撞在藏東地區(qū)形成的走滑構(gòu)造活動(dòng)誘發(fā)的巖漿活動(dòng)有關(guān), 為陸陸碰撞走滑構(gòu)造環(huán)境的斑巖礦床。
斑巖銅鉬礦床; 成巖成礦時(shí)代; 碰撞與成礦; 西藏東部
西藏東部玉龍斑巖銅礦帶是世界上重要的碰撞造山環(huán)境斑巖銅礦帶, 該斑巖銅礦帶長(zhǎng)約300 km, 寬10~30 km, 含一個(gè)超大型斑巖銅礦床(玉龍)、兩個(gè)大型斑巖銅鉬礦床(多霞松多和馬拉松多)、兩個(gè)中型斑巖銅礦床(扎拉尕、莽總)及數(shù)十個(gè)礦化點(diǎn)。自該礦帶發(fā)現(xiàn)以來(lái), 國(guó)內(nèi)外學(xué)者對(duì)玉龍斑巖銅礦帶及其南側(cè)沿哀牢山-紅河巨型走滑斷裂帶分布的新生代斑巖銅鉬(金)礦床開(kāi)展了大量的研究工作[1–34]。目前, 對(duì)藏東喜山期富堿(鉀質(zhì))巖帶及玉龍含礦巖體形成的構(gòu)造環(huán)境、巖漿來(lái)源及巖體的屬性看法不一, 主要有: (1) 印度板塊與亞洲板塊碰撞后, 軟流圈對(duì)流循環(huán)導(dǎo)致巖石圈減薄, 軟流圈上拱引致巖石圈地幔融熔形成[34]; (2) 古近紀(jì)以來(lái)陸內(nèi)俯沖作用導(dǎo)致軟流圈上拱引起地幔混合層部分融熔形成[16]; (3)玉龍銅礦帶含礦斑巖和俯沖作用有關(guān), 為火山弧型, 成巖物質(zhì)為殼?;旌衔颷3–4]; (4) 形成于板內(nèi)非造山構(gòu)造背景[6,7,22], 成巖物質(zhì)來(lái)自交代富集地幔[6–7]。對(duì)含礦巖體屬性也存在不同的認(rèn)識(shí): 有的認(rèn)為其屬于鈣堿性巖石系列[3–5], 有的則認(rèn)為其屬堿性巖[6,7,22,26]。Hou.提出玉龍含礦斑巖有三個(gè)活動(dòng)期, 與走滑斷裂有關(guān)[26]。陳文明提出玉龍含礦斑巖體及其中的斑晶并非巖漿直接結(jié)晶的產(chǎn)物, 而是深源的富堿硅熱水流體交代、熔融上部地殼含銅巖石形成的[24]。過(guò)去對(duì)玉龍斑巖銅礦帶的工作多主要集中在玉龍超大型斑巖銅礦床及多霞松多大型斑巖礦床上, 而對(duì)其他斑巖礦床的工作則較少。
扎拉尕斑巖體位于玉龍斑巖銅礦帶北部(圖1), 前人曾對(duì)扎拉尕賦礦斑巖體作過(guò)3個(gè)巖石樣品鉀長(zhǎng)石和1個(gè)巖石樣品黑云母K-Ar測(cè)年, 所得的年齡變化較大, 在33.9~41.0 Ma之間[1,5,6]。為了深入分析藏東玉龍斑巖銅帶時(shí)空分布特征及成礦演化, 很有必要對(duì)玉龍礦帶一些中型規(guī)模礦床成礦巖體作精確的同位素定年。為此, 本文以扎拉尕含礦巖體為主要對(duì)象, 開(kāi)展含礦巖體鋯石LA-ICP-MS U-Pb年代學(xué)研究并分析其形成背景。
圖1 藏東玉龍斑巖銅礦帶(a)及扎那尕斑巖銅鉬礦床地簡(jiǎn)圖(b) (據(jù)文獻(xiàn)[4–5]修改)
1–下二疊統(tǒng)火山巖; 2–上三疊統(tǒng)砂巖; 3–巖脈; 4–扎拉尕礦化斑巖; 5–地質(zhì)界線; 6–斷層。
扎拉尕斑巖銅鉬礦床位于西藏東部玉龍斑巖銅礦帶北部玉龍斑巖銅礦床南側(cè)(圖1), 含礦巖體侵入下二疊統(tǒng)火山巖和上三疊統(tǒng)砂泥巖中, 地表出露面積約0.6 km2。巖體的空間形態(tài)為巖株, 產(chǎn)狀陡立[5]。
扎拉尕斑巖銅鉬礦床含礦巖體具多階段活動(dòng)特征, 張玉泉等[6–7]據(jù)在ZK3孔348.8 m和ZK4孔68 m見(jiàn)到正長(zhǎng)花崗斑巖和二長(zhǎng)花崗斑巖的侵入接觸關(guān)系而把巖體分為早晚兩階段: 早階段為二長(zhǎng)花崗斑巖, 晚階段為正長(zhǎng)花崗斑巖。扎拉尕含礦斑巖斑晶主要為鉀長(zhǎng)石、斜長(zhǎng)石、石英及云母和少量角閃石, 斑晶礦物粒度主要在0.31~3.0 mm之間, 基質(zhì)為顯晶質(zhì), 基質(zhì)礦物組成和斑晶的礦物組成相似。扎拉尕早階段及晚階段斑巖都發(fā)生了蝕變及礦化, 蝕變由內(nèi)向外可分為鉀硅化帶、黃鐵絹英巖化帶、黏土化帶及青磐巖化帶[4–5]。鉀化帶主要分布于巖體內(nèi), 黃鐵絹英巖化帶主要分布于巖體內(nèi)外接觸帶, 其余2個(gè)蝕變帶以接觸帶為中心依次向外展布, 各蝕變帶之間呈漸變過(guò)渡關(guān)系[4–5]。銅鉬礦化主要發(fā)育于鉀硅化帶和黃鐵絹英巖化帶疊加部位。Cu含量在垂向變化上變化不大, Mo則有由上往下增強(qiáng)的趨勢(shì)[4–5]。
