亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        木質(zhì)素降解酶及相關(guān)基因研究進(jìn)展

        2014-03-21 11:47:08董秀芹袁紅莉高同國
        生物技術(shù)通報 2014年11期
        關(guān)鍵詞:漆酶同工酶木素

        董秀芹袁紅莉高同國

        (1.北京吉利學(xué)院,北京 102202;2. 中國農(nóng)業(yè)大學(xué)生物學(xué)院 農(nóng)業(yè)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,北京 100193;3.河北農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,保定 071000)

        木質(zhì)素降解酶及相關(guān)基因研究進(jìn)展

        董秀芹1袁紅莉2高同國3

        (1.北京吉利學(xué)院,北京 102202;2. 中國農(nóng)業(yè)大學(xué)生物學(xué)院 農(nóng)業(yè)生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,北京 100193;3.河北農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,保定 071000)

        生物質(zhì)的高效綜合利用已成為全球關(guān)注的熱點(diǎn)問題。生物質(zhì)的主要成分是木質(zhì)素、纖維素和半纖維素,其利用的關(guān)鍵是如何去除木質(zhì)素,從而提高纖維素和半纖維素的得率。其中利用真菌的生物預(yù)處理方法因條件溫和、無二次污染等優(yōu)點(diǎn)符合全球經(jīng)濟(jì)可持續(xù)發(fā)展需要,受到研究者的普遍關(guān)注。綜述了近年國內(nèi)外真菌分泌的主要木質(zhì)素降解酶,包括木質(zhì)素過氧化物酶(LiP)、錳過氧化物酶(MnP)、漆酶(laccase)和多功能過氧化物酶(VP)的主要特點(diǎn),總結(jié)了木質(zhì)素降解相關(guān)酶的基因工程、基因組學(xué)的研究成果,并對其發(fā)展前景進(jìn)行了展望。

        木質(zhì)素 生物降解 過氧化物酶 漆酶 基因組學(xué)

        近幾年可持續(xù)發(fā)展技術(shù)已成為社會日益關(guān)注的焦點(diǎn),充分利用自然資源實(shí)現(xiàn)其經(jīng)濟(jì)最大化和環(huán)境可持續(xù)發(fā)展已成為經(jīng)濟(jì)發(fā)展必須考慮的問題。木質(zhì)纖維素是所有陸生植物細(xì)胞壁的主要成分,也是地球上最豐富的生物質(zhì)資源,其組分主要由纖維素、半纖維素和木質(zhì)素構(gòu)成,其中木質(zhì)素對于植物生長和生存起著重要作用,是細(xì)胞壁強(qiáng)度的支持成分,保護(hù)植物細(xì)胞免受微生物攻擊和各種氧化作用[1]。從化學(xué)結(jié)構(gòu)來看,木質(zhì)素是由對羥苯基、愈創(chuàng)木基和紫丁香基三者所組成的異聚物,這三種單體通過β-O-4、β-5、β-β、5-5、4-O-5和 β-1共價鍵連接形成了自然界中各種各樣的木質(zhì)素。這些無規(guī)律的異聚物不透水,也沒有旋光性,所有這些特性使木質(zhì)素的降解非常困難[2];同時木質(zhì)素包裹在纖維素的外層,阻礙纖維素和半纖維素的降解,因此在工業(yè)生產(chǎn)中,如在紙漿的漂白、纖維素發(fā)酵生產(chǎn)乙醇和飼料的發(fā)酵過程中,皆因木質(zhì)素的存在而增加了工業(yè)生產(chǎn)的成本。

        近幾十年來,對于木質(zhì)素的預(yù)處理技術(shù)已經(jīng)進(jìn)行了廣泛的研究,主要分為非生物處理(物理方法、化學(xué)方法、物理-化學(xué)聯(lián)用方法)和生物處理方法,科學(xué)家期望利用這些方法能夠打斷或破壞木質(zhì)素網(wǎng)

        絡(luò)結(jié)構(gòu),使人類能夠充分利用生物質(zhì)中的纖維素和半纖維素。非生物預(yù)處理方法雖然有許多優(yōu)點(diǎn),但是總體而言效益低,污染重,而且形成對于后續(xù)發(fā)酵或酶解過程有抑制作用的副產(chǎn)物,不符合當(dāng)代社會發(fā)展的需要。生物預(yù)處理主要利用真菌分泌的多種木質(zhì)素降解酶降解生物質(zhì)中的木質(zhì)素,具有無污染、選擇性好等優(yōu)點(diǎn)。

        國內(nèi)外已有關(guān)于真菌漆酶性質(zhì)和應(yīng)用[3]、錳過氧化物酶的性質(zhì)和應(yīng)用[4]、Trametes cervina 的木素過氧化物酶性質(zhì)[5]、利用現(xiàn)代化生產(chǎn)多種酶對不同木質(zhì)纖維素原料降解作用[6]以及黃孢原毛平革菌產(chǎn)酶條件[7]等的文獻(xiàn)綜述。但是木質(zhì)素降解是在自然條件下多個酶共同作用的復(fù)雜過程。因此,本文系統(tǒng)總結(jié)了近年發(fā)現(xiàn)與木質(zhì)素降解有關(guān)的酶的種類和酶學(xué)特性,以便使研究者更全面的了解木質(zhì)素生物降解過程中的多種酶的性質(zhì)及該方面的研究進(jìn)展。

