摘 要: 測(cè)量系統(tǒng)是武器的重要信息源,其測(cè)量精度直接影響武器系統(tǒng)的射擊精度。對(duì)某測(cè)量系統(tǒng)的誤差源進(jìn)行了分析,建立了系統(tǒng)誤差模型,分析得出系統(tǒng)誤差存在復(fù)雜的誤差特性,并對(duì)某次校飛的方位角誤差進(jìn)行了分析。研究結(jié)果可為下一步的誤差分析與處理提供支撐。
關(guān)鍵字: 測(cè)量系統(tǒng); 誤差源; 誤差模型; 復(fù)雜誤差特性
中圖分類號(hào): TN957?34; TP391 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2014)01?0038?03
0 引 言
測(cè)量系統(tǒng)是武器系統(tǒng)的“眼睛”,高精度的測(cè)量可以保證武器系統(tǒng)得到的目標(biāo)數(shù)據(jù)真實(shí)可靠,從而可以提高系統(tǒng)的命中概率。對(duì)測(cè)量系統(tǒng)的誤差進(jìn)行分析,得到影響測(cè)量精度的誤差源,建立相應(yīng)的系統(tǒng)誤差模型,對(duì)誤差的特性進(jìn)行分析,根據(jù)分析結(jié)果可以采取相應(yīng)的標(biāo)校措施來提高測(cè)量系統(tǒng)的測(cè)量精度[1?2]。
1 測(cè)量系統(tǒng)的組成
某武器系統(tǒng)的跟蹤測(cè)量方式可以分為雷達(dá)跟蹤和光電跟蹤。在武器系統(tǒng)中,跟蹤雷達(dá)的工作方式為單脈沖,可以執(zhí)行全天候的測(cè)量任務(wù)。當(dāng)氣象條件達(dá)到要求時(shí),可用光電跟蹤。它能在比較復(fù)雜的背景下,對(duì)分離視場(chǎng)內(nèi)的運(yùn)動(dòng)目標(biāo)實(shí)現(xiàn)自動(dòng)跟蹤。為了克服雷達(dá)在近距離跟蹤狀態(tài)下測(cè)量精度低的缺點(diǎn),用電視跟蹤代替雷達(dá)跟蹤,測(cè)量近距離目標(biāo),避免了閃爍噪聲給測(cè)量系統(tǒng)帶來的誤差[3]。
本文著重對(duì)測(cè)量系統(tǒng)中雷達(dá)模塊的誤差源進(jìn)行分析。
2 誤差分析及建模
脈沖雷達(dá)是采用測(cè)量脈沖電磁波往返時(shí)間延遲得到目標(biāo)的距離信息,利用等信號(hào)法獲得目標(biāo)的方位和俯仰角數(shù)據(jù)。測(cè)量誤差分為: 系統(tǒng)誤差、隨機(jī)誤差和粗大誤差三類[4]。系統(tǒng)誤差主要有零值誤差、軸系誤差、動(dòng)態(tài)滯后誤差和大氣傳播誤差等。隨機(jī)誤差主要是測(cè)量過程中由于目標(biāo)閃動(dòng)造成的測(cè)量噪聲,這些噪聲大都符合“白過程”。粗大誤差是由于設(shè)備工作異?;蚱渌蛔円蛩卦斐傻?。系統(tǒng)誤差需要進(jìn)行修正來消除,隨機(jī)誤差則可以通過平滑濾波來抑制,而粗大誤差需要通過數(shù)據(jù)處理方法來剔除。雷達(dá)的測(cè)元包括距離、方位角和俯仰角,因其測(cè)量原理不同,所以角度和距離的誤差源也存在較大的不同,以下將分別介紹影響測(cè)角和測(cè)距的誤差源[5?8]。
2.1 測(cè)角誤差
2.1.1 系統(tǒng)誤差
單脈沖雷達(dá)的測(cè)角是通過兩波束接收信號(hào)的比較得到角偏離信號(hào),波束的方向控制需要精確,因此測(cè)角系統(tǒng)誤差的影響因素較多[9?11],下面只針對(duì)主要的誤差源進(jìn)行介紹。
(1) 零值誤差