扎拉尕斑巖礦床為中型礦床, 其Cu金屬量為0.3 Mt, Cu平均含量在0.36%左右, Mo含量約為0.03%, Au約0.03 μg/g[27]。礦化主要為細(xì)脈浸染狀發(fā)育于巖體和接觸帶圍巖中, 礦化體為柱狀, 鉆孔未穿透礦化巖體, 控制礦化厚度約540 m, 直徑約200 m[5]。主要金屬礦物黃銅礦、輝鉬礦、黃鐵礦、磁鐵礦、輝銅礦等, 偶見(jiàn)方鉛礦、閃鋅礦等。
兩個(gè)鋯石LA-ICP-MS U-Pb定年樣品分選自巖芯, 早階段二長(zhǎng)花崗斑巖采自ZK3孔345.3 m處, 晚階段正長(zhǎng)花崗斑巖采自ZK4孔200 m處(圖1)。樣品經(jīng)碎樣、磁選及重液選等選出鋯石, 鏡下挑選純后裝入環(huán)氧樹(shù)脂靶中并打磨拋光至鋯石內(nèi)部結(jié)構(gòu)充分暴露。根據(jù)光學(xué)顯微鏡透反射特征和掃描電鏡陰極發(fā)光(CL)照片綜合選出晶形較好, 沒(méi)裂紋及包裹體不發(fā)育的鋯石顆粒對(duì)其進(jìn)行LA-ICP-MS U-Pb年代學(xué)測(cè)試。鋯石定年在澳大利亞國(guó)立大學(xué)地球科學(xué)研究院ICP-MS實(shí)驗(yàn)室完成, 分析流程見(jiàn)文獻(xiàn)[35]。為了減少繼承鉛、鉛丟失等對(duì)年齡的影響, 在207Pb/235U-206Pb/238U圖中和諧度低于95%的年齡數(shù)據(jù)點(diǎn)在統(tǒng)計(jì)年齡時(shí)將被剔除。
扎拉尕斑巖銅鉬礦床賦礦巖體早階段二長(zhǎng)花崗斑巖和晚階段正長(zhǎng)花崗斑巖鋯石U-Pb同位素組成特征見(jiàn)表1及表2, 扎拉尕賦礦斑巖礦床早階段二長(zhǎng)花崗斑巖鋯石LA-ICP-MS U-Pb年齡比較集中, 分布在37.4~39.6 Ma之間, Th/U在0.28~1.26之間; 晚階段正長(zhǎng)花崗斑巖鋯石LA-ICP-MS U-Pb年齡主要分布在至37.6~39.0 Ma之間, Th/U在0.32~0.79之間。
扎拉尕賦礦斑巖體鋯石CL圖韻律環(huán)帶發(fā)育(圖2), 具巖漿鋯石的一般特征, 此外, 扎拉尕斑巖鋯石Th/U比值較大, 在0.28~1.26之間, 也具巖漿鋯石的特征。因此, 可以認(rèn)為分析鋯石為巖漿結(jié)晶作用過(guò)程中形成的鋯石, 鋯石U-Pb主群年齡代表巖漿侵位年齡。LA-ICP-MS U-Pb測(cè)年具有快速及相對(duì)較經(jīng)濟(jì)的優(yōu)點(diǎn), 為了獲得較精確的年齡值, 我們分析較多鋯石顆粒, 然后用累積概率統(tǒng)計(jì)圖分析鋯石年齡分布特征。正態(tài)分布數(shù)據(jù)在累積概率統(tǒng)計(jì)圖上呈一條斜率為正值的直線分布, 落在直線沿伸方向上方的較大年齡被解釋為繼承鋯石年齡, 而分布在直線沿伸方向下方的年齡被解釋為鉛丟失鋯石年齡。在累積概率統(tǒng)計(jì)圖上呈線性分布的年齡代表鋯石主群年齡[29,35]。
圖2 扎拉尕斑巖銅鉬礦床賦礦巖體鋯石CL圖
表1 扎拉尕斑巖早階段二長(zhǎng)花崗斑巖鋯石LA-ICP-MS U-Pb年齡
我們對(duì)扎拉尕早階段二長(zhǎng)花崗斑巖共做了31點(diǎn)鋯石U-Pb同位素組成分析, 所有分析點(diǎn)在207Pb/235U-206Pb/238U圖中和諧度都高于95%, 因此, 所有的分析點(diǎn)數(shù)據(jù)都符合計(jì)算年齡要求。31個(gè)分析點(diǎn)數(shù)據(jù)在累積概率統(tǒng)計(jì)圖中為直線分布(圖3a, 內(nèi)插), 其統(tǒng)計(jì)年齡代表主群年齡。這31個(gè)分析點(diǎn)得出的統(tǒng)計(jì)年齡值為(38.5 ±0.2) Ma, MSWD = 1.12, 因此, 扎拉尕早階段二長(zhǎng)花崗斑巖是在(38.5±0.2) Ma侵位形成的。