        1 微生物分泌木質(zhì)素降解酶

        生物預(yù)處理由于本身安全和無污染,受到越來越多人重視。到目前為止,僅有少數(shù)微生物可以降解木質(zhì)素,其中絕大部分是白腐菌[8],少數(shù)是細(xì)菌[9],但是后者僅有較弱的木質(zhì)素降解能力。由于白腐菌能高效地選擇性降解木質(zhì)素,因此被認(rèn)為是去除木質(zhì)素最有應(yīng)用前景的一大類真菌。生物預(yù)處理木質(zhì)纖維素原料的過程非常復(fù)雜,其中各種木質(zhì)素降解酶被認(rèn)為在木質(zhì)纖維素的降解過程中起關(guān)鍵作用。已知白腐菌分泌木質(zhì)素降解有關(guān)的幾類主要過氧化物酶:木素過氧化物酶(LiP;EC 1.11.1.14),錳過氧化物酶(MnP;EC 1.11.1.13)(這兩個酶首先在黃孢原毛平革菌中發(fā)現(xiàn)),多功能過氧化物酶(在杏鮑菇中首先發(fā)現(xiàn))[10],漆酶(Laccase;EC 1.10.3.2)和多種輔助酶。由于木質(zhì)素的結(jié)構(gòu)復(fù)雜,因此推測木質(zhì)素降解過程是多個酶共同作用的結(jié)果。

        1.1 木素過氧化物酶

        木素過氧化物酶(LiP;EC 1.11.1.14)是一個含鐵的糖蛋白,首先在黃孢原毛平革菌中發(fā)現(xiàn),具有獨(dú)特的特點(diǎn)。例如,極高氧化還原電位和較低最適pH值。研究者證實(shí)自然界中主要是擔(dān)子菌中木材降解菌能夠分泌多種LiP。對黃孢原毛平革菌的研究發(fā)現(xiàn),其基因組中至少有10個不同基因編碼LiP同工酶,這些基因分別被命名為lipA-J,但是仍有許多問題科學(xué)家至今還沒有研究清楚,如為什么這些酶具有很高的氧化還原電位以及在不同生長條件下產(chǎn)生的順序。LiP同工酶不是同時產(chǎn)生的,如lipA、lipD和lipE編碼的酶蛋白只有在碳饑餓的條件下才表達(dá),而lipC只有在限氮培養(yǎng)下才表達(dá)。最近幾年,多名研究者已經(jīng)對木素過氧化物酶的催化機(jī)理和應(yīng)用進(jìn)行大量研究,如研究了LiP的分子結(jié)構(gòu)特點(diǎn),結(jié)合位點(diǎn),翻譯后修飾,基因重組、同源性分析[8],不同來源真菌LiP的異同點(diǎn),LiP在環(huán)境修復(fù)和紙漿漂白工業(yè)中的應(yīng)用[4],LiP的固定化工藝[11]和非水相催化的機(jī)理[12]等。

        表1是最近幾年報道的能在液體或固體培養(yǎng)中產(chǎn)生木素過氧化物酶的9種真菌,從表中能看到木腐真菌能夠分泌多種LiP同工酶,P. chrysosporium分泌的同工酶多達(dá)10個,Trametes versicolor甚至可分泌16種同工酶。這些木素過氧化物酶具有共性,分子量38-50 kD,等電點(diǎn)大約pI3.0-4.0。而來自放線菌Streptomyces viridosporus的Lip分子量只有13.5-17.8 kD[13],這兩類菌產(chǎn)生木素過氧化物酶分子量相差近3倍,具體原因可能是菌種不同引起的。

        盡管有多名研究者指出LiP是木質(zhì)素降解中重要的酶[14],但是至今還不清楚LiP對于自然界中木質(zhì)素的降解能力以及LiP對于不同底物的氧化作用形式。目前LiP酶活大小是以黎蘆醇作為底物進(jìn)行測定,在自然界中LiP降解木質(zhì)素的過程是否與分解藜蘆醇具有完全相同形式尚不清楚。

        1.2 錳過氧化物酶

        錳過氧化物酶(MnP;EC 1.11.1.13)是P. chrysosporium和其他一些白腐真菌分泌到胞外的第二大類過氧化物酶,研究發(fā)現(xiàn)許多擔(dān)子菌在其生活過程中都會分泌MnP。表2列出22種真菌在代謝過程中產(chǎn)生的MnP。經(jīng)研究證實(shí),從其他白腐菌獲得的多種MnP的結(jié)構(gòu)與P.chrysosporium分離到的同工酶非常相似[4]。所有已知分泌MnP的真菌都能分泌多種同工酶,等電點(diǎn)在pI3-7,分子量大約38-50 kD。Urzúa等[21]研究發(fā)現(xiàn)Ceriporiopsis subvermispora可以分泌多達(dá)11種的MnP同工酶。但是研究者也發(fā)現(xiàn)有些真菌產(chǎn)生的錳過氧化物酶具有某些特殊性,

        如Tsukihara 等[22]研究發(fā)現(xiàn)Pleurotus ostreatus MnP2能夠直接氧化一些高分子量的化合物,如Poly R-478和核酸酶A。

        表1 木腐菌(W)和土壤有機(jī)物降解菌(SL)在液體(L)和/或固體(S)培養(yǎng)中產(chǎn)生木素過氧化物酶(LiP)

        P. chrysosporium基因組含有5個mnp基因,分別命名為mnp1-5[18],可以合成多種同工酶[10]。錳過氧化物酶是過氧化氫依賴型的酶,在過氧化氫存在的條件下能催化Mn(II)形成Mn(III),然后Mn(III)再氧化酚類的木質(zhì)素化合物。P. chrysosporium中錳過氧化物酶的催化循環(huán)形式在所有的木腐真菌中都相似。研究證實(shí)MnP的分子結(jié)構(gòu)與LiP結(jié)構(gòu)很相似,而且通過晶體X-射線衍射技術(shù)發(fā)現(xiàn)P. chrysosporium中MnP底物結(jié)合位點(diǎn)包括多個保守氨基酸,如MnP1通過Glu35、Glu39和 Asp179結(jié)合一個Mn2+[23],而且這些氨基酸殘基在幾乎所有真菌的錳過氧化物酶中都是保守的[14]。近年來,利用固定化技術(shù)固定錳過氧化物酶可以去除紡織工業(yè)的污水[24]。

