肖望強(qiáng)
(廈門(mén)大學(xué)機(jī)電工程系,福建廈門(mén) 361005)
礦用減速器雙壓力角弧齒錐齒輪輕量化設(shè)計(jì)與制造
肖望強(qiáng)
(廈門(mén)大學(xué)機(jī)電工程系,福建廈門(mén) 361005)
礦用減速器的結(jié)構(gòu)對(duì)整機(jī)輕量化影響很大,優(yōu)化弧齒錐齒輪的結(jié)構(gòu)尺寸能有效減少減速器齒輪、軸承座和箱殼的質(zhì)量。針對(duì)礦用減速器的工作狀況,提出在工作齒面采用大壓力角,在非工作齒面采用標(biāo)準(zhǔn)壓力角的非對(duì)稱(chēng)弧齒錐齒輪。對(duì)雙壓力角非對(duì)稱(chēng)弧齒錐齒輪的嚙合傳動(dòng)原理、齒輪副齒面方程進(jìn)行了推導(dǎo),分析非對(duì)稱(chēng)設(shè)計(jì)對(duì)工作齒面壓力角變化范圍的影響,對(duì)減速器弧齒錐齒輪齒形進(jìn)行計(jì)算,對(duì)比了對(duì)稱(chēng)和非對(duì)稱(chēng)弧齒錐齒輪主動(dòng)輪和被動(dòng)輪。設(shè)計(jì)并制造了非對(duì)稱(chēng)單面刀盤(pán)和雙面刀盤(pán),加工出雙壓力角非對(duì)稱(chēng)弧齒錐齒輪,通過(guò)解析法、有限元法及封閉式齒輪實(shí)驗(yàn)臺(tái)對(duì)非對(duì)稱(chēng)弧齒錐齒輪承載能力進(jìn)行計(jì)算、仿真和實(shí)驗(yàn)。結(jié)果表明非對(duì)稱(chēng)弧齒錐齒輪輕量化效果明顯,輕量化后的非對(duì)稱(chēng)弧齒錐齒輪能夠替代原減速器對(duì)稱(chēng)齒輪。
雙壓力角;弧齒錐齒輪;輕量化;臺(tái)架實(shí)驗(yàn);礦用減速器
目前礦用裝備重點(diǎn)向輕量化方向發(fā)展,礦用機(jī)械減速器的結(jié)構(gòu)對(duì)整機(jī)輕量化影響重大[1-2]。弧齒錐齒輪的尺寸直接決定了礦用減速器的結(jié)構(gòu)和整體質(zhì)量[3-5],因此降低弧齒錐齒輪的結(jié)構(gòu)尺寸對(duì)減少齒輪、軸承座和箱殼的質(zhì)量具有重要影響[6-7]。研究表明[8-9],適當(dāng)增加壓力角可以顯著提高輪齒的抗彎曲強(qiáng)度和接觸強(qiáng)度,但如果將輪齒兩側(cè)的壓力角增大則會(huì)導(dǎo)致齒頂變尖。由于礦用減速器在運(yùn)行過(guò)程中以工作齒面受載為主[10-11],因此綜合壓力角對(duì)輪齒性能的影響,現(xiàn)設(shè)計(jì)在工作齒面采用大壓力角,在非工作齒面采用標(biāo)準(zhǔn)壓力角,這樣既可以避免齒頂變尖,同時(shí)充分利用大壓力角的優(yōu)點(diǎn),在保證相同承載能力情況下,減小了弧齒錐齒輪的模數(shù),從而減小了齒輪、軸承座和箱殼的體積和質(zhì)量。整機(jī)有多個(gè)減速器,因此該設(shè)計(jì)對(duì)整機(jī)的輕量化具有明顯效果。
本文應(yīng)用弧齒錐齒輪的嚙合機(jī)理,提出礦用減速器雙壓力角非對(duì)稱(chēng)弧齒錐齒輪的設(shè)計(jì)方法,依據(jù)弧齒錐齒輪切齒原理,設(shè)計(jì)并制造了非對(duì)稱(chēng)齒輪刀具,加工出雙壓力角非對(duì)稱(chēng)弧齒錐齒輪,通過(guò)解析法、有限元法及封閉式齒輪實(shí)驗(yàn)臺(tái)對(duì)非對(duì)稱(chēng)弧齒錐齒輪承載能力進(jìn)行計(jì)算、仿真和實(shí)驗(yàn),證明非對(duì)稱(chēng)弧齒錐齒輪的承載能力不弱于對(duì)稱(chēng)齒輪,與礦用減速器原結(jié)構(gòu)相比,輕量化效果明顯。
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪由于兩側(cè)的壓力角不同,在齒根處截面變厚,齒頂處的截面變薄,工作齒側(cè)和非工作齒側(cè)弧齒厚、齒頂圓角、齒根圓角等發(fā)生了變化,因此對(duì)雙壓力角非對(duì)稱(chēng)弧齒錐齒輪的嚙合原理研究是十分必要的。