在扎拉尕晚階段正長(zhǎng)花崗斑巖鋯石29個(gè)分析點(diǎn)中, 1個(gè)分析點(diǎn)在207Pb/235U-206Pb/238U圖中和諧度小于95%, 其余28個(gè)分析點(diǎn)諧度大于95%, 因此, 1個(gè)分析點(diǎn)在計(jì)算年齡時(shí)被剔除(表2)。其余28個(gè)分析點(diǎn)數(shù)據(jù)在累積概率統(tǒng)計(jì)圖中為直線分布(圖3b, 內(nèi)插), 其統(tǒng)計(jì)年齡代表主群年齡。扎拉尕晚階段正長(zhǎng)花崗斑巖鋯石28個(gè)分析點(diǎn)U-Pb統(tǒng)計(jì)年齡值為(38.5±0.2) Ma, MSWD = 1.08, 因此, 扎那尕晚階正長(zhǎng)花崗斑巖是在(38.5±0.2) Ma侵位形成的。
表2 扎拉尕斑巖晚階段正長(zhǎng)花崗斑巖鋯石LA-ICP-MS U-Pb年齡
注: (1) 141-14號(hào)分析點(diǎn)因和諧度低于95%而剔除。
雖然在鉆孔中見(jiàn)到早階段二長(zhǎng)花崗斑巖與晚階段正長(zhǎng)花崗斑巖呈侵入接觸關(guān)系[6–7], 但我們的分析結(jié)果表明, 扎拉尕賦礦斑巖早階段二長(zhǎng)花崗斑巖和晚階段正長(zhǎng)花崗斑巖鋯石LA-ICP-MS U-Pb年齡卻一致。這表明扎拉尕早階段二長(zhǎng)花崗斑巖和階段正長(zhǎng)花崗斑巖是在很短時(shí)間隔間內(nèi)形成的, 目前同位素定年精度難以區(qū)分早晚兩階段巖漿侵位時(shí)代的差異, 扎那尕賦礦斑巖形成時(shí)代為(38.5±0.2) Ma。
我們獲得扎拉尕賦礦斑巖體鋯石LA-ICP-MS U-Pb年齡((38.5±0.2) Ma)和前人鉀長(zhǎng)石和黑云母K-Ar年齡(33.9~41.0 Ma)[1,5,6]明顯不同。我們認(rèn)為兩種同位素體系所得的同位素年齡不同, 主要原因是兩種同位素體系抗后期地質(zhì)熱事件干擾能力不同。鉀長(zhǎng)石或黑云母K-Ar同位素體系封閉溫度較低, 在300 ℃左右[36], 易受后期地質(zhì)事件干擾。如前所述, 扎拉尕巖體發(fā)生了溫度多大于300 ℃的鉀化及硅化[32], 巖體中的鉀長(zhǎng)石和黑云母K-Ar同位素封閉體系會(huì)在巖體發(fā)生鉀硅化蝕變時(shí)受到干擾, 發(fā)生放射性成因Ar的增加或丟失, 導(dǎo)致K-Ar同位素年齡發(fā)生變化而不能精確反映巖體形成年齡; 而鋯石U-Pb同位素系統(tǒng)封閉溫度在800 ℃左右[36], 抗后期干憂能力強(qiáng), 后期鉀硅化及其他地質(zhì)熱事件一般不會(huì)破壞鋯石U-Pb同位素封閉系統(tǒng), 因此, 扎拉尕賦礦斑巖鋯石LA-ICP-MS U-Pb法年齡能更精確地反映巖體形成年齡。
印度板塊與歐亞板塊在約65 Ma左右時(shí)發(fā)生的陸陸碰撞在藏東地區(qū)形成了紅河-哀牢山巨型左旋走滑斷裂[37–38]。沿紅河-哀牢山巨型左旋走滑斷裂系統(tǒng)及其北延斷裂發(fā)育一系列新生代鉀質(zhì)堿性巖及和鉀質(zhì)堿性巖相關(guān)的斑巖型銅鉬(金)礦床, 形成三江新生代與鉀質(zhì)堿性巖有關(guān)的成礦帶。玉龍斑巖銅礦帶位于紅河-哀牢山巨型斷裂帶北延斷裂系統(tǒng)中[39]。目前對(duì)三江新生代鉀質(zhì)堿性巖成礦帶形成動(dòng)力學(xué)背景有不同的看法, Chung.[34]提出藏東新生代鉀質(zhì)堿性巖與藏東地區(qū)40 Ma 左右發(fā)生的地幔對(duì)流導(dǎo)致巖石圈減薄有關(guān); 張玉泉等[40]提出哀牢山-金沙江新生代富堿侵入巖形成于裂谷構(gòu)造背景; Wang.[39]提出哀牢山-紅河始新世至漸新世富堿侵入巖和沿著紅河-哀牢山深大走滑深大斷裂活動(dòng)產(chǎn)生的局部俯沖有關(guān)。
圖3 扎拉尕斑巖銅鉬礦床含礦巖體鋯石LA-ICP-MS U-Pb年齡(內(nèi)插圖為累積概率統(tǒng)計(jì)圖)
紅河-哀牢山走滑斷裂帶兩側(cè)晚三疊紀(jì)到始新世陸相紅層發(fā)生褶皺及沿紅河-在哀牢山斷裂及其北延斷裂發(fā)育一系列始新世至早漸新世扭壓盆地[41], 表明紅河-哀牢山走滑斷裂系統(tǒng)在始新世至早中新世處于扭壓構(gòu)造背景[32,39]。紅河-哀牢山巨型左行走滑斷裂帶水平錯(cuò)距(700±200) km, 切穿巖石圈地幔[37–38]。切穿巖石圈地幔斷裂活動(dòng)引起軟流圈上涌, 從而會(huì)導(dǎo)致巖石圈地幔部分熔融[38]。
