冉莉萍 孔月琴 方婷婷 王幼平
(揚(yáng)州大學(xué)生物科學(xué)與技術(shù)學(xué)院,揚(yáng)州 225009)
逆境脅迫下植物表觀遺傳機(jī)制的研究進(jìn)展
冉莉萍 孔月琴 方婷婷 王幼平
(揚(yáng)州大學(xué)生物科學(xué)與技術(shù)學(xué)院,揚(yáng)州 225009)
植物著地固定生長(zhǎng)不能主動(dòng)逃避外界危害,只能依靠自身的一些響應(yīng)機(jī)制來(lái)防御外界脅迫,表觀遺傳調(diào)控在這個(gè)響應(yīng)機(jī)制中起著重要的作用,主要表現(xiàn)在DNA甲基化、組蛋白修飾、染色質(zhì)重塑及非編碼RNA。植物在遭受低溫、高溫、干旱、鹽、重金屬、病毒及激素等因素脅迫后,通過(guò)調(diào)節(jié)抗逆相關(guān)基因的表達(dá)來(lái)響應(yīng)外界危害。綜述表觀遺傳修飾在各種脅迫下的調(diào)控機(jī)制,為作物的抗逆研究提供理論依據(jù)。
脅迫 DNA甲基化 組蛋白修飾 染色質(zhì)重塑 非編碼RNA
植物在長(zhǎng)期的生長(zhǎng)過(guò)程中常常會(huì)遇到生物脅迫(如病毒、害蟲)和非生物脅迫(如重金屬、干旱、漬、鹽和極端溫度)等不利因素,這些因素通常會(huì)阻礙植物的正常生長(zhǎng)。由于植物是著地固定生長(zhǎng),不能主動(dòng)逃避外界的危害,只能依靠自身的一些響應(yīng)機(jī)制實(shí)現(xiàn)防御。通常,植物響應(yīng)機(jī)制除包括改變某些代謝途徑和抗逆基因表達(dá)的調(diào)節(jié)外[1-3],表觀遺傳在這個(gè)機(jī)制中起著重要的作用。DNA原始序列不發(fā)生改變,而在某種程度上基因表達(dá)發(fā)生了可遺傳變化的現(xiàn)象通常稱為表觀遺傳學(xué)修飾[4]。
在植物中表觀遺傳的修飾機(jī)制種類較多,如DNA甲基化、組蛋白修飾、染色質(zhì)重塑、非編碼RNA調(diào)控等。據(jù)報(bào)道,這些表觀遺傳修飾所具有的調(diào)控能力可能會(huì)通過(guò)有絲分裂和減數(shù)分裂遺傳給下一代,當(dāng)再次受到脅迫時(shí),植物后代能夠更有效地應(yīng)對(duì)外界惡劣環(huán)境的危害[5]。DNA甲基化是常見(jiàn)的表觀遺傳事件,它在真核生物遭受脅迫后可以維持基因的穩(wěn)定以及調(diào)節(jié)基因的表達(dá)[3]。組蛋白的共價(jià)修飾是另一個(gè)重要的表觀遺傳機(jī)制,由于組蛋白參與染色質(zhì)的構(gòu)成,同樣被認(rèn)為會(huì)決定基因的轉(zhuǎn)錄與表達(dá)[6]。在高等植物的細(xì)胞核中,通常組蛋白會(huì)發(fā)生共價(jià)修飾,如組蛋白乙酰化、組蛋白甲基化等,這些修飾通過(guò)會(huì)影響組蛋白與DNA的結(jié)合從而影響染色質(zhì)(分為異染色質(zhì)和常染色質(zhì))的形態(tài)。研究表明,在逆境脅迫下染色質(zhì)的形態(tài)變化與基因表達(dá)的改變有著密切的關(guān)系[7],同時(shí)也會(huì)使得一些表觀遺傳的調(diào)控機(jī)制發(fā)生改變,如改變DNA甲基化的分布、組蛋白修飾或是控制非編碼RNA的數(shù)量等[5]。在遭受外界的脅迫后,植物通過(guò)各種表觀遺傳調(diào)控方式從而增強(qiáng)植株的抵抗能力。本文對(duì)植物在受到外界脅迫后發(fā)生的表觀遺傳調(diào)控現(xiàn)象及發(fā)生機(jī)制的研究進(jìn)展進(jìn)行綜述。
DNA甲基化在真核生物中是維持和調(diào)節(jié)基因表達(dá)的表觀遺傳事件中的重要組成部分,是指生物體在DNA甲基轉(zhuǎn)移酶(DNA methyltransferase,DNMT)的催化下,以S-腺苷甲硫氨酸(S-adenosyl methionine,SAM)為甲基供體,將甲基轉(zhuǎn)移到特定的堿基上的過(guò)程。在真核生物中,甲基化只發(fā)生在胞嘧啶(C)第5位碳原子上,生成5-甲基胞嘧啶,最終完成DNA甲基化修飾過(guò)程[8]。植物中DNA甲基化多在CG、CHG、CHH(H=C、A或T)處在甲基轉(zhuǎn)移酶的參與下發(fā)生[9]。甲基化修飾系統(tǒng)一般由MET1、CMT3、DRM2三種甲基化轉(zhuǎn)移酶來(lái)維持[10],其中MET1維持對(duì)稱胞嘧啶甲基化,CMT3維持不對(duì)稱甲基化,DNMT1參與重頭甲基化。