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪有兩個(gè)不同的基圓,兩基圓錐有兩個(gè)不同的嚙合平面,分別沿著各自的嚙合面做純滾動(dòng),兩基圓錐擁有一個(gè)共同的節(jié)錐,相互嚙合的一對(duì)雙壓力角非對(duì)稱(chēng)錐齒輪的兩節(jié)錐面相切。如圖1所示,工作齒面基圓錐OP′1O′與非工作齒面OP′2O′在兩個(gè)嚙合平面上做純滾動(dòng),動(dòng)點(diǎn)P1和P2與基錐頂點(diǎn)O的距離為定值,因此動(dòng)點(diǎn)P1和P2在球面上畫(huà)出的運(yùn)動(dòng)軌跡為球面漸開(kāi)線P1P′1和P2P′2。因此,雙壓力角弧齒錐齒輪的齒廓面由一系列OP1和OP2上的點(diǎn)所形成的逐漸偏置的球面漸開(kāi)線組成。圖1中兩條球面弧線P1P′1和P2P′2同時(shí)在錐齒輪的背錐面上。
圖1 雙壓力角非對(duì)稱(chēng)弧齒錐齒輪球面線生成原理Fig.1 Theory of spherical involute for asymmetric spiral bevel gear
圖2 雙壓力角非對(duì)稱(chēng)錐齒輪副嚙合齒廓形成原理Fig.2 Theory of meshing profile for asymmetric spiral bevel gear
一對(duì)相互嚙合的雙壓力角非對(duì)稱(chēng)弧齒錐齒輪的大端齒廓的球面漸開(kāi)線形成原理如圖2所示,兩錐齒輪有4個(gè)基圓錐,即非工作齒面2,2′和工作齒面3, 3′,每個(gè)錐齒輪的兩個(gè)基圓錐共有一個(gè)節(jié)圓錐。
兩個(gè)節(jié)圓錐1,1′相切于OP,OO1和OO2為兩錐齒輪中心軸線;O為錐頂點(diǎn),也是一對(duì)錐齒輪的嚙合交點(diǎn),以O(shè)P為半徑做球面,其兩節(jié)圓錐與球面相交曲線即為兩個(gè)錐齒輪的節(jié)圓,且兩節(jié)錐的切點(diǎn)為P。
非對(duì)稱(chēng)弧齒錐齒輪內(nèi)有基圓錐,兩基圓錐與球面相交的圓是兩個(gè)齒輪的基圓。下標(biāo)c表示非工作齒面,d表示工作齒面,過(guò)OP作兩基圓錐3,3′的公切面ON1cPN2c,過(guò) OP作兩基圓錐 2,2′的公切面ON1dPN2d,ON1cPN2c和ON1dPN2d則為工作齒側(cè)和非工作齒側(cè)齒廓面的兩個(gè)法平面。兩個(gè)法平面分別與相應(yīng)的基圓錐同時(shí)作相對(duì)純滾動(dòng),球面曲線N1cN2c的P點(diǎn)將在球面上形成球面漸開(kāi)線 P1cPx1c和P2cPx2c,同理,球面曲線N1dN2d的P點(diǎn)在球面上形成球面漸開(kāi)線P1dPx1d和P2dPx2d,這里的4條球面漸開(kāi)線即為非對(duì)稱(chēng)弧齒錐齒輪副工作齒側(cè)主、被動(dòng)齒輪大端的理論球面漸開(kāi)線齒廓。
如圖3所示,工作齒面Q1與錐頂角為δbd的基錐1相切于OP1,當(dāng)Q1沿基錐1做純滾動(dòng)時(shí),平面上任一回轉(zhuǎn)中心在O的圓弧線如M1N1將在空間形成弧齒錐齒輪的齒面曲面,雙壓力角非對(duì)稱(chēng)弧齒錐齒輪兩側(cè)齒面開(kāi)始處的基錐不同,所以形成兩側(cè)壓力角不同?,F(xiàn)以基錐1為研究對(duì)象推導(dǎo)齒面的曲面方程。
以基錐頂O為圓心分別建立與基錐1固連的左手坐標(biāo)系O-xyz及與旋轉(zhuǎn)平面Q1固連的左手坐標(biāo)系O-x′y′z′,其中z′軸沿基錐1的母線OP1方向,是平面Q1沿基錐1做純滾動(dòng)時(shí)的瞬時(shí)軸,x′軸在平面Q1內(nèi)。則非對(duì)稱(chēng)弧齒錐齒輪工作齒面方程為
圖3 雙壓力角非對(duì)稱(chēng)弧齒錐齒輪齒面坐標(biāo)系Fig.3 Profile coordinate system for spiral bevel gear
式中,φ為齒面偏角,如圖3所示。
又因?yàn)樵谄矫鎥′Oz′中圓弧線M1N1的方程為