玉龍斑巖銅礦帶主要賦礦巖體微量元素及Sr-Nd-Pb同位素組成特征[40]和沿紅河-哀牢山巨型左行走滑斷裂分布的鐵鎂質(zhì)至硅鋁質(zhì)鉀質(zhì)堿性巖的相似[38,41–43], 都具交代富集地幔源區(qū)的地球化學(xué)特征[33,42,44,45], 顯示它們具相似的形成機(jī)制。前人成果表明, 沿著紅河-哀牢山左行走滑深大斷裂活動(dòng)帶分布的鐵鎂質(zhì)至硅鋁質(zhì)鉀質(zhì)堿性巖與該深大斷裂左行走滑活產(chǎn)生的局部俯沖有關(guān)[39]。玉龍斑巖銅礦帶位于紅河-哀牢山左行走滑深大斷裂北延斷裂系統(tǒng), 而玉龍斑巖銅礦帶從北西往南東五個(gè)主要賦礦巖體從玉龍(鋯石U-Pb年齡(41.3±0.2) Ma[12])、扎拉尕(鋯石U-Pb年齡(38.5±0.2) Ma)、莽總(鋯石U-Pb年齡(37.6±0.2) Ma[26])、多霞松多(鋯石U-Pb年齡(37.5± 0.2) Ma[30])至馬拉松多(鋯石U-Pb年齡(36.9±0.6) Ma[13])年齡逐漸降低, 顯示出左行斷裂構(gòu)造控制的特征。因此, 有理由認(rèn)為玉龍斑巖銅礦帶賦礦巖體的形成與印度板塊與歐亞板塊在65 Ma左右時(shí)發(fā)生的陸陸碰撞, 在藏東三江地區(qū)產(chǎn)生切穿巖石圈地幔的紅河-哀牢山左行走滑斷裂及其北延斷裂系統(tǒng)活動(dòng), 產(chǎn)生局部俯沖, 誘發(fā)地幔上涌, 發(fā)生強(qiáng)烈殼幔物質(zhì)交換及引發(fā)的巖漿活動(dòng)有關(guān), 玉龍斑巖銅礦帶形成于陸陸碰撞走滑構(gòu)造背景。
(1) 扎拉尕銅鉬礦賦礦斑巖體主要由早階段二長(zhǎng)花斑巖斑和晚階段正長(zhǎng)花崗斑巖組成, 早階段二長(zhǎng)花崗斑巖鋯石LA-ICP-MS U-Pb和晚階段長(zhǎng)花崗斑巖鋯石LA-ICP-MS U-Pb年齡相同, 都是(38.5± 0.2) Ma。扎拉尕斑巖早晚兩階段巖體是成礦巖漿在很短時(shí)間隔間內(nèi)侵位形成的。
(2) 玉龍斑巖銅礦帶斑巖銅鉬礦床與陸陸碰撞形成的走滑深大斷裂誘發(fā)的殼幔相互作用有關(guān), 玉龍斑巖銅礦帶形成于陸陸碰撞走滑構(gòu)造背景。
野外工作期間西藏地質(zhì)礦產(chǎn)局第一地質(zhì)大隊(duì)給予了大力協(xié)助; 澳大利亞國(guó)立大學(xué)地球科學(xué)研究院ICP-MS實(shí)驗(yàn)室在實(shí)驗(yàn)工作中給予了大力支持, 特此致謝!
[1] 劉榮謨, 趙定華. 西藏東部中酸性侵入巖同位素年齡討論[J]. 地質(zhì)論評(píng), 1981, 27(4): 326–332. Liu Rong-mo, Zhao Ding-hua. Discussion on isotopic ages of acid intrusions in the eastern Tibet [J]. Geol Rev, 1981, 27(4): 323–332 (in Chinese with English abstract).
[2] 芮宗瑤, 黃崇軻, 齊國(guó)明. 中國(guó)斑巖銅(鉬)礦床[M]. 北京: 地質(zhì)出版社, 1984: 1–300. Rui Zong-yao, Huang Chong-ke, Qi Guo-ming. Porphyry Copper (Molybdenum) Deposits in China [M]. Beijing: Geological Publishing House, 1984: 1–350 (in Chinese).
[3] 馬鴻文. 論藏東玉龍斑巖銅礦帶巖漿侵入時(shí)代[J]. 地球化學(xué), 1989, 18(3): 210–216. Ma Hong-wen. Discussion on the intrusion age of the Yulong ore bearing porphyries [J]. Geochimica, 1989, 18(3): 210–216 (in Chinese with English abstract).
[4] 馬鴻文. 西藏玉龍斑巖銅礦帶花崗巖類與成礦[M]. 武漢: 中國(guó)地質(zhì)大學(xué)出版社, 1990: 1–158. Ma Hong-wen. Granitoid and Mineralization of the Yulong Porphyry Copper Belt in Eastern Tibet [M]. Wuhan: China University of Geosciences Press, 1990: 1–158 (in Chinese with English abstract).
