孔祥平,賀愛(ài)永,陳佳楠,陳吳方,尹春燕,陳攀,吳昊,姜岷南京工業(yè)大學(xué)生物與制藥工程學(xué)院 材料化學(xué)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室, 江蘇 南京 211816
化學(xué)改性甘蔗渣對(duì)固定化細(xì)胞發(fā)酵產(chǎn)丁醇的影響
孔祥平,賀愛(ài)永,陳佳楠,陳吳方,尹春燕,陳攀,吳昊,姜岷
南京工業(yè)大學(xué)生物與制藥工程學(xué)院 材料化學(xué)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室, 江蘇 南京 211816
旨在研究化學(xué)改性的甘蔗渣作為固定化載體對(duì)丙酮丁醇梭菌Clostridium acetobutylicum XY16發(fā)酵制備生物丁醇的影響。首先利用不同濃度的聚乙烯亞胺 (PEI)和1 g/L戊二醛 (GA) 對(duì)甘蔗渣表面進(jìn)行化學(xué)改性,增強(qiáng)甘蔗渣對(duì)Clostridium acetobutylicum XY16的附載能力。經(jīng)4 g/L聚乙烯亞胺和1 g/L戊二醛改性的甘蔗渣 (添加量10 g/L) 應(yīng)用到固定化批次發(fā)酵中,發(fā)酵36 h后丁醇和總?cè)軇舛茸罡?,分別達(dá)到了12.24 g/L和21.67 g/L,同時(shí)溶劑的生產(chǎn)速率達(dá)到0.60 g/(L·h),生產(chǎn)速率比游離細(xì)胞和未改性甘蔗渣固定化細(xì)胞分批發(fā)酵分別提高了130.8%和66.7%。在此基礎(chǔ)上對(duì)改性甘蔗渣固定化的細(xì)胞進(jìn)行6次重復(fù)批次發(fā)酵,丁醇和總?cè)軇┑漠a(chǎn)量穩(wěn)定,溶劑生產(chǎn)速率逐漸提高至0.83 g/(L·h),同時(shí)轉(zhuǎn)化率也提高至0.42 g/g。
丁醇,甘蔗渣,聚乙烯亞胺,固定化細(xì)胞
丁醇又稱(chēng)正丁醇,作為一種良好的化工原料和新型液體燃料受到廣泛的重視[1-5]。與傳統(tǒng)的化學(xué)方法不同,生物丁醇主要是由梭菌通過(guò)厭氧發(fā)酵產(chǎn)生,該方法可有效緩解能源短缺和環(huán)境污染兩大突出問(wèn)題,目前已經(jīng)成為研究熱點(diǎn)[6-9]。生物法制備丁醇存在發(fā)酵周期長(zhǎng)、生產(chǎn)速率低、轉(zhuǎn)化率低以及產(chǎn)物濃度低等瓶頸,科研工作者采用了誘變育種、代謝調(diào)控、發(fā)酵與分離耦合等手段來(lái)解決上述問(wèn)題,其中固定化細(xì)胞發(fā)酵技術(shù)是一種能夠顯著提高菌株溶劑生產(chǎn)速率的方法。
固定化細(xì)胞發(fā)酵技術(shù)已廣泛應(yīng)用于丁二酸、乳酸、丙酸的生物發(fā)酵中, Supaporn等[10]利用棉布對(duì)丙酸生產(chǎn)菌株進(jìn)行包埋法固定,獲得了71.8 g/L的丙酸,與游離細(xì)胞相比提高了37%,并且減少了乙酸等副產(chǎn)物的產(chǎn)生。Xue等[11]利用棉布和不銹鋼絲構(gòu)建的纖維床固定化丙酮丁醇梭菌JB200單批發(fā)酵制備丁醇,100 g/L初糖濃度時(shí)溶劑的生產(chǎn)速率達(dá)到了0.40 g/(L·h),當(dāng)降低發(fā)酵培養(yǎng)基初糖濃度至80 g/L后,發(fā)酵速率提升至0.47 g/(L·h),將氣提技術(shù)與發(fā)酵耦合后溶劑生產(chǎn)速率達(dá)到0.53 g/(L·h)。