張 欣,張代鈞,張 天(1.重慶工業(yè)職業(yè)技術(shù)學(xué)院建筑與環(huán)境工程系,重慶 401120;2.重慶大學(xué)環(huán)境科學(xué)系,重慶 400030;3.重慶大學(xué)煤礦災(zāi)害動(dòng)力學(xué)與控制國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400030)
基于HPR在線監(jiān)測(cè)控制SBR曝氣歷時(shí)實(shí)現(xiàn)短程脫氮
張 欣1,2,張代鈞2,3*,張 天1,2
(1.重慶工業(yè)職業(yè)技術(shù)學(xué)院建筑與環(huán)境工程系,重慶 401120;2.重慶大學(xué)環(huán)境科學(xué)系,重慶 400030;3.重慶大學(xué)煤礦災(zāi)害動(dòng)力學(xué)與控制國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400030)
應(yīng)用新型自動(dòng)呼吸-滴定測(cè)量?jī)x在線測(cè)量pH值、HPR等信號(hào),進(jìn)行了在 SBR內(nèi)實(shí)現(xiàn)短程脫氮的研究.采用SBR處理人工合成廢水,COD和NH4+-N濃度分別為360,40mg/L,溫度穩(wěn)定在20℃,DO低于2mg/L,基于HPR在線監(jiān)測(cè)控制SBR曝氣歷時(shí).運(yùn)行約60d后,亞硝酸鹽積累率達(dá)到 88%,COD和 NH4+-N去除率均在 90%以上,穩(wěn)定實(shí)現(xiàn)了短程硝化反硝化.應(yīng)用 HPR估計(jì)硝化過(guò)程的 NH4+-N濃度發(fā)現(xiàn),NH4+-N實(shí)測(cè)值與基于HPR的計(jì)算值間存在良好的線性關(guān)系,相關(guān)系數(shù)為0.9722;計(jì)算值整體低于實(shí)測(cè)值,主要是由曝氣初期的滴定啟動(dòng)滯后所致.
短程硝化反硝化;SBR;曝氣歷時(shí)控制;質(zhì)子產(chǎn)生速率;在線監(jiān)測(cè)
傳統(tǒng)生物脫氮方法首先在硝化過(guò)程中利用氧作為電子受體將氨氧化成硝酸鹽,然后在反硝化過(guò)程中利用有機(jī)碳源作為電子供體將硝酸鹽還原成氮?dú)鈴膹U水中去除,亞硝酸鹽中間產(chǎn)物的形成和轉(zhuǎn)化是完全硝化和反硝化過(guò)程的必經(jīng)環(huán)節(jié).在城市污水或工業(yè)廢水處理中將硝化過(guò)程終止在亞硝酸鹽階段隨后進(jìn)行反硝化實(shí)現(xiàn)短程脫氮,將使生物脫氮的處理效率顯著提高,降低處理成本[1].
短程脫氮的關(guān)鍵步驟是實(shí)現(xiàn)穩(wěn)定的亞硝化,要在保持氨氧化菌(AOBs)正常生長(zhǎng)和代謝的前提下,有效抑制亞硝酸鹽氧化菌(NOBs)的生長(zhǎng),或者將其從活性污泥中淘洗去除.其主要途徑有∶(1)采用污泥停留時(shí)間小于NOBs臨界倍增時(shí)間的連續(xù)運(yùn)行反應(yīng)器將 NOBs從反應(yīng)器中淘洗去除[2];(2)控制溶解氧在低濃度水平,AOBs利用其比 NOBs更高的氧親合性競(jìng)爭(zhēng)勝過(guò) NOBs[3];(3)控制 pH值在較高水平,或采用高濃度游離氨基質(zhì)抑制 NOBs的生長(zhǎng)與代謝[4-5];(4)控制曝氣歷時(shí),在氨氧化過(guò)程完成前或結(jié)束時(shí)停止曝氣,阻止 NOBs的生長(zhǎng)與代謝[6-7].在較高溫度和適宜pH值下應(yīng)用序批式生物反應(yīng)器(Sequence Batch Reactor, SBR)處理高氨廢水[8-10],是當(dāng)前實(shí)現(xiàn)短程脫氮的主流.