[5] 唐仁鯉, 羅懷松. 西藏玉龍斑巖銅(鉬)礦帶地質(zhì)[M]. 北京: 地質(zhì)出版社, 1995: 1–310. Tang Ren-li, Luo Huai-song. The Geology of Yulong Por-phyry Copper (Molybdenum) Ore Belt, Xizang (Tibet) [M]. Beijing: Geological Publishing House, 1995: 1–320 (in Chi-nese with English abstract).
[6] 張玉泉, 謝應(yīng)雯, 梁華英, 邱華寧, 李獻(xiàn)華, 鐘孫霖. 藏東玉龍銅礦帶含礦斑巖演化與礦礦關(guān)系[J]. 西藏地質(zhì), 1997 (2): 74–86. Zhang Yu-quan, Xie Ying-wen, Liang Hua-ying, Qiu Hua-ning, Li Xian-hua, Chung Sun-lin. Evolution of ore-bearing por-phyry and its relation to mineralization in the Yulong por-phyry copper zone, East Xizang [J]. Xizang Geol, 1997 (2): 74–86 (in Chinese).
[7] 張玉泉, 謝應(yīng)雯, 梁華英, 邱華寧, 李獻(xiàn)華, 鐘孫霖. 藏東玉龍銅礦帶含礦斑巖及成巖系列[J]. 地球化學(xué), 1998, 27(3): 236–243. Zhang Yu-quan, Xie Ying-wen, Liang Hua-ying, Qiu Hua-ning, Li Xian-hua, Chung Sun-lin. Petrolgenesis series and the ore-bearing porphryies of the Yulong ore belt in eastern Tibet [J]. Geochimica. 1998, 27(3): 236–243 (in Chinese with English abstract).
[8] 王登紅, 屈文俊, 李志偉, 應(yīng)漢龍, 陳毓川. 金沙江-紅河成礦帶斑巖銅鉬礦的成礦集中期: Re-Os同位素定年[J]. 中國(guó)科學(xué)(D輯), 2004, 34(4): 345–349.Wang Denghong, Qu Wenjun, Li Zhiwei, Ying Hanlong, Chen Yuchuan. Mineralization episode of porphyry copper deposits in the Jinshajiang-Red River mineralization belt: Re-Os dating [J]. Sci China (D), 2004, 34(4): 345–349 (in Chinese).
[9] 王登紅, 陳毓川, 徐玨. 中國(guó)新生代成礦作用[M]. 北京: 地質(zhì)出版社, 2005: 1–441.Wang Deng-hong, Chen Yu-chuan, Xu Yu. Cenozoic Metallogenesis in China [M]. Beijing: Geological Publishing House, 2005: 1–141 (in Chinese).
[10] 王登紅, 應(yīng)漢龍, 梁華英, 黃智龍, 駱耀南. 西南三江地區(qū)新生代大陸動(dòng)力學(xué)過(guò)程與大規(guī)模成礦[M]. 北京: 地質(zhì)出版社, 2006: 1–208. Wang Deng-hong, Ying Han-long, Liang Hua-ying, Huang Zhi-long, Luo Yao-nan. Geodynamic Processes and Large Scale Mineralization [M]. Beijing: Geological Publishing House, 2006: 1–208 (in Chinese).
[11] 梁華英, 謝應(yīng)雯, 張玉泉. 富鉀堿性巖體形成演化對(duì)銅礦成礦制約——以馬廠箐銅礦為例[J]. 自然科學(xué)進(jìn)展, 2004, 14(1): 116–120. Liang Hua-ying, Xie Ying-wen, Zhang Yu-quan. Zircon age and geochemical evolution of the Machangqing complex as-sociated with copper mineralization [J]. Prog Nat Sci, 2004, 14(1): 116–120 (in Chinese with English abstract).
[12] 梁華英, 莫濟(jì)海, 孫衛(wèi)東, 喻亨祥, 張玉泉, Allen C M. 藏東玉龍超大型斑巖銅礦床成巖成礦系統(tǒng)時(shí)間跨度分析[J]. 巖石學(xué)報(bào), 2008, 24(10): 2352–2358. Liang Hua-ying, Mo Ji-hai, Sun Wei-dong, Yu Heng-xiang, Zhang Yu-quan, Allen C M. Study on the duration of the ore-forming system of the Yulong giant porphyry copper deposit in eastern Tibet [J]. Acta Petrol Sin, 2008, 24(10): 2352–2358 (in Chinese with English abstract).
[13] 梁華英, 莫濟(jì)海, 孫衛(wèi)東, 張玉泉, 曾提, 胡光黔, Allen C M. 玉龍銅礦帶馬拉松多斑巖體巖石學(xué)及成巖成礦系統(tǒng)年代學(xué)分析[J]. 巖石學(xué)報(bào), 2009, 25(2): 385–392. Liang Hua-ying, Mo Ji-hai, Sun Wei-dong, Zhang Yu-quan, Zeng Ti, Hu Guang-qian, Allen C M. Study on geochemical composition and isotpe age of the Malasongduo porphyry associated with Cu-Mo mineralization [J]. Acta Petrol Sin, 2009, 25(2): 385–392 (in Chinese with English abstract).