天然的固定化材料存在固定化效率低、容易脫附等缺點(diǎn),對(duì)固定化載體的預(yù)處理能夠有效地提高細(xì)胞固定化效率,增強(qiáng)細(xì)胞與載體之間的作用力,從而提高生產(chǎn)速率,節(jié)約生產(chǎn)成本[12-14]?;瘜W(xué)改性后的載體材料表面正電荷量、表面粗糙度、活性基團(tuán)數(shù)等均有所提高,能夠大幅增強(qiáng)對(duì)細(xì)胞的吸附能力,提高固定化細(xì)胞在重復(fù)批次發(fā)酵過(guò)程中的生產(chǎn)效率,對(duì)固定化細(xì)胞體系長(zhǎng)期穩(wěn)定高效運(yùn)行有至關(guān)重要的作用[15-16]。
本文采用聚乙烯亞胺和戊二醛對(duì)甘蔗渣進(jìn)行化學(xué)改性,以增強(qiáng)甘蔗渣對(duì)細(xì)胞的固定效率??疾旄男院蟾收嵩鼘?duì)丙酮丁醇梭菌Clostridium acetobutylicum XY16細(xì)胞固定效率和分批發(fā)酵產(chǎn)丁醇性能的影響。在利用改性甘蔗渣固定化
C. acetobutylicum XY16重復(fù)批次發(fā)酵制備丁醇的過(guò)程中,對(duì)固定化纖維床在發(fā)酵過(guò)程中的穩(wěn)定性進(jìn)行了考察。
1.1 材料
1.1.1 菌種
Clostridium acetobutylicum XY16為本實(shí)驗(yàn)自主篩獲得并保藏,保藏號(hào):CCTCC2010011。
1.2 方法
1.2.1 菌體培養(yǎng)方法
種子培養(yǎng)基 (g/L): 酵母粉 3,蛋白胨 5,可溶性淀粉 10,乙酸銨 2,NaCl 2,MgSO43,KH2PO41,K2HPO41,F(xiàn)eSO4·7H2O 0.1,pH 6.0,固體加瓊脂20,121 ℃滅菌15 min。
發(fā)酵培養(yǎng)基P2 (g/L): K2HPO40.5,KH2PO40.5,乙酸銨 2.2,MgSO4·7H2O 0.2,MnSO4·H2O 0.01,NaCl 0.01,F(xiàn)eSO4·7H2O 0.01,玉米漿1,121 ℃滅菌15 min。
種子液培養(yǎng)條件: 將活化的種子液按5% (V/V)轉(zhuǎn)接到裝有種子培養(yǎng)基的100 mL血清瓶中,通N22 min。裝液量視需要而定,37 ℃厭氧培養(yǎng) 12 h。
1.2.2 甘蔗渣表面改性方法
將甘蔗渣用粉碎機(jī)加工成0.5 cm×1 cm的小塊狀,甘蔗渣的添加量為10 g/L,洗凈烘干后用不同濃度的聚乙烯亞胺溶液 (pH 7.0)浸泡2 h,清洗并烘干。最后使用含有1 g/L的戊二醛的磷酸鹽緩沖液浸泡完成交聯(lián),清洗、烘干備用。
1.2.3 固定化細(xì)胞發(fā)酵
固定化細(xì)胞單批發(fā)酵:將改性后的甘蔗渣按10 g/L的量填充到自制的層析柱 (柱長(zhǎng)30 cm,內(nèi)徑3 cm) 中構(gòu)建成固定化纖維床反應(yīng)器。將培養(yǎng)12 h的種子液按10% (V/V) 接種到2 L的自制五口燒瓶發(fā)酵裝置 (裝液量1.5 L) 中,通N210 min,37 ℃厭氧培養(yǎng)8 h后打開(kāi)蠕動(dòng)泵,使發(fā)酵液在用氮?dú)獬醯母男愿收嵩潭ɑw維床中循環(huán),實(shí)現(xiàn)細(xì)胞的固定化。
1.2.4 固定化細(xì)胞連續(xù)發(fā)酵
連續(xù)發(fā)酵過(guò)程中細(xì)胞固定化方法同1.2.3中所述,發(fā)酵過(guò)程中當(dāng)葡萄糖濃度降至20 g/L左右時(shí),移除發(fā)酵液并泵入新鮮的P2培養(yǎng)基,通N210 min之后進(jìn)行重復(fù)批次發(fā)酵。
1.2.5 檢測(cè)方法