在外界非生物脅迫刺激信號(hào)誘導(dǎo)下植物基因組DNA的甲基化狀態(tài)會(huì)發(fā)生改變,通常會(huì)以高甲基化或低甲基化形式來(lái)影響染色質(zhì)的結(jié)構(gòu)以及相關(guān)基因的表達(dá)[3],從而應(yīng)對(duì)外界環(huán)境的脅迫。如低溫脅迫下FLOWERING LOCUS C(FLC,MADS-box protein)基因編碼區(qū)發(fā)生去甲基化從而使得植物的開(kāi)花期提前[11]。冷脅迫時(shí),ZmMET1基因在小麥中的表達(dá)也會(huì)因?yàn)槿ゼ谆抡{(diào)[12]。在煙草中,NtGPDL(glycerophosphodiesterase-like protein)基因編碼序列在受到重金屬、高鹽、低溫和氧化等各種刺激后會(huì)發(fā)生DNA的去甲基化現(xiàn)象[13]。同樣,水稻和冰葉日中花(Mesembryanthemum crystallinum)在鹽脅迫的情況下,細(xì)胞中衛(wèi)星DNA會(huì)通過(guò)提高甲基化的方式調(diào)控細(xì)胞核中多種基因的表達(dá),同時(shí)轉(zhuǎn)變景天酸代謝(Crassulacean acid metabolism,CAM)的代謝途徑[1],另外參與表達(dá)的基因也會(huì)發(fā)生改變[3]。采用甲基化敏感擴(kuò)增多態(tài)性技術(shù)研究不同硬皮豆[Macrotyloma uniflorum(Lam.)Verdc.]品種的甲基化情況發(fā)現(xiàn),當(dāng)高溫脅迫時(shí),不耐旱品種(HPKC2)中有10.1%的位點(diǎn)發(fā)生甲基化,而在耐旱品種(HPK4)中只有8.6%的位點(diǎn)發(fā)生甲基化,這說(shuō)明甲基化和抗旱基因的表達(dá)密切相關(guān)[14],類似的結(jié)果在水稻中也有報(bào)道[15]。研究表明,約有1/4的去甲基化位點(diǎn)在環(huán)境恢復(fù)正常后不能轉(zhuǎn)換到原始狀態(tài),而甲基化位點(diǎn)中約有1/2可以遺傳給下一代[16],后代植株的表型也因此發(fā)生相應(yīng)的改變[17]。此外,與甲基化發(fā)生有密切聯(lián)系的MET1(Type I DNA methyltransferase)的去甲基化作用會(huì)引起響應(yīng)脅迫的相關(guān)基因特異表達(dá),從另一個(gè)角度證明了DNA甲基化在逆境脅迫響應(yīng)中扮演著重要角色。在煙草中,利用RNAi技術(shù)干擾MET1的表達(dá)后,轉(zhuǎn)化株中與抗逆相關(guān)的31個(gè)基因的表達(dá)均發(fā)生上調(diào),植株表型也發(fā)生變化[18]。
DNA甲基化對(duì)于響應(yīng)生物脅迫同樣具有至關(guān)重要的調(diào)控作用,Muthamilarasan等[19]從分子水平闡明了甲基化參與植物免疫防御的機(jī)制。分別用細(xì)菌性病原體(Bacterial pathogen)、非細(xì)菌性病原體(Avirulent bacteria)以及水楊酸(SA)處理植株后分析DNA的甲基化情況發(fā)現(xiàn),不同脅迫誘導(dǎo)產(chǎn)生了許多不同的甲基化區(qū)域,這些區(qū)域與基因的差異表達(dá)密切相關(guān)。此外,在SA誘導(dǎo)過(guò)程中,轉(zhuǎn)座子區(qū)域也會(huì)發(fā)生有差異的甲基化區(qū)域,這個(gè)過(guò)程會(huì)伴隨著21-nt siRNAs表達(dá)量的上調(diào)[20]。病原菌侵染擬南芥后,ELP2基因可調(diào)控基因組DNA,改變其甲基化狀態(tài)[21]。大豆抵抗印度綠豆黃花葉病毒(Mungbean yellow mosaic India virus,MYMIV)的方式是在基因間隔區(qū)進(jìn)行DNA高甲基化[22]。另有文獻(xiàn)報(bào)道,在煙草花葉病毒(Tobacco mosaic virus,TMV)侵染煙草植株后在N-like位點(diǎn)會(huì)發(fā)生低甲基化,同時(shí)甲基化狀態(tài)的改變也會(huì)加快這些基因位點(diǎn)發(fā)生重組[23],即說(shuō)明病原菌侵染與DNA甲基化的改變密切相關(guān),而這種改變可能會(huì)促進(jìn)基因重組。