        1.3 漆酶

        漆酶(benzenediol:oxygen oxidoreductase;EC 1.10.3.2)是一類含銅的蛋白質(zhì),能夠以酚類化合物作為氫供體還原分子氧生成水。在某些介質(zhì)存在下,非酚類化合物也能夠被氧化,因此這類酶逐漸被應(yīng)用到紙漿漂白工藝上[37]。到目前為止,除了植物病原菌和木腐真菌外,還有子囊菌屬、曲霉屬和彎孢屬等多種土壤有機(jī)物降解菌也能分泌漆酶,幾乎所有種類的白腐菌都能在一定程度上產(chǎn)生漆酶[3]。來自不同真菌的漆酶,其性質(zhì)差別較大,底物也是各不相同[38]。類似于其他一些過氧化物酶,漆酶也是由一個復(fù)雜的相互聯(lián)系的基因簇所編碼。到目前為止,已有17株真菌的漆酶基因被克隆,其中部分菌的漆酶基因已經(jīng)得到表達(dá),但是不同真菌漆酶基因表達(dá)量差別較大。

        表3列出了44株來自木材降解和土壤有機(jī)物降解的真菌,這些真菌所分泌的漆酶同工酶的數(shù)量、等電點(diǎn)和分子量等特性,從表中可以看出不同真菌的最適pH都在酸性范圍。不同真菌來源的漆酶分子量差別較大。例如,來自Agaricus bisporus的漆酶分子量為40 kD,而來自Rhizoctonia solani的分子量為170 kD。根據(jù)漆酶分子量大小,Camarero等[39]推斷漆酶進(jìn)行木質(zhì)素降解時不能進(jìn)入木材內(nèi)部,可能漆酶氧化某些化合物形成穩(wěn)定的活躍小分子,這些活躍的小分子充當(dāng)氧化還原的媒介,從菌絲表面滲透到酶分子而不能擴(kuò)散到達(dá)木質(zhì)纖維素內(nèi)部進(jìn)行降解[38]。自然界中木腐真菌基本都分泌漆酶,土壤有機(jī)物降解菌中只有部分子囊菌分泌漆酶。例 如,Aspergillus nidulans,Melanocarpus albomyces,Marasminus quercophilus等。Kiiskinen等[40]研 究發(fā)現(xiàn)某些使植物致病的子囊菌中也分泌漆酶,如Melanocarpus albomyces和 Neurospora crassa。 表 3顯示,有幾種真菌分泌多個漆酶同工酶,如白腐菌Flavodon(Irpex)flavus至少分泌13種漆酶同工酶,根據(jù)等電點(diǎn)不同分為兩大類,一類是等電點(diǎn)在pI4-6的有7種;另一大類包涵至少6種pI<3的同工酶[16]。表3中所列漆酶同工酶的分子量在43-99 kD之間,這些酶絕大多數(shù)是單體酶,但是也有部分同工酶是二聚體,可能漆酶酶活需要兩個相同亞基結(jié)合在一起才有活性,因此,表3中看到兩個同工酶分子量大小相差約兩倍。例如,擔(dān)子菌Pleurotus

        pulmonarius[41]和子囊菌Rhizoctonia solani[42]。漆酶利用各種各樣的酚類化合物而不是酪氨酸作為氫供體把O2還原生成水[3]。最近研究發(fā)現(xiàn),漆酶在螯合劑存在的情況下,除了能氧化酚類化合物,還能氧化Mn2+形成Mn3+。Schlosser & H?fer[35]從Stropharia rugosoannulata獲得漆酶并在草酸和蘋果酸作為螯合劑的情況下,能夠氧化土壤中的有機(jī)物。此外,真菌T. versicolor漆酶的作用方式與Stropharia rugosoannulata類似[4]。Schlosser & H?fer研究證實(shí),在Mn2+和蘋果酸存在的情況下,漆酶能產(chǎn)生Mn3+-蘋果酸復(fù)合物,這個復(fù)合物啟動隨后的一系列反應(yīng)產(chǎn)生H2O2,然后H2O2激活過氧化物酶所催化的各種反應(yīng)進(jìn)行降解。

        表2 木腐菌(W)和土壤有機(jī)物降解菌(SL)在液體和/或固體培養(yǎng)基中產(chǎn)生錳過氧化物酶(MnP)

        1.4 多功能過氧化物酶

        多功能過氧化物酶(VPs)首先在Pleurotus eryngii[10]中被發(fā)現(xiàn),隨后在其他種類的Pleurotus和Bjerkandera中都發(fā)現(xiàn)該酶的存在,并且研究了多個白腐菌中多功能過氧化酶的底物結(jié)合位點(diǎn)保守氨基酸和作用[72]。國內(nèi)浙江大學(xué)陳敏等[73]從食用菌杏鮑菇中得到多功能過氧化物酶,并研究該酶性質(zhì)。多功能過氧化物酶和漆酶被認(rèn)為在木質(zhì)素的解聚中起作用。多功能過氧化物酶的起源和分布至今不是很清楚,只在少數(shù)幾種Agaricales和Polyporales中發(fā)現(xiàn),經(jīng)過研究發(fā)現(xiàn)來自Agaricales和Polyporales的多功能過氧化物酶似乎獨(dú)立進(jìn)化,它們之間并沒有表現(xiàn)出比較近的親緣關(guān)系[14]。多功能過氧化物酶代表真菌所分泌的既具有部分木質(zhì)素過氧化物酶特性,又具有某些錳過氧化物酶特性的一類獨(dú)特的過氧化物酶,但是對于多功能過氧化物酶的作用機(jī)理尚不清楚。Busse等[74]研究發(fā)現(xiàn),如果在反應(yīng)體系中缺乏木質(zhì)素過氧化物酶常見的作用底物黎蘆醇和錳過氧化酶的作用底物Mn2+情況下,該酶又具有一些不同于木素過氧化物酶和錳過氧化物酶的特點(diǎn),降解過程與H2O2濃度有直接關(guān)系。Bernini等[75]利用氨基酸的定點(diǎn)突變技術(shù)研究P. eryngii的VPs的分子結(jié)構(gòu)和催化特性。Morgenstern等[14]研究結(jié)果表明多功能過氧化物酶的分布可能比現(xiàn)在已知的范圍更加廣泛。研究者推斷多功能過氧化物可能與其他一些