[14] 謝玉玲, 侯增謙, 徐九華, 楊志明, 徐文藝, 何建平. 藏東玉龍斑巖銅礦床多期流體演化與成礦流體包裹體證據(jù)[J]. 巖石學(xué)報(bào), 2005, 21(5): 1409–1415. Xie Yu-ling, Hou Zeng-qian, Xu Jiu-hua, Yang Zhi-ming, Xu Wen-yi, He Jian-ping. Evolution of multi-stage ore-forming fluid and mineralization: Evidence form fluid inclusions in Yulong porphyry copper deposit, east Tibet [J]. Acta Petrol Sin, 2005, 21(5): 1409–1415 (in Chinese with English ab-stract).
[15] 畢獻(xiàn)武, 胡瑞忠, 彭建堂, 吳開(kāi)興, 蘇文超, 戰(zhàn)新志. 姚安和馬廠箐富堿侵入巖體的地球化學(xué)特征[J]. 巖石學(xué)報(bào), 2005, 21(1): 113–124.Bi Xian-wu, Hu Rui-zhong, Peng Jian-tang, Wu Kai-xing, Su Wen-chao, Zhan Xin-zhi. Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions [J]. Acta Petrol Sin, 2005, 21(1): 113–124 (in Chinese with English abstract).
[16] Deng Wanming, Huang Xuan, Zhong Dalai. Alkali-rich por-phyry and its relation with intraplate deformation of north part of Jinsha River belt in western Yunnan, China [J]. Sci China (D), 1998, 41(3): 297–215.
[17] 姜耀輝, 蔣少涌, 凌洪飛, 戴寶章. 陸-陸碰撞造山環(huán)境下含銅斑巖巖石成因: 以藏東玉龍斑巖銅礦帶為例[J]. 巖石學(xué)報(bào), 2006, 22(3): 697–706.Jiang Yao-hui, Jiang Shao-yong, Ling Hong-fei, Dai Bao-zhang. Petrogenesis of Cu-bearing porphyries associated with continent-continent collision setting: Evidence from the Yulong porphyry Cu ore-belt, east Tibet [J]. Acta Petrol Sinica, 2006, 22(3): 697–706 (in Chinese with English ab-stract).
[18] 姜耀輝, 蔣少涌, 戴寶章, 凌洪飛. 玉龍斑巖銅礦含礦與非含礦斑巖元素和同位素地球化學(xué)對(duì)比研究[J]. 巖石學(xué)報(bào), 2006, 22(10): 2561–2566.Jiang Yao-hui, Jiang Shao-yong, Dai Bao-zhang, Ling Hong-fei. Comparison on elemental and isotopic geochemis-try of ore-bearing and barren porphyries from the Yulong porphyry Cu deposit, east Tibet [J]. Acta Petrol Sin, 2006, 22(10): 2561–2566 (in Chinese with English abstract).
[19] 郭利果, 劉玉平, 徐偉, 張興春, 秦克章, 李鐵勝, 石玉若. SHRIMP鋯石年代學(xué)對(duì)西藏玉龍斑巖銅礦成礦年齡的制約[J]. 巖石學(xué)報(bào), 2006, 22(4): 1009–1016. Guo Li-guo, Liu Yu-ping, Xu Wei, Zhang Xing-chun, Qin Ke-zhang, Li Tie-sheng, Shi Yu-ruo. Constraints to the mineralization age of the Yulong porphyry copper deposit from SHRIMP U-Pb zircon data in Tibet [J]. Acta Petrol Sin, 2006, 22(4): 100–106 (in Chinese with English abstract).
[20] 曾普勝, 侯增謙, 高永峰, 杜安道. 印度-亞洲碰撞帶東段喜馬拉雅期銅-鉬-金礦床Re-Os年齡及成礦作用[J]. 地質(zhì)論評(píng), 2006, 52(1): 72–84. Zeng Pu-sheng, Hou Zeng-qian, Gao Yong-feng, Du An-dao. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of molybdenite [J]. Geol Rev, 2006, 52(1): 72–84 (in Chinese with English abstract).
[21] 侯增謙, 楊竹森, 徐文藝, 莫宣學(xué), 丁林, 高永豐, 董方瀏, 李光明, 曲曉明, 李光明, 趙志丹, 江思宏, 孟祥金, 李振清, 秦克章, 楊志明. 青藏高原碰撞造山帶: I. 主碰撞造山成礦作用[J]. 礦床地質(zhì), 2006, 25(4): 337–358. Hou Zeng-qian, Yang Zhu-sen, Xu Wen-yi, Mo Xuan-xue, Ding Lin, Gao Yong-feng, Dong Fang-liu, Li Guang-ming, Qu Xiao-ming, Li Guang-ming, Zhao Zhi-dan, Jiang Si-hong, Meng Xiang-jin, Li Zhen-qing, Qin Ke-zhang, Yang Zhi-ming. Metallogenesis in Tibetan collisional orogenic belt: Ⅰ. Min-eralization in main collisional orogenic setting [J]. Mineral Deposit, 2006, 25(4): 337–358 (in Chinese with English abstract).
[22] 呂伯西, 王增, 張能德. 三江地區(qū)花崗巖類及其成礦專屬性[M]. 北京: 地質(zhì)出版社, 1993: 71–151. Lu Bo-xi, Wang Zeng, Zhang Neng-de. Granitic Rocks and Their Metallogenic Specialization in the Sanjiang Area, China [M]. Beijing: Geological Publishing House, 1993: 71–151 (in Chinese with English abstract).