其中,參數(shù)R為弧線M1N1在平面x′Oz′中的極徑,θ1為弧線M1N1在平面x′Oz′中的極角。上述方程中由于工作齒面基錐角δb是未知數(shù),只有確定錐角δb才能建立完整的齒面方程。由于基錐位于節(jié)錐內(nèi),因此節(jié)錐角δ大于基錐角δb,所以在工作齒面基錐外所形成的一圓弧線為節(jié)曲線,以球面漸開(kāi)線為齒廓的曲線的工作齒面必與節(jié)錐表面相交,經(jīng)推導(dǎo)可得
壓力角αd由設(shè)計(jì)選定,節(jié)錐角δ可通過(guò)嚙合理論求得,以極角θ1為參數(shù)的雙壓力角非對(duì)稱(chēng)弧齒錐齒輪的工作齒側(cè)齒面方程為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪有兩個(gè)不同的基圓錐,其兩側(cè)動(dòng)點(diǎn)P1和P2的偏角的大小也不相同,相應(yīng)的根圓齒厚角、頂圓齒厚角、基圓齒厚角都將發(fā)生改變。
經(jīng)推導(dǎo),雙壓力角非對(duì)稱(chēng)弧齒錐齒輪非工作齒面動(dòng)點(diǎn)P的偏角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪工作齒面動(dòng)點(diǎn)P偏角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪非工作齒面分度圓偏角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪工作齒面分度圓偏角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪非工作齒面齒根偏角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪工作齒面齒根偏角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪非工作齒面齒頂偏角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪工作齒面齒頂偏角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪頂圓齒厚角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪基圓齒厚角為
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪根圓齒厚角為
通過(guò)Matlab語(yǔ)言對(duì)上述非對(duì)稱(chēng)弧齒錐齒輪齒形參數(shù)進(jìn)行編程計(jì)算,可以確定雙壓力角弧齒錐齒輪工作側(cè)和非工作側(cè)齒廓之間的位置關(guān)系。
當(dāng)弧齒錐齒輪的壓力角變大時(shí),基圓越小,基錐角也會(huì)越小,輪齒齒根變厚,齒頂變薄。如果弧齒錐齒輪兩側(cè)的壓力角都變大,那么齒頂變尖的程度會(huì)更大,導(dǎo)致重合度嚴(yán)重下降,容易發(fā)生斷齒。采用雙壓力角非對(duì)稱(chēng)結(jié)構(gòu),能夠有效的避免這種情況。
經(jīng)推導(dǎo),弧齒錐齒輪壓力角與齒形的公式為
式中,δx為不同壓力角組合對(duì)應(yīng)的錐角。
對(duì)稱(chēng)弧齒錐齒輪不同壓力角的齒形如圖 4所示。
圖4(a)為標(biāo)準(zhǔn)壓力角20°的弧齒錐齒輪的齒形;圖4(b)為增大弧齒錐齒輪兩側(cè)的壓力角后,齒頂變尖,齒根厚度變大;壓力角繼續(xù)增大,當(dāng)壓力角為33.725°時(shí),齒頂已經(jīng)完全變尖,齒頂厚度為0,這樣容易導(dǎo)致齒輪斷齒而失效,如圖4(c)所示;圖4(d)為當(dāng)壓力角增大到43.484°時(shí),輪齒兩邊的漸開(kāi)線在齒頂圓內(nèi)相交,無(wú)法形成正確的齒形。
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪不同壓力角的齒形
圖4 不同壓力角下的對(duì)稱(chēng)弧齒錐齒輪齒形Fig.4 Symmetric gear shape with different pressure angles