        含亞鐵血紅素的過氧化物酶具有相似的催化機(jī)理。到目前為止,已發(fā)現(xiàn)的多功能過氧化物比較少,也沒有進(jìn)行系統(tǒng)的研究,因此對于其相關(guān)基因和基因組鮮有報道。

        上述的幾種酶是木質(zhì)素降解過程中比較重要的酶,至于對不同菌種、特別是來源于不同自然環(huán)境的真菌降解過程究竟哪類酶起主要作用,還沒有定論[6]??茖W(xué)家還需要探索在復(fù)雜的自然環(huán)境中不同酶催化木質(zhì)素降解的先后順序,只有這樣才可能在工業(yè)生產(chǎn)中充分利用木質(zhì)纖維素原料。

        2 木質(zhì)素降解酶的基因表達(dá)和基因組學(xué)

        2.1 木質(zhì)素降解酶的基因表達(dá)

        生物質(zhì)預(yù)處理的主要目的是破壞木質(zhì)素的包裹作用,使纖維素和半纖維素暴露出來,利于后面的酶水解能形成發(fā)酵糖類[76],然而當(dāng)前生物預(yù)處理效率比較低,不能滿足現(xiàn)代化工業(yè)生產(chǎn)的需要,同時上述的4種過氧化物酶即使在菌絲存在情況下也很快失活。許多研究者希望利用基因工程技術(shù)提高過氧化物酶的產(chǎn)量,因此對白腐菌的多個過氧化物酶基因進(jìn)行克隆、同源[77]和異源宿主的過量表達(dá)。在蛋白質(zhì)表達(dá)體系中,異源宿主表達(dá)高效更能滿足工業(yè)化生產(chǎn)的需要。P. chrysosporium的木素過氧化物酶基因在桿狀病毒中得到有活性的表達(dá)[78],隨后在大腸桿菌[79]、米曲霉[80]、黑曲霉[81]、構(gòu)巢曲霉[82]和畢赤酵母[83]中都得到表達(dá)。另外來自Bjerkandera adusta多功能過氧化物酶也在大腸桿菌中以可溶形式得到過量表達(dá)[84]。雖然多株真菌中木質(zhì)素降解酶基因在細(xì)菌和真菌等多個表達(dá)體系中得到表達(dá),但是木質(zhì)素降解酶基因的表達(dá)量和酶活都不高,其中對于基因啟動子序列、基因轉(zhuǎn)錄水平的調(diào)控因子等理解不夠深入[85],因此今后研究中還需要尋找新的高效表達(dá)體系。

        2.2 木質(zhì)素降解酶的基因組學(xué)

        近年基因組學(xué)發(fā)展迅速,出現(xiàn)了宏基因組學(xué)、比較基因組學(xué)、功能基因組學(xué)、結(jié)構(gòu)基因組學(xué)和蛋白質(zhì)相互作用組學(xué)等。木質(zhì)素在自然界的降解是一個非常復(fù)雜的過程,至今人類還沒有完全清楚。通過基因組學(xué)研究,人類期待可以更好理解木質(zhì)素降解過程。對于真菌基因組學(xué)研究已經(jīng)取得了一些進(jìn)步,如P. chrysosporium基因組信息和基因模式于2002年公布[18],隨后又公布了轉(zhuǎn)基因組學(xué)信息[86],所有的研究成果隨時公布在www.jgi.doe.gov/whiterot上。Kotik等[87]利用基因組步移技術(shù),結(jié)合兼并引物設(shè)計法和宏基因組學(xué)等技術(shù),已經(jīng)從環(huán)境樣品中獲得幾個公認(rèn)的木聚糖酶基因;Xu等[88]利用宏基因組庫的方法已經(jīng)從深海沉積物環(huán)境DNA樣品中獲得兩個獨(dú)特的堿性羥化酶基因,在惡臭假單胞菌和熒光假單胞菌中成功表達(dá)。利用比較基因組學(xué),F(xiàn)ernández-Fueyo等[89]研究P. chrysosporium和C. subvermispora基因組差異,希望尋找到這兩株真菌降解能力差異的根本原因。借助基因組學(xué)的研究成果可以從自然界中尋找新的微生物或在已知微生物中尋找新的木質(zhì)素降解基因而避免使用傳統(tǒng)的活力篩選方法,為將來木質(zhì)纖維素降解基因的研究提供一個新的思路,也可以利用宏基因組學(xué)建立某個環(huán)境下的木質(zhì)素降解的微生物群落種類。預(yù)期在不久的將來可以利用上述研究手段發(fā)現(xiàn)木質(zhì)素降解過程中的關(guān)鍵基因或關(guān)鍵酶,或借助基因組學(xué)進(jìn)一步尋找新的啟動子、調(diào)控元件來獲得更多有活性的重組蛋白[85]。