[23] 黃波, 梁華英, 莫濟(jì)海, 謝應(yīng)雯. 金平銅廠銅鉬礦床賦礦巖體鋯石LA-ICP-MS U-Pb年齡及意義[J]. 大地構(gòu)造與成礦學(xué), 2009, 33(4): 599–604. Huang Bo, Liang Hua-ying, Mo Ji-hai, Xie Ying-wen. Zircon LA-ICP-MS age of the Jinping Tongchang porphyry associated with Cu-Mo mineralization and its geological implication [J]. Geotecton Metallogen, 2009, 33(4): 599–604 (in Chinese with English abstract).
[24] 陳文明. 深源富堿硅熱流體與斑巖銅礦含礦斑巖體的成因聯(lián)系及流體包裹體、斑晶結(jié)構(gòu)證據(jù)[J]. 地學(xué)前緣, 2001, 8(4): 409–421. Chen, Wen-ming. Genetic relation between deep-seated alkalirich hydrothermal fluids and ore-bearing porphyries of porphyry copper deposits — Evidence from fluid inclusions and phenocryst textures [J]. Earth Sci Front, 2001, 8(4): 409-412 (in Chinese with English abstract).
[25] 伍靜, 梁華英, 莫濟(jì)海, 張玉泉, 胡光黔. 玉龍斑巖銅礦帶莽總含礦斑巖體巖石學(xué)特征及鋯石U-Pb年齡研究[J]. 大地構(gòu)造與成礦學(xué), 2011, 35(2): 300–306. Wu Jing, Liang Hua-ying, Mo Ji-hai, Zhang Yu-quan, Hu Guang-qian. Petrochemistry and zircon LA-ICP-MS age of the Mangzong porphyry associated with Cu-Mo mineraliza-tion in the Yulong ore belt [J]. Geotecton Metallogien, 2011, 35(2): 300–306 (in Chinese with English abstract).
[26] Hou Zengqian, Ma Hongwen, Khin Z, Zhang Yuquan, Wang Mingjie, Wang Zeng, Pan Guitang, Tang Renli. The Himal-ayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet [J]. Econ Geol, 2003, 98(1): 125–145.
[27] Hou Zengqian, Xie Yuling, Xu Wenyi, Li Yingqing, Khin Z, Beaudoin G, Rui Zongyao, Huang Wei, Ciren L. Yulong deposit, eastern Tibet: A high-sulfidation Cu-Au porphyry copper deposit in the eastern Indo-Asian collision zone [J]. Int Geol Rev, 2007, 49(3): 235–258.
[28] Hou Zengqian, Yang Zhiming, Qu Xiaoming, Meng Xiangjin, Li Zhenqing, Beaudoin G, Rui Zongyao, Gao Yongfeng, Zaw K. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen [J]. Ore Geol Rev, 2009, 36(1–3): 25–51.
[29] Liang Huaying, Campbell I H, Allen C M, Sun Weidong, Liu Congqiang, Yu Hengxiang, Xie Yingwen, Zhang Yuquan. Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearing porphyries in eastern Tibet [J]. Mineral Deposit, 2006, 41(2): 152–159.
[30] Liang Huaying, Campbell I H, Allen C M, Sun Weidong, Yu Hengxiang, Xie Yingwen, Zhang Yuquan. The age of the potassic alkaline rocks along the Ailao Shan-Red River shear zone: Implications for the onset age of left-lateral shearing [J]. J Geol, 2007, 115(2): 231–242.
[31] Liang Huaying, Sun Weidong, Su Wenchao, Zartman R E. Porphyry copper-gold mineralization promoted by redox fluctuation during magnetite alteration [J]. Econ Geol, 2009, 104(4): 587–596.
[32] Jiang Yaohui, Jiang Shaoyong, Ling Hongfei, Dai Baozhang. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints [J]. Earth Planet Sci Lett, 2006, 241(3/4): 617–633.
[33] Sun Weidong, Linag Huaying, Ling Mingxing, Ireland T R, Wei Qirong, Fan Weiming. The link between reduced por-phyry copper deposits and oxidized magmas [J]. Geochim Cosmochim Acta, 2013, 103(1): 263–275.
[34] Chung Sunlin, Lo Chinghua, Lee Tungyi, Zhang Yuquan, Xie Yingwen, Li Xianhua, Wang Kuolung, Wang Peiling. Dia-chronous uplift of the Tibetan Plateau starting 40 Myr ago [J]. Nature, 1998, 394(6695): 769–773.
[35] Harris A C, Allen C M, Holcombe R J, Campbell I H, Bryan SE and Palin JM. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: Implications for porphyry-related mineraliza-tion [J]. Mineral Deposit, 2004, 39(1): 46–67.
[36] Harris N. Radiogenic isotopes and the interpretation of gran-itic rocks [J]. Episodes, 1996, 19(4): 107–113
[37] Leloup P H, Lacassin R, Tappponnier P, Scharer U, Zhong Dalai, Liu Xiaohan, Zhang Liangshang, Ji Shaocheng, Trinh P T. The Ailao Shan-Red River shear zone (Yunnan, China): Tertiary transform boundary of Indochina [J]. Tectonophysics, 1995, 251(1–4): 3–84.
[38] Leloup, P H, Arnaud N, Lacassin R, Kienast J R, Harrison T M, Trong T T P, Replumaz A, Tapponnier P. New constraints on the structure, thermochronology, and timing of the Ailao Shan–Red River shear zone, SE Asia [J]. J Geophys Res, 2001, 106(B4): 6683–6732.