如圖5所示,圖5(a)中,非對(duì)稱(chēng)弧齒錐齒輪采用一側(cè)為標(biāo)準(zhǔn)壓力角為20°,另一側(cè)采用大壓力角;圖5(b)中,采用的是工作側(cè)壓力角為30°、非工作側(cè)為20°的組合方式,30°/20°的齒形與圖4(b)的齒形具有相同的頂圓齒厚;當(dāng)對(duì)稱(chēng)的齒形完全變尖時(shí),采用非對(duì)稱(chēng)的齒形則不會(huì)完全變尖,如圖5(c)所示;當(dāng)非對(duì)稱(chēng)弧齒錐齒輪的齒形變尖時(shí),對(duì)稱(chēng)的齒形已出現(xiàn)齒頂圓內(nèi)包絡(luò)相交。
圖5 不同壓力角下的非對(duì)稱(chēng)弧齒錐齒輪齒形Fig.5 Asymmetric gear shape with different pressure angles
由此可知,采用雙壓力角非對(duì)稱(chēng)弧齒錐齒輪能夠有效的提高工作齒面壓力角變化范圍,提高約30%。
通過(guò)礦用減速器弧齒錐齒輪為例,齒形參數(shù)見(jiàn)表1。
對(duì)稱(chēng)弧齒錐齒輪和非對(duì)稱(chēng)弧齒錐齒輪被動(dòng)輪如圖6所示,主動(dòng)輪如圖7所示,可以看出在相同承載能力情況下,齒輪的體積和質(zhì)量明顯降低。
表1 非對(duì)稱(chēng)與對(duì)稱(chēng)弧齒錐齒輪基本參數(shù)對(duì)比Table 1 Parameters of symmetric and asymmetric gear
圖6 對(duì)稱(chēng)與非對(duì)稱(chēng)弧齒錐齒輪被動(dòng)輪對(duì)比Fig.6 Symmetric and asymmetric driven gear
圖7 對(duì)稱(chēng)與非對(duì)稱(chēng)弧齒錐齒輪主動(dòng)輪對(duì)比Fig.7 Symmetric and asymmetric driving gear
從嚙合機(jī)理和齒輪的特征來(lái)看[12-15],由于輪齒的壓力角發(fā)生了改變,雙壓力角非對(duì)稱(chēng)齒輪的加工刀盤(pán)參數(shù)發(fā)生相應(yīng)變化,因此需要對(duì)刀盤(pán)參數(shù)進(jìn)行分析計(jì)算。
加工非對(duì)稱(chēng)弧齒錐齒輪時(shí),用到雙面刀盤(pán)和單面刀盤(pán)兩種刀盤(pán)。雙面刀盤(pán)上有外切刀片和內(nèi)切刀片兩種刀片相間排列,外切刀片的外側(cè)刃是工作面,切削非對(duì)稱(chēng)齒輪的凹面;內(nèi)切刀片的內(nèi)側(cè)刃是工作面,切削非對(duì)稱(chēng)齒輪的凸面。單面銑刀盤(pán)上所裝的刀片全部是外切刀片,單面外切刀盤(pán)用于切削非對(duì)稱(chēng)齒槽的凹面,單面內(nèi)切刀盤(pán)用于切削非對(duì)稱(chēng)齒槽的凸面,用于加工非對(duì)稱(chēng)弧齒錐齒輪被動(dòng)輪的精銑刀盤(pán)如圖8所示。為了提高生產(chǎn)效率,單面刀盤(pán)只用于精切非對(duì)稱(chēng)齒輪。
圖8 非對(duì)稱(chēng)弧齒錐齒輪被動(dòng)輪精銑刀盤(pán)Fig.8 Milling cutter for driven spiral bevel gear
非對(duì)稱(chēng)弧齒錐齒輪的加工采用了雙面切削法,在切制非對(duì)稱(chēng)弧齒錐齒輪被動(dòng)輪時(shí),齒槽的兩側(cè)面是由一個(gè)刀盤(pán)同時(shí)精切而成的;在切制非對(duì)稱(chēng)主動(dòng)輪的齒側(cè)兩面時(shí),用內(nèi)、外精切刀盤(pán)加工,用不同的機(jī)床調(diào)整,分別精車(chē)齒的兩側(cè)面。
安裝時(shí)采用了固定安裝法,即每道工序都在固定的機(jī)床上進(jìn)行,共需要5臺(tái)機(jī)床,5把刀盤(pán)。非對(duì)稱(chēng)弧齒錐齒輪被動(dòng)輪需要進(jìn)行粗切、精切兩道工序,主動(dòng)輪需要進(jìn)行粗切、外精切、內(nèi)精切3道工序。