零值誤差是指天線的機(jī)械軸向?qū)?zhǔn)角度零值時(shí),角傳感器輸出值的偏差量。零值誤差對(duì)于角度的影響是固定的。理論上,當(dāng)瞄準(zhǔn)軸線位于水平并對(duì)準(zhǔn)正北方向時(shí),雷達(dá)碼盤的讀數(shù)應(yīng)為零。但實(shí)際上碼盤往往有一個(gè)起始讀數(shù)值,即為零值誤差。
(2) 軸系誤差
軸系誤差是大盤天線座的傾斜誤差、方位軸與俯仰軸不正交誤差、光電軸不匹配誤差等設(shè)備系統(tǒng)誤差的總稱。天線座的不水平指方位旋轉(zhuǎn)軸不垂直于地平面。產(chǎn)生方位軸不垂直的原因有:基礎(chǔ)面不水平或基礎(chǔ)面不均勻下沉,外界的振動(dòng)(如射擊的振動(dòng)),水平調(diào)整不當(dāng),日曬引起天線座基礎(chǔ)的變形,天線轉(zhuǎn)動(dòng)時(shí)軸承的跳動(dòng),風(fēng)負(fù)載產(chǎn)生的軸和軸承彈性變形等。方位、俯仰軸不正交,即俯仰軸不垂直于方向軸,常稱正交性誤差。電軸的標(biāo)定依靠光軸進(jìn)行,而測(cè)量時(shí)設(shè)備使用的是電軸,光電軸不匹配自然會(huì)造成測(cè)角數(shù)據(jù)的不準(zhǔn)確。
(3) 動(dòng)態(tài)滯后
動(dòng)態(tài)滯后是衡量伺服系統(tǒng)快速性的指標(biāo)。動(dòng)態(tài)滯后誤差是指由于目標(biāo)的快速運(yùn)動(dòng)而引起伺服超前或滯后所帶來的誤差。
(4) 其他誤差
測(cè)角系統(tǒng)的其他誤差包括大氣折射誤差、伺服不平衡及慢漂移誤差等。雷達(dá)波束通過地球周圍大氣層時(shí),由于對(duì)流層和電離層折射指數(shù)隨高度的變化而變化,因而使波束向下彎曲,產(chǎn)生仰角誤差,同時(shí)目標(biāo)回波也產(chǎn)生了額外的時(shí)間延遲,從而引起距離測(cè)量誤差。但是對(duì)于該測(cè)量系統(tǒng)來說,因其作用距離較近,在建立模型時(shí)無需計(jì)入。
2.1.2 隨機(jī)誤差
隨機(jī)誤差主要是測(cè)量過程中接收機(jī)的熱噪聲、伺服噪聲、多路徑效應(yīng)、折射不規(guī)則誤差等。熱噪聲和伺服噪聲分別是由于接收機(jī)和伺服系統(tǒng)本身不理想而引入的。多路徑效應(yīng)是目標(biāo)反射回來的電波經(jīng)不同路徑傳播,在到達(dá)接收天線時(shí)因相位的不同而產(chǎn)生的干涉效應(yīng)。
2.2 測(cè)距誤差
影響測(cè)距誤差的因素較少,主要的系統(tǒng)誤差包括:零值誤差、應(yīng)答機(jī)延時(shí)、動(dòng)態(tài)滯后誤差。測(cè)距零值是雷達(dá)跟蹤測(cè)量過程中主要的確定性誤差項(xiàng),必須校準(zhǔn),一般利用距離標(biāo)法標(biāo)定距離零值。應(yīng)答機(jī)延時(shí)及其變化會(huì)帶來測(cè)距誤差。與測(cè)角相似,其隨機(jī)誤差也包括熱噪聲、多路徑、折射不規(guī)則誤差等。
2.3 誤差模型
測(cè)量系統(tǒng)的測(cè)量數(shù)據(jù)中,誤差來源復(fù)雜,影響因素較多,由此導(dǎo)致測(cè)量誤差具有非常復(fù)雜的特性。根據(jù)前面的誤差源分析,堅(jiān)持誤差模型要反映實(shí)際工程背景和參數(shù)個(gè)數(shù)要盡量少的原則,結(jié)合物理背景運(yùn)用數(shù)學(xué)分析的方法,建立系統(tǒng)誤差模型[12]。假設(shè)各誤差分量之間為疊加關(guān)系, 得到“加性”誤差模型。