菌體生物量通過(guò)測(cè)定發(fā)酵液在600 nm波長(zhǎng)下的吸光度,用OD600來(lái)表征。葡萄糖采用SBA-40C型生物傳感分析儀檢測(cè)。發(fā)酵產(chǎn)物測(cè)定使用浙大智達(dá)N2000氣相色譜儀,采用火焰離子化檢測(cè)器(FID),色譜柱為石英毛細(xì)管柱,固定相是SE-30,類(lèi)型為交聯(lián),以異丁醇作內(nèi)標(biāo)物進(jìn)行定,具體的檢測(cè)條件見(jiàn)相關(guān)文獻(xiàn)[17]。
表1 不同聚乙烯亞胺改性劑量對(duì)Clostridium acetobutylicum XY16固定化效率和產(chǎn)溶劑性能的影響Table 1 Effects of different dosage of PEI on immobilization efficiency and solvent production
表2 化學(xué)改性對(duì)甘蔗渣固定化細(xì)胞耗糖速率和溶劑生產(chǎn)速率的影響Table 2 Effects of chemically modified sugarcane bagsse on glucose consumption rate and solvent productivity
2.1 表面改性劑對(duì)甘蔗渣固定化效率及丁醇發(fā)酵的影響
甘蔗渣的添加量為10 g/L (表1),不斷提高改性試劑聚乙烯亞胺的濃度至4 g/L,經(jīng)36 h發(fā)酵后,葡萄糖(60 g/L)消耗完全,丁醇和總?cè)軇┓謩e達(dá)到12.24 g/L和21.67 g/L,相對(duì)于未改性甘蔗渣固定化細(xì)胞分批發(fā)酵,丁醇濃度提高了11%,總?cè)軇┨岣吡?6%。游離細(xì)胞的OD600由6.54降至0.57,固定化效率高達(dá)91.3%,通過(guò)聚乙烯亞胺改性的甘蔗渣固定化效率得到大幅提高,是未改性甘蔗渣固定化效率的2.75倍。當(dāng)聚乙烯亞胺的濃度高于6 g/L,總?cè)軇舛乳_(kāi)始下降,可能由于聚乙烯亞胺與細(xì)胞膜表面上的蛋白接觸,影響細(xì)胞的生長(zhǎng)和代謝。由于戊二醛對(duì)細(xì)胞有強(qiáng)烈的抑制作用,實(shí)驗(yàn)中設(shè)定戊二醛的添加量為1 g/L。
固定化材料表面改性對(duì)耗糖速率和溶劑生產(chǎn)速率都有明顯的促進(jìn)作用 (表2)。與未改性甘蔗渣作為固定化載體的分批發(fā)酵相比,耗糖速率和溶劑生產(chǎn)速率分別提高了48.2%和66.7%,說(shuō)明改性后的甘蔗渣上附載了大量的高活力細(xì)胞。
從圖1A (改性前) 可以看出,未改性甘蔗渣表面較為平整,在高放大倍數(shù)下才能看到少量細(xì)胞吸附在甘蔗渣表面,并且呈分散分布; 而圖1B (改性后) 中改性甘蔗渣表面褶皺明顯,粗糙度增大,吸附了大量細(xì)胞,并且呈膜狀附著在甘蔗渣表面。
2.2 化學(xué)改性甘蔗渣在重復(fù)批次發(fā)酵中的穩(wěn)定性考察
利用固定化細(xì)胞重復(fù)批次發(fā)酵可以縮短發(fā)酵周期,提高生產(chǎn)速率和轉(zhuǎn)化率。采用含有60 g/L葡萄糖的P2發(fā)酵培養(yǎng)基,對(duì)化學(xué)改性甘蔗渣固定化的丙酮丁醇梭菌XY16進(jìn)行重復(fù)批次發(fā)酵,考察化學(xué)改性甘蔗渣固定化效果的穩(wěn)定性。
如圖2所示,進(jìn)行了6次重復(fù)批次發(fā)酵,發(fā)酵結(jié)果表明改性后甘蔗渣對(duì)于細(xì)胞的吸附能力保持穩(wěn)定。通過(guò)6次重復(fù)批次發(fā)酵,丁醇濃度能夠維持在9–10 g/L,總?cè)軇┠軌蚓S持在16 g/L左右。溶劑的生產(chǎn)強(qiáng)度達(dá)到了0.83 g/(L·h),葡萄糖轉(zhuǎn)化率達(dá)到了0.42 g/g,與未改性甘蔗渣作為固定化載體的分批發(fā)酵相比,分別提高了130.6%和31.2%。