        3 展望

        降低木質(zhì)纖維素預(yù)處理的成本,提高木質(zhì)素降解酶的產(chǎn)量是解決這個問題的關(guān)鍵。一方面可以把木質(zhì)素降解酶進(jìn)行聯(lián)合固定化降解木質(zhì)素降低生物預(yù)處理費(fèi)用[90],或者利用多種微生物混合培養(yǎng),提高生物處理的速度。例如,Trametes versicolor和Candida sp. HSD07A在液體培養(yǎng)基中混合培養(yǎng)可以顯著提高前者的漆酶酶活[91];另一方面在已有的基因工程和基因組學(xué)研究成果的基礎(chǔ)上,結(jié)合轉(zhuǎn)錄組學(xué)[92]和蛋白質(zhì)分泌組學(xué)[93]的研究成果,研究者才能更好的理解木質(zhì)素降解真菌的遺傳學(xué)和生理學(xué)的調(diào)控機(jī)理。也可以考慮把木質(zhì)素降解酶的基因轉(zhuǎn)入生物燃料植物,在植物收獲后直接進(jìn)行原位降解,減少運(yùn)輸和酶的生產(chǎn)許多環(huán)節(jié),或者利用木質(zhì)素合成基因在生物燃料類植物中合成有規(guī)律的、較容易被單一木質(zhì)素降解酶分解的人工定向木質(zhì)素新植株。

        [1]Fernández-Fueyo E, Ruiz-Due?as FJ, Miki Y, et al. Lignin-degrading

        peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora[J]. The Journal of Biological Chemistry, 2012, 287(20):16903-16916.

        [2]Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1):10-18.

        [3]Strong PJ, Claus H. Laccase:a review of its past and its future in bioremediation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(4):373-434.

        [4]Elisashvili V, Kachlishvili E. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes[J]. Journal of Biotechnology, 2009, 144(1):37-42.

        [5]Miki Y, Ichinose H, Wariishi H. Molecular characterization of lignin peroxidase from the white-rot basidiomycete Trametes cervina:a novel fungal peroxidase[J]. FEMS Microbiology Letters, 2010, 304(1):39-46.

        [6]Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6):1458-1480.

        [7]Singh D, Chen SL. The white-rot fungus Phanerochaete chrysosporium:conditions for the production of lignin-degrading enzymes[J]. Applied Microbiology and Biotechnology, 2008, 81(3):399-417.

        [8]Lundell TK, M?kel? MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review[J]. Journal of Basic Microbiology, 2010, 50(1):5-20.

        [9]Yang JS, Ni JR, Yuan HL, et al. Biodegradation of three different wood chips by Pseudomonas sp. PKE117[J]. International Biodeterioration and Biodegradation, 2007, 60(2):90-95.

        [10]Heinfling A, Ruiz-Due?as FJ, Martínez MJ, et al. A study on reducing substrates of manganese oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta[J]. FEBS Letters, 1998, 428(3):141-146.

        [11]Cheng XB, Jia R, Li PS, et al. Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17 and decolorization of azo dyes by the enzyme[J]. Enzyme and Microbial Technology, 2007, 41(3):258-264.

        [12]Patel DS, Aithal RK, Krishna G, et al. Nano-assembly of manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueous and non-aqueous media[J]. Colloids and Surfaces B:Biointerfaces, 2005, 43(1):13-19.

        [13]Nascimento HJ, Silva JG. Purification of lignin peroxidase isoforms from Streptomyces viridosporus T7A by hydrophobic based chromatographies[J]. World Journal of Microbiology and Biotechnology, 2008, 24(9):1973-1975.

        [14]Morgenstern I, Klopman S, Hibbett DS. Molecular Evolution and diversity of lignin degrading heme peroxidases in the agaricomycetes[J]. Journal of Molecular Evolution, 2008, 66(3):243-257.

        [15]Bonugli-Santos RC, Durrant LR, Silva MD, et al. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi[J]. Enzyme and Microbial Technology, 2010, 46(1):32-37.

        [16]Raghukumar C, D’souza TM, Thorn RG, et al. Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment[J]. Applied Microbiology and Biotechnology, 1999, 65(5):2103-2111.

        [17]Hofrichter M, Vares T, Kalsi M, et al. Production of ligninolytic enzymes and organic acids, and mineralization of14C-labeled lignin during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma frowardii[J]. Applied and Environmental Microbiology, 1999, 65(5):1864-1870.

        [18]Martinez D, Larrondo LF, Putnam N, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78[J]. Nature Biotechnology, 2004, 22(6):695-700.

        [19]Hirai H, Sugiura M, Kawai S, et al. Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624[J]. FEMS Microbiology Letters, 2005, 246(1):19-24.

        [20]Vares T, Kalsi M, Hatakka A. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiate during solid-state fermentation of wheat straw[J]. Applied and Environmental Microbiology, 1995, 61(10):3515-3520.

        [21]Urzúa U, Larrondo LF, Lobos S, et al. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora[J]. FEBS Letters, 1995, 371(2):132-136.

        [22]Tsukihara T, Honda Y, Sakai R, et al. Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2[J]. Applied and Environmental Mocrobiology, 2008, 74

        (9):2873-2881.

        [23]Sundaramoorthy M, Youngs HL, Gold MH, et al. High-resolution crystal structure of manganese peroxidase:substrate and inhibitor complexes[J]. Biochemistry, 2005, 44(17):6463-6470.

        [24]Iqbal HM, Asgher M. Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04[J]. Protein and Peptide Letters, 2013, 20(5):591-600.

        [25]Lankinen VP, Bonnen AM, Anton LH, et al. Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid substrate cultures of Agaricus bisporus[J]. Applied Microbiology and Biotechnology, 2001, 55(2):170-176.

        [26]Steffen KT, Hofrichter M, Hatakka A. Purification and characterization of manganese peroxidases from the litter decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla[J]. Enzyme and Microbial Technology, 2002, 30(4):550-555.