方位角系統(tǒng)誤差:
[ΔA(t)=A10+a11sin(A1(t)-A1m)tanE1(t)+a12tanE1(t)+a13secE1(t)+a14secE1(t)+a15sin(A1(t)+θa)+εa] (1)
式中:[A10]為方位零值;[a11]為天線座水平度;[A1(t)]為測(cè)量的方位角度值;[A1m]為天線座最大不水平度的方位;[E1(t)]為測(cè)量的俯仰角度值;[a12]為方位軸、俯仰軸的垂直度;[a13]為光機(jī)軸平行度;[a14]為光電軸平行度;[a15]角編碼器非線性度;[θa]為方位編碼器偏心角;[εa]為不可量化或影響較小的誤差總和。
仰角系統(tǒng)誤差:[ΔE(t)=E10+e11cos(A1(t)-A1m)+e12+e13cosE1(t)+e14sin(E1(t)+θe)+εe] (2)
式中:[E10]為仰角零值;[e13]為天線重力變形;[e14]為角編碼器非線性度;[θe]為俯仰編碼器偏心角;[εe]為不可量化或影響較小的誤差總和。
距離系統(tǒng)誤差:
[ΔR(t)=R10+r11Δty+εr] (3)
式中:[R10]為距離零值;[r11=c2,]c為光速,[Δty]為應(yīng)答機(jī)及饋線的延時(shí);[εr]為不可量化或影響較小的誤差總和。
從公式(3)可以看出,影響測(cè)距的因素較少,主要為零值和延時(shí)誤差,對(duì)測(cè)量結(jié)果產(chǎn)生固定的影響,修正較容易。角度測(cè)量的誤差源較復(fù)雜,其中軸系誤差對(duì)測(cè)角的影響較大。不同誤差源的影響是不相同的, 同一誤差對(duì)處于不同狀態(tài)跟蹤目標(biāo)的測(cè)量和定位的影響也是不相同的,因此其誤差會(huì)具有復(fù)雜的特性。
3 實(shí)例分析
為了驗(yàn)證某測(cè)量系統(tǒng)的精度,對(duì)其進(jìn)行精度校飛,剔除粗大誤差后,得到方位角的誤差如圖1所示。
圖1 方位角誤差圖
首先對(duì)上述的誤差進(jìn)行基本的統(tǒng)計(jì)分析,得到其均值、方差、最大值、最小值和極差見表1。
如果誤差序列為白噪聲,即標(biāo)準(zhǔn)正態(tài)序列,則說明系統(tǒng)誤差得到很好的修正,得到的殘差僅為隨機(jī)誤差。由表1可知,其均值不為零,且方差不為1,誤差序列為非正態(tài)序列。誤差的頻率直方圖如圖2所示,與正態(tài)分布的頻數(shù)圖有較大偏差。利用Matlab中的Lilliefors正態(tài)性檢驗(yàn)得到[h=1,]拒絕誤差為正態(tài)性的假設(shè)。
為檢驗(yàn)數(shù)據(jù)的獨(dú)立性,采用基于樣本自相關(guān)函數(shù)的時(shí)間序列檢驗(yàn)方法,得到如圖3所示的自相關(guān)圖。圖3的延遲步數(shù)為20,可以看出誤差序列不滿足獨(dú)立性。
表1 誤差的統(tǒng)計(jì)量
[均值\方差\最大值\最小值\極差\0.210 3\0.234 5\1.499 4\-1.898 9\3.398 3\]
圖2 誤差的頻率直方圖
圖3 自相關(guān)圖