加工時(shí)采用固定安裝雙面法,能夠?qū)Ψ菍?duì)稱(chēng)弧齒錐齒輪齒廓的凸凹兩面接觸區(qū)單獨(dú)控制,加工現(xiàn)場(chǎng)如圖9所示。
圖9 非對(duì)稱(chēng)弧齒錐齒輪加工現(xiàn)場(chǎng)Fig.9 Manufacturing of asymmetric spiral bevel gear
加工后的雙壓力角非對(duì)稱(chēng)弧齒錐齒輪與原減速器對(duì)稱(chēng)齒輪從動(dòng)輪如圖10所示,左為非對(duì)稱(chēng)弧齒錐齒輪從動(dòng)輪,質(zhì)量為1.15 kg,右為原對(duì)稱(chēng)齒輪從動(dòng)輪,質(zhì)量為1.7 kg,減小約37%。
加工后的雙壓力角非對(duì)稱(chēng)弧齒錐齒輪與原對(duì)稱(chēng)齒輪主動(dòng)輪如圖11所示,左為非對(duì)稱(chēng)弧齒錐齒輪主動(dòng)輪,質(zhì)量為1.8 kg,右為原對(duì)稱(chēng)齒輪主動(dòng)輪,質(zhì)量為2.0 kg,減小約10%。由于主動(dòng)輪帶有齒輪軸,因此輕量化值偏小。同時(shí),當(dāng)非對(duì)稱(chēng)弧齒錐齒輪體積變小后,軸承座、箱殼等其他零件的體積也隨之減小,因此總的輕量化值非常可觀。
圖11 非對(duì)稱(chēng)弧齒錐齒輪與原對(duì)稱(chēng)齒輪主動(dòng)輪Fig.11 Driving gear of symmetric and asymmetric gear
通過(guò)理論計(jì)算和有限元分析,模數(shù)為4.0的雙壓力角非對(duì)稱(chēng)弧齒錐齒輪與模數(shù)為4.5的對(duì)稱(chēng)齒輪的承載能力見(jiàn)表2(本文主要討論非對(duì)稱(chēng)弧齒錐齒輪設(shè)計(jì)與制造方法,由于篇幅所限,非對(duì)稱(chēng)齒根彎曲應(yīng)力和齒面接觸應(yīng)力的計(jì)算方法本文不做詳細(xì)介紹,只列出計(jì)算結(jié)果)。
表2 非對(duì)稱(chēng)與對(duì)稱(chēng)弧齒錐齒輪承載能力對(duì)比Table 2 Load capacity of symmetric and asymmetric gear
由表2可以看出,通過(guò)理論計(jì)算和有限元仿真,模數(shù)為4的非對(duì)稱(chēng)弧齒錐齒輪的齒面接觸應(yīng)力和齒根彎曲應(yīng)力均低于模數(shù)為4.5的對(duì)稱(chēng)齒輪,因此輕量化后的非對(duì)稱(chēng)弧齒錐齒輪完全可以替代原對(duì)稱(chēng)齒輪。
為對(duì)非對(duì)稱(chēng)弧齒錐齒輪的疲勞壽命進(jìn)一步驗(yàn)證,采用機(jī)械雙環(huán)封閉式齒輪壽命實(shí)驗(yàn)臺(tái),實(shí)驗(yàn)設(shè)備如圖12所示。
雙壓力角非對(duì)稱(chēng)弧齒錐齒輪的臺(tái)架實(shí)驗(yàn),采用了中華人民共和國(guó)機(jī)械工業(yè)部標(biāo)準(zhǔn)的QC/T 533—1999臺(tái)架實(shí)驗(yàn)方法。
實(shí)驗(yàn)結(jié)果見(jiàn)表3,由表3可知,通過(guò)臺(tái)架實(shí)驗(yàn),雙壓力角非對(duì)稱(chēng)弧齒錐齒輪的最低壽命和中值壽命均符合標(biāo)準(zhǔn)要求,疲勞壽命不低于原礦用減速器對(duì)稱(chēng)齒輪,證明輕量化后的非對(duì)稱(chēng)弧齒錐齒輪能夠替代原對(duì)稱(chēng)齒輪,為礦用減速器輕量化技術(shù)提供了可行的方法。
圖12 封閉式齒輪壽命實(shí)驗(yàn)臺(tái)Fig.12 Closed test bench for driving axle
表3 非對(duì)稱(chēng)與對(duì)稱(chēng)弧齒錐齒輪疲勞壽命實(shí)驗(yàn)結(jié)果Table 3 Fatigue life test of symmetric and asymmetric gear 104次
