亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        下丘腦對脂類的營養(yǎng)感應(yīng)及其參與食欲調(diào)控的機(jī)制

        2013-12-20 06:08:38張志岐江青艷
        動物營養(yǎng)學(xué)報(bào) 2013年7期
        關(guān)鍵詞:中樞下丘腦食欲

        張志岐 束 剛 江青艷

        (華南農(nóng)業(yè)大學(xué)動物科學(xué)學(xué)院,廣州 510642)

        中樞神經(jīng)系統(tǒng)(CNS)能夠感應(yīng)機(jī)體的營養(yǎng)狀況,并做出適當(dāng)?shù)氖秤{(diào)節(jié)行為和代謝反應(yīng),以維持機(jī)體的能量穩(wěn)態(tài)。能量自我平衡機(jī)制的損壞將會導(dǎo)致食欲和代謝異常,從而引發(fā)厭食癥或肥胖癥等,損害機(jī)體健康。食欲的形成機(jī)制非常復(fù)雜,其中,下丘腦是各種食欲調(diào)節(jié)信號的主要整合中樞。下丘腦促食欲神經(jīng)元神經(jīng)肽/豚鼠相關(guān)蛋白(NPY/AgRP)及抑食欲神經(jīng)元前阿片黑皮質(zhì)素原和可卡因/苯丙胺調(diào)節(jié)轉(zhuǎn)錄肽(POMC/CART)是中樞食欲調(diào)節(jié)的關(guān)鍵[1]。迄今為止,在下丘腦已發(fā)現(xiàn)2種具有能量感應(yīng)功能的蛋白激酶。一種是腺苷酸活化蛋白激酶(AMPK),在低能量狀態(tài)下整合營養(yǎng)和激素信號,提高食欲以維持能量的穩(wěn)態(tài)[2-4];另 一 種 是 哺 乳 動 物 雷 帕 霉 素 靶 蛋 白(mTOR),它可以在高能量狀態(tài),尤其是ATP水平升高時被激活[5]。AMPK的激活可以抑制mTOR信號通路。AMPK和mTOR信號通路為目前熟知并互補(bǔ)的中樞能量感應(yīng)調(diào)控機(jī)制。而近年來最新研究表明,脂類營養(yǎng)物質(zhì)可以直接被特化的能量敏感神經(jīng)元感應(yīng),充當(dāng)能量的傳感器,這些信號整合于下丘腦神經(jīng)元回路,以維持機(jī)體能量穩(wěn)態(tài),進(jìn)而影響食欲[6]。本文綜述了下丘腦對脂類的營養(yǎng)感應(yīng)及其參與食欲調(diào)控的機(jī)制。

        1 下丘腦對脂肪酸的營養(yǎng)感應(yīng)

        下丘腦神經(jīng)元細(xì)胞的能量來源主要是葡萄糖[7],但是神經(jīng)細(xì)胞中含有的大量長鏈脂肪酸(LCFA)與其能量穩(wěn)態(tài)及食欲調(diào)節(jié)密切相關(guān)。越來越多的證據(jù)表明,下丘腦不同區(qū)域的LCFA可以作為能量的傳感器[8],脂肪酸及其代謝產(chǎn)物分別以非代謝依賴性和代謝依賴性營養(yǎng)感應(yīng)2種方式在調(diào)節(jié)能量動態(tài)平衡中扮演著非常重要的角色。

        1.1 下丘腦神經(jīng)元的非代謝依賴性脂肪酸感應(yīng)

        下丘腦神經(jīng)元的非代謝依賴性脂肪酸感應(yīng)是指LCFA直接作用于神經(jīng)元發(fā)揮效應(yīng)。大量研究表明,LCFA可以作為CNS的信號分子,不同類型脂肪酸的作用效應(yīng)和機(jī)制不盡相同。中樞注射油酸(OA)可能通過直接或間接作用于ATP敏感鉀(KATP)通道,提高 POMC神經(jīng)元的活性,下調(diào)

        AgRP和NPY的表達(dá),進(jìn)而降低食欲并減少肝臟糖原的合成,而辛酸則無此效應(yīng),由此表明脂肪酸對食欲的調(diào)節(jié)作用依賴于脂肪鏈的長度[9-10]。也有研究顯示,給大鼠中樞注射OA和二十二碳六烯酸(DHA)等不飽和脂肪酸可以顯著降低食欲和體重。而黑皮質(zhì)素4受體(MC4R)拮抗劑SHU9119幾乎完全消除了OA的厭食效應(yīng)。由此可見,OA和DHA可以通過POMC/MC4R信號途徑降低食欲[11]。有意思的是這個效應(yīng)目前尚存在爭議,因?yàn)槟X中脂肪酸可以作為飽感信號抑制采食,而禁食后血漿中的脂肪酸的濃度不但沒有降低反而升高[12]。而用棕櫚酸鹽處理下丘腦細(xì)胞系mHypoE-44可以顯著提高神經(jīng)元中NPY mRNA的表達(dá)水平,進(jìn)而引起增加能量消耗的正反饋效應(yīng)[13]。但也有研究表明,中樞注射棕櫚酸對食欲無任何影響[11]。最新的研究發(fā)現(xiàn),下丘腦的炎癥發(fā)生是肥胖進(jìn)程中一個重要的決定因素。大鼠中樞注射ω-3和ω-9脂肪酸可以降低食欲和體重,直接逆轉(zhuǎn)食物誘導(dǎo)的下丘腦炎癥反應(yīng)并緩解機(jī)體肥胖癥狀[14]。由此看來,除了藥理學(xué)和基因手段,營養(yǎng)素同樣可以作為治療肥胖的潛在手段。