如果數(shù)據(jù)是非平穩(wěn)的,則用一個(gè)簡(jiǎn)單的代數(shù)模型來反映序列的過去和未來十分困難,因此有必要進(jìn)行平穩(wěn)性檢驗(yàn)。對(duì)上述數(shù)據(jù)采用單位根平穩(wěn)性檢驗(yàn)方法,運(yùn)用Matlab中的檢驗(yàn)函數(shù)adftest(y),得出其為非平穩(wěn)的序列。上述的統(tǒng)計(jì)檢驗(yàn)結(jié)果表明,誤差序列不滿足正態(tài)性,不滿足獨(dú)立性,不滿足平穩(wěn)性。初步分析結(jié)果表明,由于艦載設(shè)備復(fù)雜的工作環(huán)境,導(dǎo)致測(cè)元混入更多誤差,表現(xiàn)出復(fù)雜性,需要進(jìn)一步的分析和處理,分離其中存在的趨勢(shì)項(xiàng)誤差和隱周期項(xiàng)誤差,并通過模型辨識(shí),挖掘有用信息用于實(shí)測(cè)數(shù)據(jù)的處理。
4 結(jié) 語(yǔ)
準(zhǔn)確測(cè)量目標(biāo)的參數(shù)信息是武器火控系統(tǒng)發(fā)揮作用的關(guān)鍵。本文對(duì)某測(cè)量系統(tǒng)的誤差源進(jìn)行了較詳細(xì)的分析,給出了系統(tǒng)誤差模型,通過模型和實(shí)例分析得出其誤差的復(fù)雜性,為下一步的數(shù)據(jù)分析和處理打下了基礎(chǔ)。但是對(duì)于測(cè)量系統(tǒng)的誤差源較多,需要根據(jù)實(shí)際情況分析。對(duì)于動(dòng)目標(biāo)的測(cè)量,測(cè)距和測(cè)角都要受到動(dòng)態(tài)滯后的影響,在對(duì)動(dòng)目標(biāo)測(cè)量的系統(tǒng)誤差建模時(shí)需要考慮。
參考文獻(xiàn)
[1] 許遲,董曉明,周揚(yáng).艦載攻擊雷達(dá)精度檢測(cè)的幾種方法[J].戰(zhàn)術(shù)導(dǎo)彈技術(shù),2011(3):62?65.
[2] 張友益.對(duì)艦載跟蹤雷達(dá)角精度的計(jì)算方法研究[J].艦船電子工程,2001(3):60?63.
[3] 柳琦,趙靜.某型雷達(dá)電視跟蹤測(cè)量系統(tǒng)及精度分析[J].彈箭與制導(dǎo)學(xué)報(bào),2011,31(2):217?218
[4] 聶瑩,劉付顯,曹桂明.雷達(dá)精度檢驗(yàn)的數(shù)據(jù)分析[J].彈箭與制導(dǎo)學(xué)報(bào),2007,27(1):195?197.
[5] 延偉勤,譚博,張靜.XX搜索雷達(dá)精度分析與算法實(shí)現(xiàn)[J].大眾科技,2012(2):21?24.
[6] 呂亞強(qiáng),毛瑞娟,嚴(yán)家明.單脈沖雷達(dá)測(cè)量誤差修正方法研究[J].計(jì)算機(jī)測(cè)量與控制,2008,16(8):1155?1157.
[7] 王敏,胡紹林,安振軍.跟蹤測(cè)量數(shù)據(jù)系統(tǒng)誤差殘差的影響分析[J].飛行力學(xué),2004,22(1):74?78.
[8] 呂元恒.火控跟蹤雷達(dá)系統(tǒng)精度分析[J].火控雷達(dá)技術(shù),2001,30(2):31?37.
[9] 胡波,梁星霞,練學(xué)輝.雷達(dá)系統(tǒng)誤差的測(cè)量和修正方法[J].雷達(dá)與對(duì)抗,2005(2):12?15.
[10] 劉永.某雷達(dá)方位角測(cè)量系統(tǒng)誤差分析及實(shí)驗(yàn)研究[J].現(xiàn)代機(jī)械,2009(2):30?32.
[11] 張玉祥.雷達(dá)精度校飛數(shù)據(jù)統(tǒng)計(jì)處理方法的改進(jìn)[J].現(xiàn)代雷達(dá),1995(4):15?25.
[12] 中國(guó)人民解放軍總裝備部.GJB1381A?2011 導(dǎo)彈、航天器試驗(yàn)光電經(jīng)緯儀和脈沖雷達(dá)測(cè)量精度評(píng)定[S].北京:總裝備部軍標(biāo)出版發(fā)行部,2011.