(1)對(duì)雙壓力角非對(duì)稱(chēng)弧齒錐齒輪的嚙合傳動(dòng)原理、齒輪副齒面方程進(jìn)行了推導(dǎo),分析非對(duì)稱(chēng)設(shè)計(jì)對(duì)工作齒面壓力角變化范圍的影響,采用雙壓力角技術(shù)輪能夠有效地提高工作齒面壓力角變化范圍,提高約30%。對(duì)減速器弧齒錐齒輪齒形進(jìn)行計(jì)算,對(duì)比了對(duì)稱(chēng)和非對(duì)稱(chēng)弧齒錐齒輪主動(dòng)輪和被動(dòng)輪。
(2)設(shè)計(jì)并制造了非對(duì)稱(chēng)單面刀盤(pán)和雙面刀盤(pán),加工出雙壓力角非對(duì)稱(chēng)弧齒錐齒輪,通過(guò)解析法、有限元法及封閉式齒輪實(shí)驗(yàn)臺(tái)對(duì)非對(duì)稱(chēng)弧齒錐齒輪承載能力進(jìn)行計(jì)算、仿真和實(shí)驗(yàn),證明輕量化后的非對(duì)稱(chēng)弧齒錐齒輪能夠替代原對(duì)稱(chēng)齒輪。
(3)結(jié)果表明非對(duì)稱(chēng)弧齒錐齒輪輕量化效果明顯,從動(dòng)輪質(zhì)量減小37%,主動(dòng)輪減小10%,考慮到軸承座、箱殼等其他零件,總的輕量化值非常可觀,為礦用減速器輕量化技術(shù)提供了可行的方法。
[1] 陳樹(shù)勛,黃 寧,劉金祿.礦用重型自卸車(chē)結(jié)構(gòu)分析與輕量化設(shè)計(jì)[J].汽車(chē)技術(shù),2011(4):26-33.
Chen Shuxun,Huang Ning,Liu Jinlu.Structural analysis and lightweight design of mine-dedicated heavy duty dumper[J].Automobile Technology,2011(4):26-33.
[2] 董紅濤.弧齒錐齒輪技術(shù)研究的現(xiàn)狀和發(fā)展趨勢(shì)[J].機(jī)械傳動(dòng),2012,36(10):115-118.
Dong Hongtao.Research status and development trend of spiral bevel gear technology[J].Journal of Mechanical Transmission,2012,36 (10):115-118.
[3] Tsai Y C,Hsu W Y.The study on the design of spiral bevel gear sets with circular-arc contact paths and tooth profiles[J].Mechanism and Machine Theory,2008,43(9):1158-1174.
[4] 方宗德,郭琳琳,蘇進(jìn)展,等.基于齒面印痕控制的弧齒錐齒輪公差優(yōu)化設(shè)計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(7):224-228.
Fang Zongde,Guo Linlin,Su Jinzhan,et al.Optimal design of tolerance for spiral bevel gears by controlling contact path[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42 (7):224-228.
[5] Litvin F L,Sheveleva G I,Vecchiato D,et al.Modified approach for tooth contact analysis of gear drives and automatic determination of guess values[J].Computer Methods in Applied Mechanics and Engineering,2005,194:2927-2946.
[6] 冷軍發(fā),荊雙喜,禹建功.EMD與能量算子解調(diào)在提升機(jī)齒輪箱故障診斷中的應(yīng)用[J].煤炭學(xué)報(bào),2013,38(S2):530-535.