近年來(lái),有關(guān)氧利用速率(OUR)測(cè)量(呼吸測(cè)量)和質(zhì)子產(chǎn)生速率(HPR)測(cè)量(滴定測(cè)量)的研究與開發(fā)日益受到青睞,開展了許多關(guān)于OUR、HPR單獨(dú)或聯(lián)合測(cè)量應(yīng)用于廢水生物處理的硝化過(guò)程監(jiān)測(cè)[11-15]、強(qiáng)化生物除磷 EBPR過(guò)程監(jiān)測(cè)[16-17]以及過(guò)程模擬[18-20]等工作.OUR 和 HPR作為過(guò)程監(jiān)測(cè)變量能夠反映過(guò)程動(dòng)力學(xué)信息.截至目前,尚未見以HPR作為實(shí)時(shí)監(jiān)測(cè)信號(hào)控制曝氣歷時(shí)實(shí)現(xiàn)短程硝化反硝化的報(bào)道,主要原因是受限于連續(xù)在線滴定測(cè)量?jī)x的開發(fā)和應(yīng)用.已經(jīng)報(bào)道的滴定單元[12,21]、TOGA傳感器[13,15]等只能用于批式試驗(yàn)或?qū)嶒?yàn)室分析,尚不能在現(xiàn)場(chǎng)進(jìn)行連續(xù)在線測(cè)量. 本課題組自行開發(fā)了一種新型自動(dòng)呼吸-滴定測(cè)量系統(tǒng),能夠同時(shí)連續(xù)測(cè)量 pH值、DO、OUR和HPR等信號(hào)[22-24].本文應(yīng)用該新型自動(dòng)呼吸-滴定測(cè)量?jī)x在線監(jiān)測(cè)實(shí)驗(yàn)室SBR曝氣時(shí)段的pH值、DO、OUR和HPR等信號(hào),基于HPR和pH值曲線上的轉(zhuǎn)折點(diǎn)控制曝氣歷時(shí),最終實(shí)現(xiàn)了穩(wěn)定的短程硝化反硝化生物脫氮.
1.1 SBR試驗(yàn)裝置
試驗(yàn)采用的SBR總有效體積8L,采用鼓風(fēng)微孔曝氣方式,用空氣流量計(jì)調(diào)節(jié)曝氣量,采用機(jī)械攪拌裝置進(jìn)行攪拌.采用恒溫水浴循環(huán)確保 SBR內(nèi)混合液溫度穩(wěn)定在20 .SBR℃ 運(yùn)行過(guò)程中采用前置反硝化的運(yùn)行方式,為方便操作,簡(jiǎn)化了控制策略,固定周期長(zhǎng)度為4h(即1d 6個(gè)周期),且在每個(gè)周期內(nèi)除了曝氣時(shí)段根據(jù)在線監(jiān)測(cè)結(jié)果靈活調(diào)整外,其他進(jìn)水、缺氧攪拌、排泥和排水階段均固定時(shí)間,因此,閑置時(shí)段依據(jù)曝氣時(shí)段變化而變化.每個(gè)周期的具體運(yùn)行工況見圖 1∶進(jìn)水 18min,并在進(jìn)水時(shí)開始攪拌;進(jìn)水結(jié)束后缺氧攪拌30min;曝氣(碳化和硝化反應(yīng)),根據(jù)在線監(jiān)測(cè)pH值、DO和HPR值的變化確定好氧時(shí)段為t min;排泥,在曝氣結(jié)束后繼續(xù)攪拌幾 min以方便排泥;沉淀約30min;出水18min;閑置.污泥泥齡為12d.
圖1 SBR裝置運(yùn)行工況Fig.1 Operation mode in SBR
1.2 廢水和污泥性質(zhì)
啟動(dòng)SBR所使用的活性污泥取自重慶市大渡口區(qū)茄子溪污水處理廠曝氣池,該污水處理廠采用具有脫氮功能的CAST工藝.試驗(yàn)用水采用人工合成廢水,其主要組分及濃度均與城市生活污水接近.合成廢水組成主要有 COD (CH3COONa?3H2O) 360mg/L、NH4+-N(NH4Cl)40mg/L、堿度(NaHCO3) 150mg/L、TP(KH2PO4)4.6mg/L和微量元素5mL/L等.微量元素營(yíng)養(yǎng)液組成(g/L)為∶MgCl2?7H2O 3.6; CaCl2?7H2O 1.6;ZnSO4?7H2O 0.08;MnSO4·H2O 0.06; CuSO4·5H2O 0.04; H3BO30.01; Na2MoO4·2H2O 0.036; CoCl2·6H2O 0.09; EDTA 2.4.在SBR進(jìn)水完畢后 COD 和 NH4+-N 測(cè)量值分別為 80.2, 12.23mg/L左右,均低于理論值 118.8,13.2mg/L(SBR體積交換比為0.33),這可能是因?yàn)榛钚晕勰嗟奈阶饔盟?