除了DNA甲基化,組蛋白的共價(jià)修飾是另一個(gè)重要的表觀遺傳機(jī)制?;蚪MDNA與組蛋白動(dòng)態(tài)結(jié)合構(gòu)成染色質(zhì),染色質(zhì)的基本單位是核小體,核小體由H2A、H2B、H3和H4四種組蛋白二聚體構(gòu)成的核心八聚體結(jié)合DNA序列后構(gòu)成。由于參與染色質(zhì)的構(gòu)成,組蛋白通常被認(rèn)為同樣會(huì)決定基因的轉(zhuǎn)錄。值得注意的是,不同組蛋白由不同的基因編碼。研究結(jié)果表明,4種組蛋白通常會(huì)發(fā)生一些共價(jià)修飾,比較常見(jiàn)的修飾有甲基化、乙?;土姿峄?,這些修飾在染色質(zhì)構(gòu)成及增加基因表達(dá)量等方面有重要的影響[6],另外,一些不常見(jiàn)的修飾如生物素酰化、類泛素化(SUMO化)也會(huì)抑制基因的表達(dá)[2]。
組蛋白甲基化主要發(fā)生在組蛋白H3、H4的賴氨酸(Lys)與精氨酸(Arg)殘基上,這一過(guò)程是通過(guò)MET催化ε-氨基酸在賴氨酸殘基上加上甲基形成雙甲基化和三甲基化[24]。組蛋白甲基化通常被認(rèn)為是一個(gè)較為穩(wěn)定的修飾,一旦發(fā)生便會(huì)在較長(zhǎng)時(shí)間內(nèi)維持這種狀態(tài)。但在2010年有研究報(bào)道,組蛋白甲基化的平衡可以通過(guò)特異性組蛋白賴氨酸甲基轉(zhuǎn)移酶(Histone lysine methyltransfera ses,HKMTs)、蛋白質(zhì)精氨酸甲基轉(zhuǎn)移酶(Protein arginine methyltransferases,PRMTs)、組蛋白賴氨酸去甲基化酶(Histone lysine demethylase,LSD1)、組蛋白甲基轉(zhuǎn)移酶(Histone demethylase1,JmiC)這4種與甲基化及去甲基化有關(guān)的轉(zhuǎn)移酶家族調(diào)控[25,26]。組蛋白甲基化往往會(huì)參與轉(zhuǎn)錄后修飾,有些位點(diǎn)的甲基化會(huì)抑制相關(guān)基因的表達(dá),而在另外的位點(diǎn)又與基因激活有關(guān),這取決于被修飾的位置和程度[6]。H3K9和H3K27的二甲基化與異染色質(zhì)形成、基因沉默有關(guān),H3K4和H3K36的三甲基化則會(huì)促進(jìn)基因的表達(dá)[6]。Kim 等[27]對(duì)擬南芥中抗旱基因進(jìn)行研究時(shí)發(fā)現(xiàn),在干旱脅迫時(shí)抗旱基因上H3組蛋白的N端修飾水平發(fā)生改變,脅迫會(huì)使這些基因的H3K4三甲基化和H3K9乙?;黾樱瑥亩{(diào)節(jié)了基因的表達(dá)量。番茄遭受干旱脅迫會(huì)使H1-S連接組蛋白的表達(dá)發(fā)生改變,H1-S低表達(dá)的轉(zhuǎn)基因植株中氣孔蒸騰速率高于野生型,說(shuō)明H1-S對(duì)蒸騰有負(fù)調(diào)節(jié)作用[28]。洪澇脅迫下讓水稻幼苗內(nèi)動(dòng)態(tài)的組蛋白修飾發(fā)生改變,植株中響應(yīng)洪澇脅迫相關(guān)的基因ADH1與PDC1將會(huì)通過(guò)H3K4三甲基化和H3乙?;患せ钜詰?yīng)對(duì)脅迫環(huán)境;一旦洪澇脅迫解除則組蛋白將會(huì)恢復(fù)到原始狀態(tài)[29]。鹽脅迫時(shí),植株內(nèi)組蛋白H4被SKB1催化發(fā)生對(duì)稱二甲基化,同時(shí)一系列脅迫應(yīng)答基因的轉(zhuǎn)錄被抑制,即可說(shuō)明組蛋白甲基化狀態(tài)調(diào)控鹽脅迫應(yīng)答[30]。此外,鹽脅迫也會(huì)引起擬南芥中DREB2A、RD29A和RA29B基因的組蛋白H3K9二甲基化水平降低,H3K4三甲基化水平提高[27]。
組蛋白乙?;瘎t是另外一種較為重要的表觀遺傳修飾,乙?;街饕怯?種特殊的轉(zhuǎn)移酶:乙酰轉(zhuǎn)移酶(HAT)和去乙?;福℉DAC)來(lái)維持動(dòng)態(tài)平衡。通常組蛋白乙?;ㄟ^(guò)促使異染色質(zhì)結(jié)構(gòu)松散進(jìn)而促進(jìn)轉(zhuǎn)錄[31],而組蛋白去乙?;粌H會(huì)導(dǎo)致基因沉默,而且會(huì)影響異染色質(zhì)的形成[32]。在低溫、鹽和激素等脅迫下組蛋白去乙酰酶6(HDA6)會(huì)參與植株整個(gè)表觀遺傳調(diào)控的過(guò)程,基因發(fā)生乙酰化而使得染色質(zhì)處在活性狀態(tài),同時(shí)相關(guān)基因的表達(dá)也會(huì)發(fā)生異常[33]。另外,HOS15也是與組蛋白去乙酰化有關(guān)的基因,它的表達(dá)蛋白作為阻遏蛋白的一部分參與了組蛋白去乙酰化過(guò)程,在非生物刺激時(shí)hos15可以通過(guò)誘導(dǎo)H4組蛋白發(fā)生去乙酰化來(lái)提高相關(guān)基因的轉(zhuǎn)錄水平[34]。