圖1 改性前 (A) 和改性后 (B) 甘蔗渣載體固定化細(xì)胞電鏡圖Fig. 1 Scanning electron micrograph of C. acetobutylicum XY16 immobilized by unmodified (A) and modified (B) sugarcane bagasse.
圖2 固定化細(xì)胞重復(fù)批次發(fā)酵考察化學(xué)改性甘蔗渣的穩(wěn)定性Fig. 2 Stability of chemically modified sugarcane bagasse in repeat-batch fermentation.
利用Clostridium acetobutylicum XY16游離細(xì)胞發(fā)酵制備丁醇,66 h后發(fā)酵結(jié)束,消耗53 g/L葡萄糖,丁醇濃度為11.05 g/L,總?cè)軇?7.16 g/L。游離細(xì)胞單批發(fā)酵過(guò)程發(fā)酵周期長(zhǎng)、生產(chǎn)速率和轉(zhuǎn)化率低。采用甘蔗渣作為固定化載體進(jìn)行固定化細(xì)胞單批發(fā)酵產(chǎn)丁醇,發(fā)酵周期縮短為48 h,消耗54 g/L的葡萄糖,同時(shí)丁醇和總?cè)軇舛确謩e達(dá)到了11.02 g/L和17.17 g/L。采用不同濃度的聚乙烯亞胺對(duì)甘蔗渣進(jìn)行化學(xué)改性,考察改性后甘蔗渣作為固定化載體對(duì)Clostridium acetobutylicum XY16分批發(fā)酵產(chǎn)丁醇的影響。當(dāng)聚乙烯亞胺濃度為4 g/L時(shí),發(fā)酵周期縮短至36 h,丁醇和總?cè)軇┻_(dá)到最高,分別為12.24 g/L和21.67 g/L,同時(shí)細(xì)胞固定化效率高達(dá)91.3%,是未改性甘蔗渣固定化效率的2.75倍。在改性甘蔗渣固定化細(xì)胞分批發(fā)酵中,耗糖速率和溶劑生產(chǎn)速率得到明顯提高,與未改性甘蔗渣固定化發(fā)酵相比分別提高了48.2%和66.7%。
以改性甘蔗渣作為固定化載體進(jìn)行重復(fù)批次發(fā)酵,發(fā)酵周期縮短至24 h,重復(fù)批次發(fā)酵后期進(jìn)一步縮短至20 h,丁醇和總?cè)軇舛确謩e穩(wěn)定在10 g/L和16 g/L左右。重復(fù)批次發(fā)酵過(guò)程中溶劑的生產(chǎn)速率達(dá)到了0.83 g/(L·h), 由于菌體的重復(fù)利用和對(duì)殘?zhí)堑目刂疲咸烟寝D(zhuǎn)化率提高至0.42 g/g,與未改性甘蔗渣作為固定化載體的分批發(fā)酵相比,分別提高了130.6%和31.2%。重復(fù)批次發(fā)酵過(guò)程中轉(zhuǎn)化率的提高可能與高活力細(xì)胞的循環(huán)使用以及丙酮丁醇梭菌具有較低的木質(zhì)纖維素降解能力有關(guān)[18-22]。由此可見(jiàn),化學(xué)改性甘蔗渣能夠增強(qiáng)對(duì)細(xì)胞的吸附效率和提高菌體產(chǎn)溶劑性能,作為固定化載體能夠使固定化細(xì)胞發(fā)酵長(zhǎng)期高效的穩(wěn)定運(yùn)行。
REFERENCES
[1] Guo T, Tang Y, Zhang QJ, et al. Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biotechnol, 2012, 39(3): 401–407.