1.3 分析方法
COD采用標(biāo)準(zhǔn)重鉻酸鉀法測(cè)量,NH4+-N采用納氏試劑分光光度法,NO2--N采用 N-(1-萘基)-乙二胺光度法,NO3--N采用酚二磺酸光度法,每3d測(cè)量1次. SV、SVI按國(guó)家環(huán)境保護(hù)部發(fā)布的標(biāo)準(zhǔn)方法測(cè)定.
1.4 在線控制策略
SBR混合液的DO、pH值、OUR和HPR等應(yīng)用自動(dòng)滴定-呼吸測(cè)量系統(tǒng)進(jìn)行測(cè)量,分別在該測(cè)量系統(tǒng)測(cè)量室的進(jìn)口和出口配備1個(gè)DO電極和1個(gè)pH電極以獲取流入和流出測(cè)量室的混合液的DO和pH值(分別記為DO1、DO2和pH1、pH2),這使得測(cè)量完全獨(dú)立于SBR運(yùn)行裝置[22].控制SBR曝氣階段的DO濃度低于2mg/L.當(dāng)在線監(jiān)測(cè)到的HPR開始從最高平臺(tái)迅速下降時(shí),計(jì)算機(jī)便輸出一個(gè)控制信號(hào)停止曝氣.
2.1 好氧過(guò)程的HPR變化規(guī)律
圖2 SBR曝氣階段HPR、OUR、pH1、pH2響應(yīng)曲線(實(shí)時(shí)控制策略前)Fig.2 Profiles of HPR, OUR, pH1and pH2 in the aerobic phase of SBR
由圖 2可見,開始曝氣后,pH值呈現(xiàn)快速上升趨勢(shì),直到約35min處,pH值轉(zhuǎn)為下降,說(shuō)明這段時(shí)間內(nèi)微生物(異養(yǎng)菌和硝化菌)在大量耗氧,異養(yǎng)菌降解 COD活動(dòng)占主導(dǎo),至 pH值峰值時(shí)COD降解才基本完成.峰值之后,pH值迅速下降,說(shuō)明硝化反應(yīng)占了主導(dǎo);由于混合液在測(cè)量室有一定的停留時(shí)間,對(duì)相同部分液體pH2讀數(shù)略滯后于pH1,因此在pH值開始下降幾min后滴定才開始,HPR從0上升到一個(gè)較高平臺(tái).pH值在約130min呈現(xiàn)由下降轉(zhuǎn)為上升的轉(zhuǎn)折點(diǎn),該點(diǎn)被稱為“氨谷”,即指示著氨氧化結(jié)束,已經(jīng)被證實(shí)可用于生物短程脫氮曝氣時(shí)段的控制[25];幾乎與此同時(shí),HPR開始從較高平臺(tái)陡降,說(shuō)明HPR陡降點(diǎn)亦指示著氨氧化結(jié)束.
2.2 基于HPR監(jiān)測(cè)控制SBR曝氣歷時(shí)實(shí)現(xiàn)短程硝化反硝化
圖3中,phaseI代表未進(jìn)行實(shí)時(shí)控制,系統(tǒng)處于全程硝化反硝化段,由于曝氣充分,COD和NH4+-N去除率幾乎為100%,亞硝酸鹽積累率接近0.
phaseII段為對(duì)處于全程硝化反硝化的SBR進(jìn)行監(jiān)測(cè)控制,逐步實(shí)現(xiàn)短程硝化反硝化的過(guò)程.約從第 16d開始,采用上述制定的啟動(dòng)方案,對(duì) SBR進(jìn)行監(jiān)測(cè)控制.進(jìn)行短程脫氮控制后,由于控制了曝氣強(qiáng)度和時(shí)間,第21d時(shí)亞硝酸鹽積累率快速增長(zhǎng)至20%,至第40d左右時(shí)亞硝酸鹽積累率上升到了 50%,進(jìn)入了短程硝化狀態(tài);隨后上升的速率基本保持穩(wěn)定,直到上升至接近80%時(shí)上升速率明顯變小,運(yùn)行到約78d亞硝酸鹽積累率達(dá)到88%并穩(wěn)定下來(lái).采取短程脫氮控制措施后出水NH4+-N濃度有所提高,可能是限制了DO導(dǎo)致少量NH4+-N沒(méi)有降解完畢,但出水 NH4+-N仍在 4mg/L以下,去除率在90%以上;出水COD在6mg/L以下,其在全程脫氮和短程脫氮過(guò)程中的去除情況基本相同,去除率在 95%以上.在試驗(yàn)過(guò)程中發(fā)現(xiàn),隨著亞硝化積累率的逐漸提高,在曝氣流量一定的情況下曝氣時(shí)間逐漸縮短,這種情況的出現(xiàn)充分說(shuō)明亞硝化細(xì)菌在總的硝化細(xì)菌中所占的比例逐漸增多.