據(jù)報(bào)道,玉米圓斑病菌(Cochiobolus carbonum)的真菌產(chǎn)物HC毒素可以抑制HDAC,應(yīng)用HC毒素或者真菌感染玉米植株后可以發(fā)現(xiàn)組蛋白乙?;浇档蛷亩鰪?qiáng)了對(duì)病原菌的抵抗能力[35]。被真菌鏈格菌(Alternaria brassicicola)侵染后,HDAC19過(guò)表達(dá)的擬南芥植株與野生型植株相比,野生型植株對(duì)真菌的敏感性更強(qiáng)[36]。同時(shí),在had-19突變植株中發(fā)現(xiàn),當(dāng)脫落酸(Abscisci acid,ABA)應(yīng)答基因的表達(dá)量下降時(shí),植株會(huì)對(duì)ABA刺激和鹽脅迫敏感[37]。在擬南芥中研究發(fā)現(xiàn),ABA會(huì)控制組蛋白去乙?;窤tHD2C的表達(dá),從而提高植株的耐受能力[38]。
此外,其他不常見(jiàn)的組蛋白修飾與抗逆基因表達(dá)也緊密相關(guān),它們也在逆境脅迫中發(fā)揮著不可忽視的作用。面對(duì)各種非生物脅迫(如低溫、干旱、氧化應(yīng)激和熱休克等)SUMO化的動(dòng)態(tài)變化同樣介導(dǎo)了信號(hào)的傳遞過(guò)程[39]。AtSIZ1被認(rèn)為是介導(dǎo)了SUMO化的發(fā)生,在冷脅迫下,擬南芥siz1-2、siz1-3突變體與野生型相比,突變體的抗凍能力較弱,而在siz1過(guò)表達(dá)植株中,SIZ1介導(dǎo)ICE1發(fā)生SUMO化,使MYB15的表達(dá)受抑制且促進(jìn)CBF下游表達(dá)。干旱脅迫和鹽脅迫時(shí),刺激信號(hào)會(huì)使相關(guān)蛋白發(fā)生SUMO化,從而增加抵抗能力[39]。
為了維持染色質(zhì)中的DNA與蛋白質(zhì)在染色質(zhì)內(nèi)能動(dòng)態(tài)結(jié)合,細(xì)胞產(chǎn)生了一系列ATP依賴的染色質(zhì)重塑復(fù)合物(亦稱重塑子),主要分為SWI/SNF、ISF和CHD三大類。目前在植物中研究得比較多的是SWI/SNF類復(fù)合體,這些重塑子復(fù)合物在真核生物的基因表達(dá)中占有不可忽視的地位。研究表明,染色質(zhì)結(jié)構(gòu)變化與DNA甲基化及組蛋白修飾一樣,均可以調(diào)節(jié)基因的表達(dá)。在鹽、干旱或高溫脅迫后,野生型擬南芥的主芽與主桿的生長(zhǎng)出現(xiàn)短暫的停滯,與之相比AtCHR12(SNF2/Brahma-type)基因敲除后的突變體植株的生長(zhǎng)在脅迫下則受到較小的限制,這說(shuō)明染色質(zhì)重塑基因(AtCHR12)的表達(dá)與休眠基因的表達(dá)密切相關(guān),在脅迫下野生型植株中的AtCHR12基因會(huì)過(guò)表達(dá)?!爸腥A11”水稻在遭受低溫及鹽脅迫后,對(duì)Snf2家族基因進(jìn)行表達(dá)差異分析發(fā)現(xiàn),在各種脅迫刺激下不同組織內(nèi)的Snf2家族基因表達(dá)存在很大的差異[40]。另外有研究證實(shí),SWI/SNF重塑子復(fù)合物的核心酶BRM(ATPase BRAHMA)和SYD(ATPase SPLAYED)與植物生長(zhǎng)激素信號(hào)通路及環(huán)境脅迫相關(guān)。Efroni 等[41]發(fā)現(xiàn),BRM更傾向于與具有bHLH(Basic-helix-loophelix)結(jié)構(gòu)域的轉(zhuǎn)錄因子及與該結(jié)構(gòu)域相關(guān)的CINTPC類轉(zhuǎn)錄因子發(fā)生作用,從而調(diào)節(jié)細(xì)胞分裂素(CTK)信號(hào)通路成員的轉(zhuǎn)錄進(jìn)而影響葉片的發(fā)育。AtSW13B是擬南芥內(nèi)SWI/SNF重塑子復(fù)合物的核心組分,它能使植株更好地參與應(yīng)答ABA脅迫[42]。另外,在ABA及干旱脅迫下,采用酵母雙雜交法發(fā)現(xiàn)豌豆SWI/SNF重塑子復(fù)合物的組分PsSNF5基因會(huì)介導(dǎo)脅迫過(guò)程[43],這些說(shuō)明復(fù)合體誘導(dǎo)的染色質(zhì)重塑可能會(huì)參與脅迫的應(yīng)答過(guò)程。