        [27]Ziegenhagen D, Hofrichter M. A simple and rapid method to gain high amounts of manganese peroxidase with immobilized mycelium of the agaric white-rot fungus Clitocybula dusenii[J]. Applied Microbiology and Biotechnology, 2000, 53(5):553-557.

        [28]Sklenara J, Niku-Paavola ML, Santos S, et al. Isolation and characterization of novel pI 4. 8 MnP isoenzyme from white-rot fungus Irpex lacteus[J]. Enzyme and Microbial Technology, 2010, 46(7):550-556.

        [29]Boer CG, Obici L, de Souza CGM, et al. Purification and some properties of Mn peroxidase from Lentinula edodes[J]. Process Biochemistry, 2006, 41(5):1203-1207.

        [30]Petruccioli M, Frasconi M, Quaratino D, et al. Kinetic and redox properties of MnP II, a major manganese peroxidase isoenzyme from Panus tigrinus CBS 577. 79[J]. Journal of Biological Inorganic Chemistry, 2009, 14(8):1153-1163.

        [31]Rubia T, De la Linares A, Pérez J, et al. Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba[J]. Research in Microbiology, 2002, 153(8):547-554.

        [32]Hakala TK, Lundell T, Galkin S, et al. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips[J]. Enzyme and Microbial Technology, 2005, 36(4):461-468.

        [33]Martínez MJ, Ruiz-Due?as GF, Martínez AT. Purification and catalytic properties of two manganese isoenzymes from Pleurotus eryngii[J]. European Journal of Biochemistry, 1996, 237(2):424-432.

        [34]Giardina P, Palmieri G, Fontanella B, et al. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust[J]. Archives Biochemistry and Biophysics, 2000, 376(1):171-179.

        [35]Schlosser D, H?fer C. Laccase-catalyzed oxidation of Mn2+in the presence of natural Mn3+chelators as a novel source of extracellular H2O2production and its impact on manganese peroxidase[J]. Applied Microbiology and Biotechnology, 2002, 68(7):3514-3521.

        [36]Bermek H, Yaz?c? H, ?ztürk H, et al. Purification and characterization of manganese peroxidase from wood-degrading fungus Trichophyton rubrum LSK-27[J]. Enzyme and Microbial Technology, 2004, 35(1):87-92.

        [37]Liew CY, Husaini A, Hussain H. Lignin biodegradation and ligninolytic enzyme studiesduring biopulping of Acacia mangium wood chips by tropical white rot fungi[J]. World Journal of Microbiol Biotechnol, 2011, 27(10):1457-1468.

        [38]Baldrian P. Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30(2):215-242.

        [39]Camarero S, Ibarra D, Martínez MJ, et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes[J]. Applied and Environmental Microbiology, 2005, 71(4):1775-1784.

        [40]Kiiskinen LL, Viikari L, Kruus K. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces[J]. Applied Microbiology and Biotechnology, 2002, 59(2-3):198-204.

        [41]Souza CGM, Peralta RM. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium[J]. Journal of Basic Microbiology, 2003, 43(4):278-286.

        [42]Aslam MS, Aishy A, Samra ZQ, et al. Identification, purification and characterization of a novel extracellular laccase from Cladosporium Cladosporioides[J]. Biotechnology & Biotechnological Equipment, 2012, 26(6):3344-3350.

        [43]Koroleva OV, Gavrilova VP, Stepanova EV, et al. Production of lignin modifying enzymes by co-cultivated White-Rot Fungi Cerrena

        maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima[J]. Enzyme and Microbial Technology, 2002, 30(4):573-580.

        [44]Salas C, Lobos S, Larrain J, et al. Properties of laccase isoenzymes produced by the basidiomycetes Ceriporiopsis subvermispora[J]. Biotechnology and Applied Biochemistry, 1995, 21(3):323-333.

        [45]Lisova ZA, Lisov AV, Leontievsky AA. Two laccase isoforms of the basidiomycete Cerrena unicolor VKMF-3196:Induction, isolation and properties[J]. Journal of Basic Microbiology, 2010, 50(1):72-82.

        [46]Schneider P, Caspersen MB, Mondorf K, et al. Characterization of a Coprinus cinereus laccase[J]. Enzyme and Microbial Technology, 1999, 25(6):502-508.

        [47]Saparrat MCN, Guillén F, Arambarri AM, et al. Induction, isolation, and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida[J]. Applied Microbiology and Biotechnology, 2002, 68(4):1534-1540.

        [48]Do Rosário Freixo M, Karmali A, Arteiro JM. Production of polygalacturonase from Coriolus versicolor grown on tomato pomace and its chromatographic behaviour on immobilized metal chelates[J]. Journal of Industrial Microbiology and Biotechnology, 2008, 35(6):475-484.

        [49]Zhang GQ, Wang YF, Zhang XQ, et al. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima[J]. Process Biochemistry, 2010, 45(5):627-633.

        [50]Perie FH, Reddy GVB, Blackburn NJ, et al. Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens[J]. Archives of Biochemistry and Biophysics, 1998, 353(2):349-355.

        [51]Wu YR, Luo ZH, Chow RKK, et al. Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2[J]. Bioresource Technology, 2010, 101(24):9772-9777.

        [52]D’Souza TM, Merritt CS, Reddy CA. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum[J]. Applied and Environmental Microbiology, 1999, 65(12):5307-5313.

        [53]Nagai M, Sato T, Watanabe H, et al. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes[J]. Applied Microbiology and Biotechnology, 2002, 60(3):327-335.

        [54]Iyer G, Chattoo BB. Purification and characterization of laccase from the rice blast fungus Magnaporthe grisea[J]. FEMS Microbiology Letters, 2003, 227(1):121-126.

