趙 雁
(樂山職業(yè)技術(shù)學(xué)院 電子信息工程系, 四川 樂山 614000)
自從1983年M. Cohen等[1]提出Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)以來,由于它在信號和圖像處理,聯(lián)想記憶,組合優(yōu)化等中的廣泛應(yīng)用,因此受到了廣泛的關(guān)注和研究[2-13].由于脈沖,隨機(jī)干擾和反應(yīng)擴(kuò)散,時滯Cohen-Grossberg脈沖隨機(jī)反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò)的平衡點(diǎn)往往不存在,這時,往往研究其吸引集的存在性[14-16].事實(shí)上,在實(shí)際應(yīng)用當(dāng)中,這種穩(wěn)定就能夠滿足人們的需求[17].利用Ito公式,時滯微分不等式和M-矩陣性質(zhì),獲得了變時滯Cohen-Grossberg脈沖隨機(jī)反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò)的吸引集存在的充分條件.
為了方便,引入一些符號和定義.
Rn是實(shí)n維列向量空間.N{1,2,…,n}.R+[0,+∞).Rm×n記作m×n實(shí)矩陣集.用T記作n×n的單位矩陣.對A,B∈Rm×n或者A,B∈Rn,A≥B(A>B)表示A和B中的每一個對應(yīng)元素都滿足不等式“≥(>)”.特別地,如果矩陣A≥0和向量z>0,則他們分別被稱為非負(fù)矩陣和正向量.E為數(shù)學(xué)期望.
令C[X,Y]表示從集合X到集合Y的連續(xù)映射集.并記CC[[-τ,0],Rn].
PC[X,Y]={φ(t):X→Y|φ(t)除可數(shù)點(diǎn)外函數(shù)連續(xù),并且在這些可數(shù)點(diǎn)當(dāng)中,函數(shù)φ(t)的左右極限φ-(t),φ+(t)存在,滿足φ+(t)=φ(t)}.并記PCPC[[-τ,0],Rn].
對φ(t)∈C或φ(t)∈PC,定義
[φ(t)]τ=([φ1(t)]τ,…,[φn(t)]τ)T,
討論如下變時滯Cohen-Grossberg脈沖隨機(jī)反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò):
記u=(u1,…,un)T和L2(X)為標(biāo)量值勒貝格可測函數(shù)集.記
為X的L2模.進(jìn)一步,定義模‖u‖為
其中
引理1.1[18]如果ai≥0,bi≥0,i∈N,p>0,q>0,并且1/p+1/q=1,那么
引理1.2設(shè)J是非負(fù)向量,P=(pij)n×n,其中pij≥0(i≠j),Q=(qij)n×n≥0,D=-(P+Q)是非奇異M-矩陣.在初值條件u(t0+s)∈C,s∈[-τ,0]下,設(shè)u(t)=(u1(t),…,un(t))∈C[[t0,∞),Rn]滿足下面不等式條件:
D+u(t)≤Pu(t)+Q[u(t)]τ+J,t≥t0. (2)
如果初值條件滿足
u(t)≤kze-λ(t-t0)-(P+Q)-1J,
t∈[t0-τ,t0],
(3)
其中,k≥0,z=(z1,z2,…,zn)T>0,正數(shù)λ由下面不等式?jīng)Q定
[λI+P+Qeλτ]z<0,
(4)
那么
u(t)≤kze-λ(t-t0)-(P+Q)-1J,t≥t0. (5)
為了獲得所需結(jié)果,需要下列條件:
(A1) 對?j∈N和x∈Rn,都有|fj(x)|≤αj|x|和|gj(x)|≤βj|x|,
(A2) 對?i∈N和s1,s2∈R(s1≠s2),(ci(s1)-ci(s2))/(s1-s2)≥γi>0,
(A4) 存在非負(fù)常數(shù)νij和μij,使得對?u,v∈Rn有
trace[(σi(u,v))(σi(u,v))T]≤
(A5) 存在正數(shù)λ和一向量z滿足
其中
k=1,2,…;
(6)
(A7)
k=1,2,…,
(7)
其中,δk≥1和vk≥1滿足
k=1,2,…,
(8)
其中
(9)
由邊界條件和格林公式得
由條件(A1)~(A5)和不等式|ab|≤a2/2+b2/2得
那么可得
(11)
對充分小的△t>0可得
(12)
由((11))和(12)有
(13)
從上式可得
即
(14)
(15)
t∈[-τ,0],i∈N,
(16)
那么由(14)~(16)式和引理1.2可得
0≤t (17) 假設(shè)對所有的m=1,2,…,k,下列不等式成立 v0v1…vm-1ρi,t∈[tm-1,tm),i∈N, (18) 其中δ0=v0=1.由(A6)~(A7)和(18)式和引理1.1可得 i∈N. (19) 由(18)~(19)式和δk,vk≥1可得 v0v1…vk-1vkρi,t∈[tk-τ,tk],i∈N. (20) 另一方面,由(14)式和vk≥1可得 (21) 由(15),(20)~(21)式和引理1.2可得 v0v1…vk-1vkρi,t∈[tk,tk+1),i∈N. 由遞推法可得 i∈N,t∈[tk,tk+1),k=0,1,2…. 所以,定理2.1證明完畢. 例3.1考慮下面模型 條件(A5)的參數(shù)如下: 取z=(1,1)和λ=0.1可得 設(shè)α1k=α2k=e0.2k/3,β1k+β2k=2e0.2k/3和tk-tk-1=8k,那么 顯然,定理2.1的所有條件成立.故 是(22)式的吸引集. [1] Cohen M, Grossberg S. Absolute stability of global pattern formulation and parallel memory storage by competitive neural net networks[J]. IEEE Trans Syst Man Cybernet,1983,13:815-826. [2] 龍述君. 