SWI/SNF家族的另一成員DDM1(Decrease in DNA methylation)對(duì)于DNA甲基化模式的維持及基因組的完整性有著重要的作用[44],DDM1功能的缺失會(huì)導(dǎo)致基因組中70%的基因發(fā)生甲基化的頻率降低[45]。研究表明,ddm1缺失的擬南芥突變體在遭受MMS(Methyl methane sulfonate)和NaCl處理后,突變體植株對(duì)刺激信號(hào)的敏感性明顯高于野生型植株,與met1缺失的突變體植株比較發(fā)現(xiàn)ddm1突變體植株對(duì)鹽脅迫更敏感[46],這表明DDM1蛋白與DNA甲基化之間有著密切聯(lián)系,而它對(duì)染色質(zhì)的維持能夠更有效的應(yīng)答脅迫。
目前,對(duì)染色質(zhì)重塑與生物脅迫之間關(guān)系的研究不多,據(jù)少量報(bào)道可知重塑復(fù)合體可以通過(guò)介導(dǎo)組蛋白在特定基因啟動(dòng)子處定位后改變?nèi)旧|(zhì)結(jié)構(gòu),激活或抑制相關(guān)基因的表達(dá),從而調(diào)控水楊酸依賴的病原菌防御機(jī)制[47]。
除了上述常見(jiàn)的調(diào)控現(xiàn)象外,非編碼RNA(Noncoding RNA)也屬于表觀遺傳調(diào)控系統(tǒng)中的重要部分,它一般會(huì)涉及基因轉(zhuǎn)錄水平和轉(zhuǎn)錄后水平表達(dá)途徑。目前所知的真核生物非編碼RNA有很多,基于其生物合成途徑和功能的差異主要分為miRNA和siRNA(Small interfering RNA)2類。 此外,tasiRNA、scnRNA、pi-RNA和rasiRNA等都屬于siRNAs的內(nèi)源分子[48,49],但目前研究較多的是miRNA和siRNA。
在植物中,miRNA長(zhǎng)約21-23 nt,它可以通過(guò)與靶標(biāo)mRNA的3'-UTR特異結(jié)合抑制基因轉(zhuǎn)錄后的翻譯,miRNA的調(diào)控作用不僅會(huì)出現(xiàn)在植株正常發(fā)育的過(guò)程中,同樣也會(huì)出現(xiàn)在逆境脅迫下的植株中[50]。Mendoza-Soto等[50]和Dugas等[51]概述了miRNA與脅迫應(yīng)答之間的關(guān)系,在不同植物中miR319、miR390、miR393和miR398受到某些脅迫后發(fā)揮著相同的功能。如在高濃度Cd、Al、Cu等重金屬脅迫下,miR319與它的靶基因TCP因子的表達(dá)量均會(huì)發(fā)生改變[50]。在植株受到惡劣環(huán)境脅迫后miR398表達(dá)量的多少與2個(gè)銅/鋅過(guò)氧化物歧化酶CSD1/CSD2編碼基因的轉(zhuǎn)錄物積累直接相關(guān)[51]。此外,低溫、鹽、ABA和干旱脅迫會(huì)使得miR397與miR402上調(diào)而miR389下調(diào),這些miRNA介導(dǎo)的過(guò)程會(huì)增加植株的防御信號(hào),這對(duì)提高植株脅迫耐性十分重要[52]。在擬南芥中,miR160通過(guò)調(diào)節(jié)ARF10(Auxin response factor)表達(dá)控制種子萌發(fā)和胚后發(fā)育,同時(shí)參與應(yīng)答ABA刺激[53];水稻中,冷脅迫使相關(guān)的miRNA家族成員表達(dá)受到抑制[54];另外,鹽、堿脅迫可以使miRNA的轉(zhuǎn)錄動(dòng)態(tài)變化,如在甘蔗和水稻中miR396過(guò)表達(dá)將會(huì)降低植株對(duì)鹽、堿脅迫的耐受性[55,56]。
對(duì)于外界生物脅迫miRNA同樣具有不可忽視的重要作用。Navarro等[57]首次在擬南芥中發(fā)現(xiàn)miR393通過(guò)調(diào)節(jié)生長(zhǎng)素信號(hào)通路從而影響植物抗菌能力。隨后,F(xiàn)ahlgren等[58]發(fā)現(xiàn)擬南芥植株在病毒感染后miR160、miR167和miR393會(huì)高度誘導(dǎo),miR825會(huì)被抑制,從而說(shuō)明miRNA在植株免疫防御體系中有重要地位。
siRNA是由DCL關(guān)鍵酶參與加工后獲得的雙鏈RNA,長(zhǎng)度約為20-25 nt,有許多不同的生物學(xué)功能。目前已知siRNA是RNAi現(xiàn)象中的重要成分,它主要通過(guò)RNAi對(duì)基因轉(zhuǎn)錄水平進(jìn)行調(diào)控。此外,有研究證明siRNA具有抗脅迫或使得染色質(zhì)濃縮的功能[49],同時(shí)還有研究指出siRNA與轉(zhuǎn)座子的抑制有關(guān)[59]。分別對(duì)小麥幼苗進(jìn)行低溫、高溫、鹽或干旱處理后發(fā)現(xiàn)有4種siRNA的表達(dá)量發(fā)生上調(diào)或下調(diào)[52]。另外,擬南芥dcl2缺失突變體對(duì)MMS的敏感性較強(qiáng),這說(shuō)明siRNA的形成參與了外界脅迫的調(diào)控過(guò)程[60]。