        [55]Schückel J, Matura A, van Pée KH. One-copper laccase-related enzyme from Marasmius sp. :purification, characterization and bleaching of textile dyes[J]. Enzyme and Microbial Technology, 2011, 48(3):278-284.

        [56]Farnet AM, Criquet S, Pocachard E, et al. Purification of a new isoform of laccase from a Marasmius quercophilus strain isolated from a cork oak litter(Quercus suber L. )[J]. Mycologia, 2002, 94(5):735-740.

        [57]Qiu WH, Chen HZ. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin[J]. Bioresource Technology, 2008, 99(13):5480-5484.[58]Quaratino D, Federici F, Petruccioli M, et al. Production, purification and partial characterisation of a novel laccase from the whiterot fungus Panus tigrinus CBS 577. 79[J]. Antonie van Leeuwenhoek, 2007, 91(1):57-69.

        [59]Sathishkumar P, Murugesan K, Palvannan T. Production of laccase from Pleurotus florida using agro-wastes and efficient decolorization of Reactive blue 198[J]. Journal of Basic Microbiology, 2010, 50(4):360-367.

        [60]Mansur M, Arias ME, Copa-Pati?o JL, et al. The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities[J]. Mycologia, 2003, 95(6):1013-1020.

        [61]Kalme S, Jadhav S, Jadhav M, et al. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112[J]. Enzyme and Microbial Technology, 2009, 44(2):65-71.

        [62]Jaouaní A, Guillén F, Penninckx MJ, et al. Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater[J]. Enzyme and Microbial Technology, 2005, 36(4):478-486.

        [63]Vite-Vallejo O, Palomares LA, Dantán-González E, et al. The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase[J]. Enzyme and Microbial Technology, 2009, 45(3):233-239.

        [64]Di Nardo C, Cinquegrana A, Papa S, et al. Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem[J]. Soil Biology & Biochemistry, 2004,

        36(10):1539-1544.

        [65]Cambria MT, Cambria A, Ragusa S, et al. Production, purification and properties of an extracellular laccase from Rigidoporus lignosus[J]. Protein Expression and Purification, 2000, 18(2):141-147.

        [66]Shleev SV, Morozova O, Nikitina O, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes[J]. Biochimie, 2004, 86(9-10):693-703.

        [67]Galhaup C, Goller S, Peterbauer CK, et al. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions[J]. Microbiology, 2002, 148(7):2159-2169.

        [68]Jung H, Xu F, Li KC. Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7[J]. Enzyme and Microbial Technology, 2002, 30(2):161-168.

        [69]Chakroun H, Mechichi T, Martinez MJ, et al. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride:Application on bioremediation of phenolic compounds[J]. Process Biochemistry, 2010, 45(4):507-513.

        [70]Sadhasivam S, Savitha S, Swaminathan K, et al. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1[J]. Process Biochemistry, 2008, 43(7):736-742.

        [71]Liers C, Ullrich R, Pecyna M, et al. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha[J]. Enzyme and Microbial Technology, 2007, 41(6):785-793.

        [72]Ruiz-Due?as FJ, Morales M, García E, et al. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases[J]. Journal of Experimental Botany, 2009, 60(2):441-52.

        [73]陳敏, 姚善涇, 張虹, 等. 食用菌杏鮑菇中一個多功能氧化酶純化和特性研究[J]. 中國化學(xué)工程, 2010, 18(5):824-829.

        [74]Busse N, Wagner D, Kraume M, et al. Reaction kinetics of versatile peroxidase for the degradation of lignin compounds[J]. American Journal of Biochemistry and Biotechnology, 2013, 9(4):365-394.

        [75]Bernini C, Pogni R, Basosi R, et al. Prediction of hydrogenbonding networks around tyrosyl radical in P. eryngii versatile peroxidase W164Y variants:a QM/MM MD study[J]. Molecular Simulation, 2013, DOI:10. 1080/08927022. 2013. 822967.

        [76]Menon V, Rao M. Trends in bioconversion of lignocellulose:Biofuels, platform chemicals & biorefinery concept[J]. Progress in Energy and Combustion Science, 2012, 38(4):522-550.

        [77]Irie T, Honda Y, Watanabe T, et al. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus[J]. Applied Microbiology and Biotechnology, 2001, 55(5):566-570.

        [78]Johnson TM, Pease EA, Li JK, et al. Production and characterization of recombinant lignin peroxidase isozyme H2 from Phanerochaete chrysosporium using recombinant baculovirus[J]. Archives Biocheistry and Biophysics, 1992, 296(2):660-666.

        [79]Nie GJ, Reading NS, Aust SD. Expression of the lignin peroxidase H2gene from Phanerochaete chrysosporium in Escherichia coli[J]. Biochemical and Biophysical Research Communications, 1998, 249(1):146-150.

        [80]Stewart P, Whitwam RE, Kersten PJ, et al. Efficient expression of Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae[J]. Applied and Environmental Microbiology, 1996, 62(3):860-864.

        [81]Conesa A, van den Hondel CAMJJ, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Applied and Environmental Microbiology, 2000, 66(7):3016-3023.

        [82]Larrondo LF, Lobos S, Stewart P, et al. Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2001, 67(5):2070-2075.

        [83]Wang HK, Lu FP, Sun YF, et al. Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica[J]. Biotechnology Letters, 2004, 26(20):1569-1573.

        [84]Mohor?i? M, Ben?ina M, Friedrich J, et al. Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli[J]. Bioresource Technology, 2009, 100(2):851-858.

        [85]Janusz G, Kucharzyk KH, Pawlik A, et al. Fungal laccase, manganese peroxidase and lignin peroxidase:gene expression and regulation[J]. Enzyme and Microbial Technology, 2013, 52(1):1-12.