具有分布時滯的脈沖Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)的指數(shù)穩(wěn)定性[J]. 四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2009,32(1):68-71. [3] 龍述君,張永新,向麗. 具有混合時滯的隨機(jī)細(xì)胞神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[J]. 四川師范大學(xué)學(xué)報(bào):自然科學(xué)版,2012,35(6):796-801. [4] Cao J, Liang J. Boundedness and stability for Cohen-Grossberg neural network with time-varying delays[J]. J Math Anal Appl,2004,296:665-685. [5] Lu K, Xu D, Yang Z. Global attraction and stability for Cohen-Grossberg neural networks with delays[J]. Neural Networks,2006,19:1538-1549. [6] Song Q, Cao J. Stability analysis of Cohen-Grossberg neural network with both time-varying and continuously distributed delays[J]. J Comput Appl Math,2006,197:188-203. [7] Yuan K, Cao J. An analysis of global asymptotic stability of delayed Cohen-Grossberg neural networks via nonsmooth analysis[J]. IEEE Trans Circ Syst,2005,52I(9):1854-1861. [8] Wan L, Zhou Q. Exponential stability of stochastic reaction-diffusion Cohen-Grossberg neural networks with delays[J]. Appl Math Comput,2008,206:818-824. [9] Wang D S, Huang L H. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays[J]. Neural Networks,2014,51:80-95. [10] Mathiyalagan K, Park J H, Sakthivel R, et al. Delay fractioning approach to robust exponential stability of fuzzy Cohen-Grossberg neural networks[J]. Appl Math Comput,2014,230:451-463. [11] Ke Y Q, Miao C F. Stability analysis of inertial Cohen-Grossberg-type neural networks with time delays[J]. Neurocomputing,2013,117:196-205. [12] Wan L, Zhou Q H. Asymptotic behaviors of stochastic Cohen-Grossberg neural networks with mixed time-delays[J]. Appl Math Comput,2013,225:541-549. [13] Wang J L, Wu H N, Guo L. Stability analysis of reaction-diffusion Cohen-Grossberg neural networks under impulsive control[J]. Neurocomputing,2013,106:21-30. [14] Zhao H Y. Invariant set and attractor of nonautonomous functional differential systems[J]. J Math Anal Appl,2003,282:437-443. [15] Xu L G, Xu D Y.p-attracting andp-invariant sets for a class of impulsive stochastic functional differential equations[J]. Comput Math Appl,2009,57:54-61. [16] Huang Y M, Zhu W, Xu D Y. Invariant and attracting set of fuzzy cellular neural networks with variable delays[J]. Appl Math Lett,2009:478-483. [17] Liao X X, Luo Q, Zeng Z G, et al. Global exponential stability in Lagrange sense for recurrent neural networks with time delays[J]. Nonlinear Anal:RWA,2008,9:1535-1557. [18] Berberian S K. Fundamentals of Real Analysis[M]. New York:Springer-Verlag,1999.3 例子