在 SBR運(yùn)行至約 100d時(shí)(進(jìn)入圖 3的phaseIII段),出水NH4+-N濃度有所升高,NH4+-N去除率有所下降,但COD去除率基本不變,NAR也基本維持在88%左右,污泥沉淀速率有所下降,但沉淀后上清液澄清,可以推斷此時(shí)污泥發(fā)生了微膨脹.約至115d時(shí),NH4+-N和COD去除率均明顯下降,NAR也下降至73%,測(cè)試發(fā)現(xiàn)污泥SVI高達(dá) 198.6mL/g,污泥鏡檢發(fā)現(xiàn)存在大量絲狀細(xì)菌,說(shuō)明 SBR內(nèi)發(fā)生了較嚴(yán)重的絲狀菌膨脹.除了高污泥負(fù)荷、低DO濃度、偏低溫度(16~20 )℃外,出水中較高的亞硝酸鹽和硝酸鹽濃度也是造成污泥膨脹的原因.Ma等[25]研究發(fā)現(xiàn),亞硝酸鹽積累會(huì)對(duì)污泥絮狀結(jié)構(gòu)造成有害影響,從而導(dǎo)致污泥沉淀性能惡化.通過(guò)采取添加新污泥、加大曝氣量(DO在3~4mg/L)、改變體積交換比(VER在0.33~0.5間)及嚴(yán)格控制系統(tǒng)恒溫等一系列措施,污泥膨脹得到了有效控制,約10d后亞硝酸鹽積累率又回到了 80%以上,之后系統(tǒng)又運(yùn)行了約30d,污泥沉淀性能沒(méi)有再惡化,系統(tǒng)重新實(shí)現(xiàn)了穩(wěn)定的短程硝化.
圖3 SBR運(yùn)行中NH4+-N、COD去除率和NAR曲線(a)和出水COD、NH4+-N、NO2--N和NO3--N變化曲線(b)Fig.3 Variations of NH4+-N, COD removal ratios and NAR of SBR (a) and variations of effluent COD, NH4+-N, NO2--N and NO3--N (b)
從pH值同HPR的對(duì)比中可以看出,兩者均能作為氨氧化結(jié)束的指示信號(hào). 氨氧化的結(jié)束點(diǎn)在pH曲線上表現(xiàn)為pH值由下降或穩(wěn)定轉(zhuǎn)為上升的極值點(diǎn),在HPR曲線上表現(xiàn)為HPR由一個(gè)平臺(tái)[約15μmol/(L?min)]向另一個(gè)平臺(tái)(0)陡降的突躍,因平臺(tái)的判斷較之點(diǎn)的判斷更加容易,顯然,后者作為控制變量較前者更加靈敏,因此用HPR進(jìn)行控制優(yōu)于用pH值進(jìn)行控制. HPR從一個(gè)較高水平快速下降到一個(gè)較低水平,意味著氨氧化(產(chǎn)生質(zhì)子)速率快速降低,同時(shí)也說(shuō)明混合液中NH4+-N快速下降到較低水平.從理論上講,即使在 NH4+-N濃度較低時(shí),氨氧化反應(yīng)仍將繼續(xù),同時(shí)其產(chǎn)物亞硝酸鹽氧化速率將加速上升;所以,只要在 HPR發(fā)生陡降時(shí)就停止曝氣,就能有效實(shí)現(xiàn)短程硝化.雖然,Blackburne等[7]通過(guò)在線測(cè)量OUR,當(dāng)測(cè)量OUR低于初始設(shè)定值時(shí)停止曝氣,在前置反硝化SBR處理城市污水時(shí)實(shí)現(xiàn)了短程硝化反硝化脫氮;但是,由于氨氧化和亞硝酸鹽氧化均消耗氧氣,在同時(shí)包含大量 AOBs和NOBs的常規(guī)活性污泥系統(tǒng)中,氨氧化結(jié)束并不會(huì)立即導(dǎo)致 OUR出現(xiàn)十分明顯下降,除非系統(tǒng)中NOBs數(shù)量已經(jīng)很少;所以當(dāng)采用OUR作為過(guò)程監(jiān)測(cè)變量時(shí),AOBs的初始富集是穩(wěn)定實(shí)現(xiàn)短程硝化反硝化的關(guān)鍵因素[7].2步硝化理論認(rèn)為,氨氧化過(guò)程產(chǎn)生氫離子,而亞硝酸鹽氧化不產(chǎn)生氫離子.因此,在氨氧化結(jié)束時(shí) HPR會(huì)立即出現(xiàn)陡降轉(zhuǎn)折點(diǎn),采用HPR而不采用OUR作為過(guò)程監(jiān)測(cè)變量來(lái)啟動(dòng)和穩(wěn)定運(yùn)行短程硝化反硝化更加具有優(yōu)勢(shì).