Leng Junfa,Jing Shuangxi,Yu Jiangong.Application of fault diagnosis method based on EMD and energy operator demodulation to hoist gearbox[J].Journal of China Coal Society,2013,38(S2):530-535.
[7] 嚴(yán)宏志,劉 明.延伸外擺線齒準(zhǔn)雙曲面齒輪接觸特性有限元分析[J].煤炭學(xué)報(bào),2010,35(9):1576-1580.
Yan Hongzhi,Liu Ming.Tooth contact finite element analysis of extension epicycloid hypoid gear[J].Journal of China Coal Society, 2010,35(9):1576-1580.
[8] Kapelevich A.Asymmetric gears:Parameter selection approach[A].Applied Mechanics and Materials[C].Xi’an:Trans.Tech.Publications,2011:70-73.
[9] Litvin F L,Fuentes A,Howkins M.Design,generation and TCA of new type of asymmetric face-gear drive with modified geometry[J].Comput.Methods App.Mech.Engrg.,2001,190(43-44):5837-5865.
[10] Simon V.Influence of tooth errors and misalignments on tooth contact in spiral bevel gears[J].Mechanism and Machine Theory, 2008,43(10):1253-1267.
[11] Ural A,Heber G,Wawrzynek P A,et al.Three-dimensional,parallel,finite element simulation of fatigue crack growth in a spiral bevel pinion gear[J].Engineering Fracture Mechanics,2005,72(8): 1148-1170.
[12] Sandor R N,Mircea L.Manufacture of gear with asymmetric teeth on CNC machine tools[A].Annals of the Oradca University,Fascicle of Management and Technological Engineering[C].Oradea, 2010(9):212-218.
[13] Pasta A,Mariotti G V.Finite element method analysis of a spur gear with a corrected profile[J].Journal of Strain Analysis for Engineering Design,2007,42(5):281-292.
[14] Simon V.Head-cutter for optimal tooth modifications in spiral bevel gears[J].Mechanism and Machine Theory,2009,44(7):1420-1435.
[15] Song H,Gunda R,Sinqh R.Inclusion of sliding friction in contact dynamics model for helical gears[J].Transactions of the ASME, Journal of Mechanical Design,2007,129(1):48-57.
Design and manufacture of lightweight for spiral bevel gear with double pressure angles of mining reducer
XIAO Wang-qiang
(Department of Mechanical and Electrical Engineering,Xiamen University,Xiamen 361005,China)
The structure of reducer has a great influence on the lightweight of whole mining machine.Optimizing the structure of the spiral bevel gear can effectively reduce the weight of gear,bearing and box shell.In terms of the working conditions of coal mine reducer,an asymmetric spiral bevel gear with a large pressure angle at driving side and a standard one at coast side was presented.The theory of meshing transmission and the equation of tooth face for spiral bevel gear with double pressure angles were proposed.The effect of asymmetric design on the increase of the pressure angle of driving side was analyzed.The tooth shape of asymmetric spiral bevel gear for main reducer was calculated and then the driving gear and driven gear of asymmetric and symmetric spiral bevel gear were compared.The asymmetric single-side cutter and alternate blade cutter were designed and processed.In this paper,the spiral bevel gears with double pressure angles were manufactured and the experiment of fatigue strength was carried on using a closed test bench.The results show that the effect of asymmetric spiral bevel gear on lightweight is obvious,and the symmetric spiral bevel gear can be replaced by asymmetric gear.
double pressure angles;spiral bevel gear;lightweight;bench test;mining reducer
TD403;TH132.413
A
0253-9993(2014)11-2348-07
2013-11-20 責(zé)任編輯:許書(shū)閣
國(guó)家自然科學(xué)基金資助項(xiàng)目(51205382)
肖望強(qiáng)(1981—),男,河北邢臺(tái)人,副教授,博士。E-mail:xiao_xwq@126.com
肖望強(qiáng).礦用減速器雙壓力角弧齒錐齒輪輕量化設(shè)計(jì)與制造[J].煤炭學(xué)報(bào),2014,39(11):2348-2354.
10.13225/j.cnki.jccs.2013.1723
Xiao Wangqiang.Design and manufacture of lightweight for spiral bevel gear with double pressure angles of mining reducer[J].Journal of China Coal Society,2014,39(11):2348-2354.doi:10.13225/j.cnki.jccs.2013.1723