[39] Wang Jianghai, Yin An, Harrison T M, Grove M, Zhang Yu-quan, Xie Guanghong. A tectonic model for Cenozoic gin-geous activities in the eastern Indo-Asian collision zone [J]. Earth Planet Sci Lett, 2001, 188(1/2): 123–133.
[40] 張玉泉, 謝應(yīng)雯, 李獻(xiàn)華, 邱華寧, 趙振華, 梁華英. 青藏高原東部鉀玄巖漿巖同位素特征: 巖石成因及構(gòu)造意義[J]. 中國(guó)科學(xué)(D輯), 2000, 30(5): 493–498.Zhang Yuquan, Xie Yingwen, Li Xianhua, Qiu Huaning, Zhao Zhenhua, Liang Huaying. Isotope characteristics of shoshon-itic rocks in eastern Tibet: Petrogenesis and its structural impl-ication [J]. Sci China (D), 2000, 30(5): 493–498 (in Chinese).
[41] 潘桂棠, 王培生, 徐耀榮, 焦淑沛, 向天秀. 青藏高原新生代構(gòu)造演化[M]. 北京: 地質(zhì)出版社, 1990, 1–243. Pan Gui-tang, Wang Pei-sheng, Xu Yao-rong, Jiao Shu-pei, Xiang Tian-xiu. Tectonic Evolution of the Qinghai-Tibet Plateau [M]. Beijing: Geological Publishing House, 1990: 1–243 (in Chinese with English abstract).
[42] Schaerer U, Zhang L S, Tapponnier P. Duration of strike-slip movements in large shear zones: The Red River belt, China [J]. Earth Planet Sci Lett, 1994, 126(2): 379–397.
[43] Zhang L S, Schaerer U. Age and origin of magmatism along the Cenozoic Red River shear belt [J]. Contrib Mineral Petrol, 1999, 134(1): 65–78.
[44] 朱炳泉, 張玉泉, 謝應(yīng)雯. 滇西洱海東第三紀(jì)超K質(zhì)火成巖系的Nd-Sr-Pb同位素特征與西南大陸地幔演化[J]. 地球化學(xué), 1992, 21(3): 201–212. Zhu Bing-quan, Zhang Yu-quan, Xie Ying-wen. Nd, Sr and Pb isotopic characteristics of Cenozoic ultra-potassic volcanic rocks from eastern Erhai, Yunnan and their implications for subcontinent-mantle evolution in southwestern China [J]. Geochimica, 1992, 21(3): 201–212 (in Chinese with English abstract).
[45] 謝應(yīng)雯, 張玉泉, 鐘孫霖, 李獻(xiàn)華. 云南洱海東部新生代高鉀堿性巖漿巖痕量元素特征[J]. 巖石學(xué)報(bào), 1999, 15(1): 75–82.Xie Ying-wen, Zhang Yu-quan, Chung Sun-lin, Li Xian-hua. Trace element characteristics of Cenozoic high potassic igneous rocks from eastern Erhai, Yunnan Province [J]. Acta Petrol Sin, 1999, 15(1): 75–82 (in Chinese with English abstract).
Zircon LA-ICP-MS U-Pb age of the Zalaga porphyry associated with Cu-Mo mineralization in the Yulong ore belt and its geological implication
HE Guo-chao1,2, WANG Guang-qiang2,3, HUANG Wen-ting2,3, ZOU Yin-qiao2,3, WU Jing2*, LIANG Hua-ying2, ZHANG Yu-quan2and Charllote M ALLEN4
1. Resource Exploration Co. Ltd of Guangxi Non-Ferrous Metal Group Co., Ltd, Nanning 530022, China; 2. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Research School of Earth Sciences, Australian National University, Canberra ACT0200, Australia
The Zalaga porphyry Cu-Mo deposit is located at the northern domain of the Yulong porphyry copper ore belt in the eastern Tibet. The porphyry emplaced into the lower Permian volcanic rock and Late Triassic sandstone and could be divided into early stage monzonite granite porphyry and late stage syenogranite porphyry. Both stages of the porphyry were dated, respectively, using zircon LA-ICP-MS U-Pb method. The early stage monzonite granite porphyry has zircon LA-ICP-MS U-Pb age of (38.5±0.2) Ma, MSWD=1.12 and the late stage syenogranite porphyry has zircon LA-ICP-MS U-Pb age of (38.5±0.2) Ma, MSWD=1.08. The early porphyry has the same zircon LA-ICP-MS U-Pb age as that of the late stage porphyry, suggesting that the early porphyry and late stage porphyry emplaced almost at the same time and that the Zalaga porphyry was emplaced during the Late Eocene. Based on the structural condition of the period during Eocene to Oligocene in eastern Tibet, it is concluded that the Zalaga porphyry Cu-Mo(Au) deposit and the Yulong porphyry copper ore belt has genetic relation to the activities of strike-slip fault zone which transverses the lithosphere mantle and triggered the magmatic activities caused by the collision between Indian and Asia continents.
porphyry Cu-Mo deposit; age of porphyry and associated mineralization; continental collision and mineralization; Eastern Tibet
P597
A
0379-1726(2014)04-0399-09
2013-04-08;
2013-12-09;
2013-12-23
中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(B類) (XDB03010302); 國(guó)家自然科學(xué)基金(41272099, 41121002)
何國(guó)朝(1964–), 男, 教授級(jí)高級(jí)工程師, 主要從事礦產(chǎn)地質(zhì)及勘查工作。E-mail: 124737253@qq.com
WU Jing, E-mail: wujing7808@163.com, Tel: +86-20-85290107