據(jù)報(bào)道,擬南芥植株在受到假單胞菌屬致病菌侵染后有 nat-siRNAATGB2內(nèi)源分子產(chǎn)生,該分子會(huì)調(diào)節(jié)抗病基因RPS2而起到抵御作用[61]。番茄曲葉病毒(ToLCV)病在番茄中比較常見(jiàn),正常植株在遭受該病毒侵染后siRNA會(huì)介導(dǎo)RNA沉默從而使得植株抵抗力增強(qiáng)[62,63]。的研究還不是很全面,還有許多問(wèn)題有待解決,如在脅迫下表觀遺傳調(diào)控對(duì)物質(zhì)代謝途徑、物質(zhì)合成途徑以及基因表達(dá)調(diào)控等途徑會(huì)有怎樣的影響。人們希望對(duì)表觀遺傳調(diào)控進(jìn)一步深入的研究,從而提高植株的抗逆境的能力,在農(nóng)作物生產(chǎn)方面能夠提高作物在干旱、洪災(zāi)、病蟲害等自然災(zāi)害下的抵抗力,進(jìn)一步提高農(nóng)作物的產(chǎn)量??傊瑢?duì)表觀遺傳的深入研究對(duì)生物的生長(zhǎng)發(fā)育機(jī)制的詮釋具有非常重要的意義。
目前,表觀遺傳學(xué)研究的內(nèi)容主要分為兩部分:一部分是基因轉(zhuǎn)錄水平的調(diào)控,這類調(diào)控是通過(guò)誘導(dǎo)基因的表達(dá)或選擇性抑制基因的表達(dá),主要為基因或染色質(zhì)組蛋白的修飾,包括DNA甲基化、組蛋白修飾等;另一部分是基因轉(zhuǎn)錄后水平的調(diào)控,這類調(diào)控涉及了一些非編碼RNA的調(diào)控,后者可以通過(guò)誘導(dǎo)mRNA的降解調(diào)節(jié)基因的翻譯和表達(dá)[15]。在遭受外界不良因素的刺激后,植物體并非只由單一的某個(gè)調(diào)控機(jī)制進(jìn)行防御,而是激活一個(gè)復(fù)雜的調(diào)控網(wǎng)絡(luò)進(jìn)行脅迫應(yīng)答。DNA的甲基化、組蛋白的可逆修飾、非編碼RNA調(diào)控以及染色質(zhì)的重塑等各種表觀遺傳調(diào)控方式相互作用又相互聯(lián)系,它們共同作用以響應(yīng)外界不利條件,使得植物能夠更好的適應(yīng)環(huán)境變化。目前,脅迫與表觀遺傳變化之間關(guān)系
[1] Dyachenko OV, Zakharchenko NS, Shevchuk TV, et al. Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress[J]. Biochemistry, 2006, 71(4):461-465.
[2] Veiseth SV, Rahman MA, Yap KL, et al. The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis[J]. PLoS Genet, 2011, 7(3):e1001325.
[3] Karan R, DeLeon T, Biradar H, et al. Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes[J]. PLoS One, 2012, 7(6):e40203.
[4] Finnegan EJ. Epialleles-a source of random variation in times of stress[J]. Curr Opin Plant Biol, 2001, 5(2):101-106.
[5] Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants[J]. Curr Opin Plant Biol, 2009, 12(2):133-139.
[6] Zhang K, Sridhar VV, Zhu JH, et al. Distinctive core histone posttranslational modification patterns in Arabidopsis thaliana[J]. PLoS One, 2007, 2(11):e1210.
[7] Tittel-Elmer M, Bucher B, Broger L, et al. Stress-induced activation of heterochromatic transcription[J]. PLoS Genet, 2010, 6(10):e1001175.
[8] Finnegan EJ, Kovac KA. Plant DNA methyltransferases[J]. Plant Mol Biol, 2000, 43(2-3):189-201.