        [86]Minami M, Kureha O, Mori M, et al. Long serial analysis

        of gene expression for transcriptome profiling during the initiation or lignolytic enzymes production in Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2007, 75(3):609-618.

        [87]Kotik M. Novel genes retrieved from environmental DNA by polymerase chain reaction:current genome-walking techniques for future metagenome applications[J]. Journal of Biotechnology, 2009, 144(2):75-82.

        [88]Xu MX, Xiao X, Wang FP. Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment[J]. Extremophiles, 2008, 12(2):255-262.

        [89]Fernández-Fueyo E, Ruiz-Due?as FJ, Ferreira P, et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis[J]. Proceedings of the National Academy of Sciences, 2012, 109(14):5458-5463.

        [90]Ran YH, Che FZ, Chen WQ. Co-Immobilized lignin peroxidase and manganese peroxidase from coriolus versicolor capable of decolorizing molasses waste water[J]. Applied Mechanics and Materials, 2012, 138-139:1067-1071.

        [91]Wang HL, Yu GL, Li P, et al. Overproduction of Trametes versicolor laccase by making glucose starvation using yeast[J]. Enzyme and Microbial Technology, 2009, 45(2):146-149.

        [92]Yu GJ, Wang M, Huang J, et al. Deep insight into the ganoderma lucidumby comprehensive analysis of its transcriptome[J]. PLoS ONE, 2012, 7(8):44031-44040.

        [93]Salvachúa D, Martínez AT, Tien M, et al.Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment[J].Biotechnology for Biofuels, 2013, 6:115-129.

        (責(zé)任編輯 狄艷紅)

        Progress in Studies of Ligninolytic Enzymes and Genes

        Dong Xiuqin1Yuan Hongli2Gao Tongguo3
        (1. Beijing Jili University,Beijing 102202;2. State Key Lab for Agrobiotechnology,College of Biological Sciences,China Agricultural University,Beijing 100193;3. College of Life Sciences,Agricultural University of Hebei,Baoding 071000)

        Efficient enzymatic conversion of renewable biomass becomes the focus of intensive research currently throughout the world. Lignocellulose is comprised mainly of cellulose, hemicelluloses and lignin. Removal of lignin from the complex lignocellulosic matrix is considered as the key process of comprehensive lignocellulose utilization, which renders recalcitrant lignocellulosic biomass more accessible to the hydrolytic enzyme system. Biodegradation of lignin by fungi is more environment friendly and less energy intensive, compared to other pretreatment methods. Its mechanism is based principally on the activity of different extracellular enzymes. Here we reviewed the recent progress in characteristics of fungal lignin-degrading enzymes, including lignin peroxidase(LiP), manganese peroxidase(MnP), laccase and versatile peroxidase(VP), and also their applications in genetic engineering and genomics research.

        Lignin Biodegradation Peroxidase Laccase Genomics

        2014-03-20

        董秀芹,女,副教授,研究方向:木質(zhì)素降解;E-mail:wlcdxq@163.com

        袁紅莉,女,博士,教授,研究方向:生物降解及生物修復(fù);E-mail:hliyuan@cau.edu.cn

        猜你喜歡
        漆酶同工酶木素
        菌源同工酶分析揭示菌源DPP4同工酶是潛在的抗2型糖尿病靶點(diǎn)
        遺傳(2023年8期)2023-08-25 06:59:00
        缺糖基轉(zhuǎn)鐵蛋白與線粒體同工酶在酒精性肝病中的臨床應(yīng)用
        工業(yè)堿木素不同純化方法的效果比較
        以竹粉為基質(zhì)固態(tài)培養(yǎng)蟲擬蠟菌及其產(chǎn)漆酶條件研究
        漆酶用于環(huán)境修復(fù)的研究及應(yīng)用前景
        新型含1,2,3-三氮唑的染料木素糖綴合物的合成
        青霉菌產(chǎn)漆酶的研究及在木質(zhì)素降解中的應(yīng)用
        香灰菌傳代對銀耳栽培的影響
        煙梗中木素的結(jié)構(gòu)分析
        中國造紙(2014年1期)2014-03-01 02:10:09
        茶葉多酚氧化酶及其同工酶的研究進(jìn)展
        茶葉通訊(2014年2期)2014-02-27 07:55:39
        后入到高潮免费观看| 国内偷拍视频一区二区| 一区二区三区观看视频在线| 麻豆国产一区二区三区四区| 中国老熟妇自拍hd发布| 日韩成人精品在线| 久久精品中文字幕免费| 一本一道久久精品综合| 国产午夜福利片| 欧美精品一级| 91麻豆精品激情在线观最新| 欲女在线一区二区三区| 精品国产一区av天美传媒| 色999欧美日韩| 日本一区二区高清在线观看| 日本一区二区三区免费精品| 狠狠噜天天噜日日噜视频麻豆| 成人午夜免费无码视频在线观看| 日韩中文字幕一区二十| 精品无人区无码乱码毛片国产| a级毛片无码免费真人| 国产精品三级在线专区1| 久久黄色精品内射胖女人| 无套中出丰满人妻无码| 国产精品久久久久久人妻精品| 亚洲日韩AV无码美腿丝袜| 亚洲男人免费视频网站| 日本特黄特色特爽大片| 无码不卡高清毛片免费| 国产一级黄色性生活片| 伊人久久综合无码成人网| 国产av电影区二区三区曰曰骚网| 偷拍区亚洲区一区二区| 日韩一区二区三区熟女| 777精品久无码人妻蜜桃| 婷婷九月丁香| 亚洲av成人无网码天堂| 五月av综合av国产av| 1000部拍拍拍18勿入免费视频下载 | 免费无码av一区二区三区| 宅男噜噜噜|