[2] Liu Y, Liu HJ, Zhang JA, et al. Research progress in new biofuel butanol. Mod Chem Ind, 2008, 28(6): 28–33 (in Chinese).劉婭, 劉宏娟, 張建安, 等.新型生物燃料: 丁醇的研究進(jìn)展. 現(xiàn)代化工, 2008, 28(6): 28–33.
[3] Lee SY, Park JH, Jang SH, et al. Fermentative butanol production by Clostria. Biotechnol Bioeng, 2008, 101(2): 209–228.
[4] Dürre P. Biobutanol: an attractive biofuel. Biotechnol J, 2007, 2(12): 1525–1534.
[5] García, V, P?kkil? J, Ojamo H, et al. Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energ Rev, 2011, 15(2): 964–980.
[6] Sun YP, Jin YL, Gao XF, et al. Effects of byproducts from acid hydrolysis of lignocellulose on butanol fermentation by Clostridium acetobutylicum CICC8012. Chin J Appl Environ Biol, 2010, 16(6): 845–850 (in Chinese).孫彥平, 靳艷玲, 郜曉峰, 等. 纖維素酸解副產(chǎn)物對(duì)Clostridium acetobutylicum CICC8012 發(fā)酵的影響. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2010, 16(6): 845–850.
[7] Jin XQ, Wang GL, He BF. Research progress and high yield strategy of acetone-butanol fermentation. Chem Ind Eng Process, 2007, 26(12): 1727–1732 (in Chinese).靳孝慶, 王桂蘭, 何冰芳. 丙酮丁醇發(fā)酵的研究進(jìn)展及其高產(chǎn)策. 化工進(jìn)展, 2007, 26(12): 1727–1732.
[8] Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev, 1986, 50(4): 484–524.
[9] Chiao J, Sun ZH. History of the acetone-butanol-ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol, 2007, 13: 12–14.
[10] Supaporn S, Yang ST. Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnol Bioeng, 2005, 91(3): 325–337.
[11] Xue C, Bai FW. High-titer n-butanol production by Clostridium acetobutylicum JB200 in Fed-Batch fermentation with intermittent gas stripping. Biotechnol Bioeng, 2012, 109(11): 2746–2756.
[12] Kim DN, Park J, Koh WG. Control of cell adhesion on poly (ethyleneglycol) hydrogel surface using photochemical modification and micropatterning technique. J Ind Eng Chem, 2009, 15(1): 124–128.
[13] Kawaguti HY, Buzzano MF, Orsi DC, et al. Effect of the additive polyethylenimine and glutaraldehyde on the immobilization of Erwinia sp. D12 cells in calcium alginate for isomaltulose production. Process Biochem, 2006, 41(9): 2035–2040.
[14] Kamath N, D-Souza SF. Immobilization of ureolytic cells through flocculation and adhesion on cotton cloth using polyethylenimine. Enzyme Microb Technol, 1991, 13(11): 935–938.