[9] Miguel C, Marum L. An epigenetic view of plant cells cultured in vitro:somaclonal variation and beyond[J]. J Exp Bot, 2011, 62(11):3713-3725.
[10] Steward N, Kusano T, Sano H. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but alsowith altered DNA methylation status in cold-stressed quiescent cells[J]. Nucl Acids Res, 2000, 28(17):3250-3259.
[11] Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet, 2010, 11(3):204-220.
[12] Zilberman D, Henikoff S. Epigenetic inheritance in Arabidopsis:selective silence[J]. Curr Opin Genet Dev, 2005, 15(5):557-562.
[13] Choi CS, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesteraselike protein in tobacco plants[J]. Mol Genet Genomics, 2007, 2779(5):589-600.
[14] Bhardwaj J, Mahajan M, Yadav SK. Comparative analysis of DNA methylation polymorphism in drought sensitive(HPKC2)and tolerant(HPK4)genotypes of horse gram(Macrotyloma uniflorum)[J] . Biochem Genet, 2013, 51(7-8):493-502.
[15] Gayacharan, Joel AJ. Epigenetic responses to drought stress in rice(Oryza sativa L.)[J]. Physiol Mol Biol Plants, 2013, 19(3):379-87.
[16] Wang WS, Pan YJ, Zhao XQ, et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice(Oryza sativa L.)[J]. J Exp Bot, 2011, 62(6):1951-1960.
[17] Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation:how to deal with unpredictable conditions until the next generation and after[J]. Mol Ecol, 2010, 19(7):1283-1295.
[18] Wada Y, Miyamoto K, Kusano T, et al. Association between upregulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants[J]. Mol Genet Genomics, 2004, 271(6):658-666.
[19] Muthamilarasan M, Prasad M. Plant innate immunity:an updated insight into defense mechanism[J]. J Biosci, 2013, 38(2):433-449.
[20] Dowen RH, Pelizzola M, Schmitz RJ, et al. Widespread dynamic DNA methylation in response to biotic stress[J]. Proc Natl Acad Sci USA, 2012, 109(32):2183-2191.
[21] Wang YS, An CF, Zhang XD, et al. The Arabidopsis elongator complex subunit 2 epigenetically regulates plant immune responses[J]. Plant Cell, 2013, 25(2):762-776.
[22] Yadav RK, Chattopadhyay D. Enhanced viral intergenic regionspecific short interfering RNA accumulation and DNA methylation correlates with resistance against a geminivirus[J]. Mol Plant Microbe Interact, 2011, 24(10):1189-1197.
[23] Boyko A, Kathiria P, Zemp FJ, et al. Transgenerational changes in the genome stability and methylation in pathogen-infected plants:(virus-induced plant genome instability)[J]. Nucl Acids Res, 2007, 35(5):1714-1725.
[24] Li XY, Wang XF, He K, et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers between DNA methylation, histone methylation, and gene expression[J]. Plant Cell, 2008, 20(2):259-276.
[25] Amente S, Bertoni A, Morano A, et al. LSD1-mediated demethylation of histone H3 lysine 4 triggers myc-induced transcription[J]. Oncogene, 2010, 29(25):3691-3702.
[26] Liu CY, Lu FL, Cui X, et al. Histone methylation in higher plants[J]. Annu Rev Plant Biol, 2010, 61:395-420.
[27] Kim JM, To TK, Ishida J, et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant Cell Physiol, 2008, 49(10):1580-1588.
[28] Scippa GS, Di Michele M, Onelli E, et al. The histone-like protein H1-S and the response of tomato leaves to water deficit[J]. J Exp Bot, 2004, 55(394):99-109.
[29] Tsuji H, Saika H, Tsutsumi N, et al. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice[J]. Plant Cell Physiol, 2006, 47(7):995-1003.
[30] Jiang DH, Wang YQ, Wang YZ, et al. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components[J]. PLoS One, 2008, 3(10):e3404.
[31] Strahl BD, Allis CD. The language of covalent histone modifications[J]. Nature, 2000, 403(6765):41-45.
[32] Kim JM, To TK, Seki M. An epigenetic integrator:new insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6[J]. Plant Cell Physiol, 2012, 53(5):794-800.
[33] To TK, Nakaminami K, Kim JM, et al. Arabidopsis HDA6 is required for freezing tolerance[J]. Biochem Biophys Res Commun, 2011, 406(3):414-419.
[34] Zhu JH, Jeong JC, Zhu YM, et al. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance[J]. Proc Natl Acad Sci USA, 2008, 105(12):4945-4950.
[35] Alvarez ME, Nota F, Cambiagno DA. Epigenetic control of plant immunity[J]. Mol Plant Pathol, 2010, 11(4):563-576.
[36] Kim KC, Lai ZB, Fan BF, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9):2357-2371.
[37] Chen LT, Wu KQ. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response[J]. Plant Signal Behav, 2010, 5(10):1318-1320.
[38] Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis[J]. Plant J, 2006, 46(1):124-133.