對(duì)比分析得知,本論文中短程硝化反硝化的啟動(dòng)時(shí)間比Peng等[6]所報(bào)道的更長(zhǎng),原因可能與本文采用的 SBR是前置反硝化形式有關(guān). Blackburne等[7]進(jìn)行的模擬研究表明,僅基于曝氣長(zhǎng)度控制的前置反硝化SBR的短程硝化的啟動(dòng)比起后置反硝化SBR(在硝化之后進(jìn)入缺氧段,并投加碳源)需要更長(zhǎng)的時(shí)間,這是因?yàn)樘峁┨荚吹暮笾梅聪趸A段能更迅速的去除積累的亞硝酸鹽,從而消除或減輕亞硝酸鹽對(duì) AOB的抑制.與Peng等[6]和Lemaire等[26]在曝氣停止后投加外部碳源或進(jìn)污水不同,Blackburne等[7]在以O(shè)UR作為監(jiān)測(cè)信號(hào)及時(shí)停止曝氣后,讓SBR直接進(jìn)入沉淀之前的一個(gè)閑置狀態(tài),通過(guò)內(nèi)源亞硝酸鹽呼吸進(jìn)行可忽略的反硝化,結(jié)果發(fā)現(xiàn)實(shí)現(xiàn)穩(wěn)定短程硝化反硝化的時(shí)間明顯長(zhǎng)于前者.
圖4 SBR好氧階段的NH4+-N實(shí)測(cè)值與基于HPR的估計(jì)值Fig.4 The measured value and estimated value based on HPR for process NH4+-N in the aerobic phase of SBR
HPR可用于氨氧化過(guò)程的動(dòng)力學(xué)研究,這是pH值、DO和ORP等信號(hào)所不能實(shí)現(xiàn)的.圖4中顯示了 SBR好氧階段 NH4+-N實(shí)測(cè)值與基于HPR的計(jì)算值的比較,計(jì)算值整體低于實(shí)測(cè)值,誤差范圍為-13.78%~-35.45%,平均誤差為-24.19%.導(dǎo)致計(jì)算值低于實(shí)測(cè)值的結(jié)果主要與滴定測(cè)量系統(tǒng)的結(jié)構(gòu)有關(guān)∶通過(guò)測(cè)量室獲得的硝化過(guò)程質(zhì)子產(chǎn)生速率信息始終滯后反應(yīng)室Δt(混合液在測(cè)量室的停留時(shí)間),因此系統(tǒng)實(shí)際上是在硝化反應(yīng)發(fā)生Δt時(shí)間后方才開始滴定,而在該段時(shí)間內(nèi)NH4+-N已經(jīng)部分降解,致使基于HPR所計(jì)算的初始 NH4+-N濃度遺漏了已經(jīng)降解部分.另外,在曝氣的初期,由于 DO水平不高,反硝化消耗質(zhì)子仍在進(jìn)行,此外氨氧化產(chǎn)生質(zhì)子速率也較低,綜合作用的結(jié)果是系統(tǒng)內(nèi)基本無(wú)質(zhì)子產(chǎn)生或消耗,這時(shí)的滴定測(cè)量不動(dòng)作也將導(dǎo)致基于HPR的計(jì)算結(jié)果偏低.設(shè)硝化過(guò)程N(yùn)H4+-N實(shí)測(cè)濃度為Y,基于HPR的NH4+-N計(jì)算濃度為X,Y同X的數(shù)學(xué)關(guān)系為一元線性方程Y=aX+b.對(duì)于不同的活性污泥等具體情況,a和 b可以通過(guò)具體試驗(yàn)進(jìn)行校核.采用最小二乘法對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行擬合得到Y(jié)=1.3806X-0.0643,相關(guān)系數(shù)為0.9722.