[15] Rochex A, Lecouturier D, Pezron I, et al. Adhesion of a Pseudomonas putida strain isolated from a paper machine to cellulose fibres. Appl Microbiol biotechnol, 2004, 65(6): 727–733.
[16] Briandet R, Meylheuc T, Maher C, et al. Listeria monocytogenes Scott A: Cell sufface charge, hydrophobicity, and electron donor and acceptor characteristics under different environmental growth condition. Appl Environ Biotechnol, 1999, 65(12): 5328–5333.
[17] Guo T, Tang Y, Xi YL, et al. Clostridium beijerinckiic mutant obtained by atmosperic pressure glow discharge producing high proportions. Biotechnol Lett, 2011, 33(12): 2379–2383.
[18] Afschar AS, Biebl H, Schaller K, et al. Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle. Appl Microbiol Biotechnol, 1985, 22(6): 394–398.
[19] Detlef S, Gerhard G. Effect of cell recycle on continuous butanol-acetone fermentation with Clostridium acetobutylicum under phosphate limitation. Appl Microbiol Biotechnol, 1986, 24(1): 1–5.
[20] Ni Y, Sun ZH. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol, 2009, 83(3): 415–423.
[21] Weber C, Farwick A, Benisch F. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol, 2010, 87(4): 1303–1315.
[22] Kumar R, Singh S, Singh O. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 2008, 35(5): 377–391.
(本文責(zé)編 郝麗芳)
Effects of chemically modified sugarcane bagasse on butanol production by immobilized Clostridium acetobutylicum XY16
Xiangping Kong, Aiyong He, Jianan Chen, Wufang Chen, Chunyan Yin, Pan Chen, Hao Wu, and Min Jiang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 211816, Jiangsu, China
Sugarcane bagasse modified by polyethylenimine (PEI) and glutaraldehyde (GA) was used as a carrier to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. The effects of chemically modified sugarcane bagasse on batch and repeat-batch fermentations were investigated. Batch fermentation was conducted with anaddition of 10 g/L modified sugarcane bagasse and 60 g/L glucose, resulting in a high solvent concentration of 21.67 g/L and productivity of 0.60 g/(L·h) with the treatment of 4 g/L PEI and 1 g/L GA. Compared to the fermentations by free cells and immobilized cells on unmodified sugarcane bagasse, the productivity increased 130.8% and 66.7%, respectively. The fibrous-bed bioreactor also maintained a stable butanol production during repeat-batch fermentations, achieving a maximum productivity of 0.83 g/(L·h) with a high yield of 0.42 g/g.
butanol, sugarcane bagasse, polyethylenimine, immobilized cell
May 3, 2013; Accepted: September, 2013
Min Jiang. Tel/Fax: +86-25-58139937; E-mail: jiangmin@njtech.edu.cn Hao Wu. Tel/Fax: +86-25-58139937; E-mail: wuhao@njtech.edu.cn
孔祥平, 賀愛(ài)永, 陳佳楠, 等. 化學(xué)改性甘蔗渣對(duì)固定化細(xì)胞發(fā)酵產(chǎn)丁醇的影響. 生物工程學(xué)報(bào), 2014, 30(2): 305-309.
Kong XP, He AY, Chen JN, et al. Effects of chemically modified sugarcane bagasse on butanol production by immobilized Clostridium acetobutylicum XY16. Chin J Biotech, 2014, 30(2): 305-309.
Supported by: National Basic Research Program of China (973 Program) (No. 2011CB707405), National Natural Science Foundation of China (No. 21106067), Commonweal Research of CAF (No. 201004001), Key University Science Research Project of Jiangsu Province (No. 11KJA530001).
國(guó)家重點(diǎn)基礎(chǔ)研究計(jì)劃 (973計(jì)劃) (No. 2011CB707405),國(guó)家自然科學(xué)基金 (No. 21106067),林業(yè)公益性專(zhuān)項(xiàng)基金 (No. 201004001),江蘇省高校自然科學(xué)研究重大項(xiàng)目 (No. 11KJA530001) 資助。