[39] Park HJ, Kim WY, Park HC, et al. SUMO and SUMOylation in plants[J]. Mol Cells, 2011, 32(4):305-316.
[40] Hu Y, Zhu N, Wang X, et al. Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation[J]. Plant Physiol Biochem, 2013, 70:33-42.
[41] Efroni I, Han SK, Kim HJ, et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses[J]. Cell, 2013, 24(4):438-445.
[42] Saez A, Rodrigues A, Santiago J, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/ SNF chromatin-remodeling complexes in Arabidopsis[J]. Plant Cell, 2008, 20(11):2972-2988.
[43] Rios G, Gagete AP, Castillo J, et al. Abscisic acid and desiccationdependent expression of a novel putative SNF5-type chromatinremodeling gene in Pisum sativum[J]. Plant Physiol Biochem, 2007, 45(6-7):427-435.
[44] Jeddeloh JA, Stokes TL, Richards EJ. Maintenance of genomic methylation requires a SWI2/SNF2-like protein[J]. Nat Genet, 1999, 22(1):94-97.
[45] Vongs A, Kakutani T, Martienssen RA, et al. Arabidopsis thaliana DNA methylation mutants[J]. Science, 1993, 260(5116):1926-1928.
[46] Yao YL, Bilichak A, Golubov A, et al. ddm1 plants are sensitive to methyl methane sulfonate and NaCl stresses and are deficient in DNA repair[J]. Plant Cell Rep, 2012, 31(9):1549-1561.
[47] March-Díaz R, García-Domínguez M, Florencio FJ, et al. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6[J]. Plant Physiol, 2007, 143(2):893-901.
[48] Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8):2051-2065.
[49] Contreras-Cubas C, Palomar M, Arteaga-Vazquez M, et al. Noncoding RNAs in the plant response to abiotic stress[J]. Planta, 2012, 236(4):943-958.
[50] Mendoza-Soto AB, Sanchez F, Hernandez G. MicroRNAs as regulators in plant metal toxicity response[J]. Front Plant Sci, 2012, 3:105.
[51] Dugas DV, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases[J]. Plant Mol Biol, 2008, 67(4):403-417.
[52] Khraiwesh B, Zhu JK, Zhu JH. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J]. Biochim Biophys Acta, 2012, 1819(2):137-148.
[53] Liu PP, Montgomery TA, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages[J]. Plant J, 2007, 52(1):133-146.
[54] Lv DK, Bai X, Li Y, et al. Profiling of cold-stress-responsive mi-RNAs in rice by microarrays[J]. Gene, 2010, 459(1-2):39-47.
[55] Gao P, Bai X, Yang L, et al. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance[J]. Planta, 2010, 231(5):991-1001.
[56] Bottino MC, Rosario S, Grativol C, et al. High-throughput sequencing of small RNA transcriptome reveals salt stress regul ated microRNAs in sugarcane[J]. PLoS One, 2013, 8(3):e59423.
[57] Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439.
[58] Fahlgren N, Howell MD, Kasschau KD, et al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes[J]. PLoS One, 2007, 2(2):e219.
[59] Ito H. Small RNAs and regulation of transposons in plants[J]. Genes Genet Syst, 2013, 88(1):3-7.
[60] Yao YL, Bilichak A, Golubov A, et al. Differential sensitivity of Arabidopsis siRNA biogenesis mutants to genotoxic stress[J]. Plant Cell Rep, 2010, 29(12):1401-1410.
[61] Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogeninducible endogenous siRNA in plant immunity[J]. Proc Natl Acad Sci USA, 2006, 103(47):18002-18007.
[62] Sahu PP, Rai NK, Chakraborty S, et al. Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression[J]. Mol Plant Pathol, 2010, 11(14):531-544.
[63] Sahu PP, Rai NK, Puranik S, et al. Dynamics of defense-related components in two contrasting genotypes of tomato upon infection with tomato leaf curl new Delhi virus[J]. Mol Biotechnol, 2012, 52(2):140-150.
(責(zé)任編輯 狄艷紅)
Research Progresses of Stress-induced Epigenetic Regulation Mechanism in Plant
Ran Liping Kong Yueqin Fang Tingting Wang Youping
(College of Bioscience and Biotechnology,Yangzhou University,Yangzhou 225009)
Plant as sedentary organisms, needs to adapt their gene activity to the adverse or stressful environmental challenges. Epigenetic regulation accompanies stressful environments, such as extreme temperature, drought, salinity, heavy metal, pathogen and hormones etc., which lead to the impressive development and phenotype variation of different plant species with adaptability to unfavorable conditions. In this paper, the current research status of epigenetic changes induced by stresses, including DNA methylation, histone post-translational modification, chromatin modification, non-coding RNA, as well as the interaction between these epigenetic incidences were reviewed.
Stress DNA methylation Histone modification Chromatin reshaping Non-coding RNA
2014-02-19
高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20123250110009)
冉莉萍,女,碩士研究生,研究方向:植物表觀遺傳學(xué);E-mail:rlpcn@163.com
王幼平,男,博士,教授,研究方向:植物遺傳學(xué);E-mail:wangyp@yzu.edu.cn