4.1 應(yīng)用新型自動(dòng)呼吸-滴定測(cè)量?jī)x同時(shí)測(cè)量SBR曝氣時(shí)段的pH值和HPR等信號(hào),當(dāng)pH值上的轉(zhuǎn)折點(diǎn)“氨谷”出現(xiàn)時(shí),HPR開始從較高平臺(tái)陡降,證明HPR亦可作為氨氧化結(jié)束的指示信號(hào),且比pH值信號(hào)更加靈敏.
4.2 基于 HPR在線監(jiān)測(cè),在出現(xiàn)平臺(tái)陡降點(diǎn)時(shí)及時(shí)停止曝氣,成功實(shí)現(xiàn)了短程硝化反硝化生物脫氮.經(jīng)過(guò)約20d的運(yùn)行SBR內(nèi)的亞硝酸鹽積累率上升到了 50%,進(jìn)入了短程硝化狀態(tài). 實(shí)際運(yùn)行約60d亞硝酸鹽積累率達(dá)到88%并穩(wěn)定下來(lái),最終實(shí)現(xiàn)了短程硝化. COD和NH4+-N去除率均在90%以上.
4.3 HPR用于硝化過(guò)程的 NH4+-N濃度估計(jì),NH4+-N實(shí)測(cè)值與基于HPR的計(jì)算值間的相關(guān)系數(shù)為 0.9722,總體趨勢(shì)一致性較好. 計(jì)算值整體低于實(shí)測(cè)值,主要是因曝氣初期的滴定滯后所致.
[1] Ruiz G, Jeison D, Rubilar O, et al. Nitrification—denitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresource Technol., 2006,97:330—335.
[2] Hellinga C, Schellen A A J C, Mulder J W, et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci. Technol., 1998,37(9):135—142.
[3] Blackburne R, Yuan Z, Keller J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor [J]. Biodegradation, 2008,19(2):303—312.
[4] Ciudad G, Gonzalez R, Bornhardt C, et al. Modes of operation and pH control as enhancement factors for partial nitrification with oxygen transport limitation [J]. Water Res., 2007,41(20):4621—4629.
[5] Vadivelu V M, Keller J, Yuan Z. Effect of free ammonia on the respiration and growth processes of an enriched nitrobacter culture [J]. Water Res., 2007,41(4):826-834.
[6] Peng Y Z, Chen Y, Peng C Y, et al. Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater [J]. Water Sci. Technol., 2004,50(10):35—43.
[7] Blackburne R, Yuan Z, Keller J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater [J]. Water Res., 2008,42(8/9):2166-2176.
[8] Volcke E I P, Loccufier M, Noldus E J L, et al. Operation of a SHARON nitritation reactor,practical implications from a theoretical study [J]. Water Sci. Technol., 2007,56(6):145—154.
[9] Kim J H, Guo X, Park H S. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation [J]. Process Biochem., 2008,43(2):154—160.
[10] Pambrun V, Paul E, Sperandio M. Control and modelling of partial nitrification of effluents with high ammonia concentrations in sequencing batch reactor [J]. Chem. Eng. Process., 2008, 47(3):323—329.
[11] Gernaey K, Bogaert H, Vanrolleghem P, et al. A titration technique for on-line nitrification monitoring in activated sludge [J]. Water Sci. Technol., 1997,37(12):103-110.
[12] Massone A, Gernaey K, Rozzi A, et al. Measurement of ammonium concentration and nitrification rate by a new titrimetric biosensor [J]. Water Environ. Res., 1998,70(3):343-350.
[13] Pratt S, Yuan Z, Gapes D, et al. Development of a novel titration and off-gas analysis (TOGA) sensor for study of biological processed in wastewater treatment systems [J]. Biotechnol. Bioeng., 2003,81(4):482-495.
[14] Fiocchi N, Ficara E, Canziani R, et al. SBRs on-line monitoring by set-point titration [J]. Water Sci. Technol., 2006,53(4/5):541-549.
[15] Gapes D, Ptatt S, Yuan Z, et al. Online titrimetric and off-gas analysis for examining nitrification processed in wastewater treatment [J]. Water Res., 2003,37(11):2678-2690.
[16] Guisasola A, Pijuan M, Baeza J A, et al. Improving the start-up of an EBPR system using OUR to control the aerobic phase length: a simulation study [J]. Water Sci. Technol., 2006,53(4/5):253-262.
[17] Guisasola A, Vargas M, Marcelino M, et al. On-line monitoring of the enhanced biological phosphorus removal process using respirometry and titrimetry [J]. Biochem. Eng. J., 2007,35:371—379.
[18] Pratt S, Yuan Z, Keller J. Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric and off-gas CO2Measurements [J]. Biotechnol. Bioeng., 2004,88(2):135-146.
[19] Jubany I, Baeza J A, Carrera J, et al. Respirometric calibration and validation of a biological nitrite oxidation model including biomass growth and substrate inhibition [J]. Water Res., 2005,39:4574-4584.
[20] Sin G, Vanrolleghem P A. Extensions to modeling aerobic carbon degradation using combined respirometric—titrimetric measurements in view of activated sludge model calibration [J]. Water Res., 2007,41:3345-3358.
[21] Gernaey K, Vanrolleghem P A, Verstraete W. On—line estimation of nitrosomonas kinetic parameters in activated sludge samples using titration in-sensor-experiments [J]. Water Res., 1998,32(1):71-80.
[22] Zhang X, Zhang D, Lu P, et al. Monitoring the nitrification and identifying the endpoint of ammonium oxidation by using a novel system of titrimetry [J]. Water Sci. Technol., 2011,64(11):2246-2252.
[23] 張代鈞,盧培利,張 欣,等.污染物好氧生物降解呼吸測(cè)量方法及裝置 [P]. 中國(guó):ZL 2006 1 0054264.0.2006.11.29.
[24] 張代鈞,張 欣,盧培利,等.廢水生物處理中質(zhì)子變化速率的在線滴定測(cè)量方法及裝置 [P]. 中國(guó):ZL 2009 1 0104312.6.2013. 3.27.
[25] Ma Y, Peng Y, Wang S, et al. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant [J]. Water Res., 2009,43(3):563—572.
[26] Lemaire R, Marcelino M, Yuan Z. Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater [J]. Biotechnol. Bioeng., 2008,100(6):1228—1236.
致謝:感謝重慶大學(xué)盧培利博士、蔡慶博士和白翠博士等在實(shí)驗(yàn)中給予的幫助.
Stable shortcut nitrogen removal performed in a SBR by controlling aeration duration based on HPR on-line monitoring.
ZHANG Xin1,2, ZHANG Dai-jun2,3*, ZHANG Tian1,2
(1.Construction and Environmental Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China;2.Department of Environmental Science, Chongqing University, Chongqing 400030, China;3.State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China). China Environmental Science, 2014,34(3):617~622
The hydrogen ion production rate (HPR) and the pH were measured by a novel automatically respirometrictitrimetric system, and shortcut nitrogen removal in an SBR was studied in the laboratory. An SBR was used to treat synthetic wastewater containing 360mg/L COD and 40mg/L NH4+-N at 20℃ with DO lower than 2.0mg/L. Controlling the aeration duration based on HPR online monitoring, shortcut nitrification-denitrification was successfully performed for approximately two months with a stable nitrite accumulation rate (NAR) above 88%, and the COD and NH4+-N removal ratios were both higher than 90%. Based on the HPR online monitoring data, the estimated NH4+-N concentrations in nitrification were closely related to the measured concentrations, with a correlation coefficient of 0.9722, and the estimated values were lower than the measured values mainly because of the titration delay at the beginning of the aeration phase.
shortcut nitrification-denitrification;sequence batch reactor;the control of aeration duration;hydrogen ion production rate;on-line monitoring
X703
:A
:1000-6923(2014)03-0617-06
張 欣(1983-),女,河南南陽(yáng)人,講師,博士,主要從事現(xiàn)代廢水處理技術(shù)及污染控制研究.發(fā)表論文近10篇.
2013-06-25
重慶市自然科學(xué)基金(CSTC2013JJB20002)
*責(zé)任作者, 教授, dzhang@cqu.edu.cn