        下丘腦神經(jīng)元的非代謝依賴性脂肪酸感應(yīng)可能與某些離子通道的活性或脂肪酸膜受體有關(guān)。大量研究證明,脂肪酸可以調(diào)節(jié)許多離子通道,包括 ClC-2 型氯通道[15]和鈣離子(Ca2+)通道[16]等。還有研究表明,KATP通道在下丘腦脂類感應(yīng)中也發(fā)揮了重要的作用[17],并且抑制KATP通道可以消除中樞OA對肝臟代謝的影響[10]。此外,脂肪酸還可通過特異性膜受體調(diào)節(jié)胞內(nèi)信號通路活性。比如,中樞注射ω-3和ω-9脂肪酸可以激活下丘腦的G蛋白偶聯(lián)受體120(GPR120)下游信號通路,進(jìn)而發(fā)揮其在下丘腦的抗炎癥效應(yīng)[14]。還有研究表明,抑制下丘腦神經(jīng)元中的脂肪酸轉(zhuǎn)位酶(FAT/CD36)可以降低OA效應(yīng)約45%,該過程與細(xì)胞內(nèi)脂肪酸的代謝無關(guān)[18]。因此,F(xiàn)AT/CD36在下丘腦腹內(nèi)側(cè)核(VMN)中的脂肪酸敏感神經(jīng)元中可能是作為受體起作用,而非轉(zhuǎn)運(yùn)載體,其作用可能類似于口腔中的脂類感受器[19]。脂肪酸依賴FAT/CD36可能與LCFA激活舌頭味覺細(xì)胞的鈣庫操縱性(SOC)通道相似,通過影響細(xì)胞膜電位而發(fā)揮作用[20]。但目前有關(guān) FAT/CD36作為中樞脂類感受器調(diào)節(jié)食欲和能量平衡的作用及分子機(jī)制以及其在味蕾和下丘腦中的功能存在何種聯(lián)系還有待于進(jìn)一步研究[21]。

        1.2 下丘腦神經(jīng)元的代謝依賴性脂肪酸感應(yīng)

        下丘腦神經(jīng)元的代謝依賴性脂肪酸感應(yīng)是指神經(jīng)元對于LCFA的效應(yīng)依賴于脂肪酸的代謝。與脂肪酸代謝有關(guān)的酶,如乙酰輔酶A羧化酶(ACC)、脂肪酸合成酶(FAS)及肉毒堿棕櫚酰轉(zhuǎn)移酶1(CPT1)等在下丘腦弓狀核(ARC)、VMH及背內(nèi)側(cè)核(DMH)的神經(jīng)元均有分布[22]。細(xì)胞內(nèi)的LCFA在脂酰輔酶A合成酶(ACS)的催化下迅速酯化為長鏈脂肪酸CoA(LCFA-CoAs),進(jìn)而通過CPT1轉(zhuǎn)運(yùn)至線粒體進(jìn)行β-氧化,如圖1所示。乙酰-CoA在ACC的催化下合成丙二酰-CoA,AMPK可以抑制ACC催化乙酰-CoA生成丙二酰-CoA。丙二酰-CoA在丙二酸單酰輔酶A脫羧酶(MCD)的催化下重新生成乙酰-CoA。丙二酰 -CoA可以抑制 CPT1的活性,累積的LCFA-CoA可以激活調(diào)節(jié)食欲的神經(jīng)元。此外,丙二酰-CoA除了作為CPT1的抑制劑,還是FAS的底物,決定了脂肪酸的生物合成。

        遺傳學(xué)和藥理學(xué)證據(jù)都表明改變這些代謝酶的活性均可以調(diào)節(jié)食欲[23]。對VMN神經(jīng)元能量平衡的調(diào)節(jié)機(jī)制研究表明,OA可以通過影響CPT1活性、活性氧(ROS)的形成、ACC和KATP通道的活性等多種途徑來影響VMN神經(jīng)元的活動[18]。細(xì)胞內(nèi)的LCFA-CoA是調(diào)節(jié)能量平衡的重要代謝中間產(chǎn)物。中樞注射脂肪酸合成酶抑制劑C75可以形成C75-CoA,C75-CoA可通過抑制CPT1的活性,增加細(xì)胞內(nèi)LCFA-CoA的聚集,從而降低食欲[24]。LCFA-CoA可以激活下丘腦細(xì)胞膜蛋白激酶C-δ(PKC-δ),而 PKC-δ可以激活KATP通道,后者對于下丘腦脂質(zhì)感應(yīng)和葡萄糖的合成都是必須的[25]。因此,下丘腦的 LCFA-CoA/PKC-δ/KATP通道是一條潛在的下丘腦脂質(zhì)感應(yīng)的信號通路。此外,丙二酰-CoA也是下丘腦一個重要的能量傳感器,其水平的高低可以直接影響食欲。營養(yǎng)過??梢詫?dǎo)致丙二酰-CoA累積從而降低食欲和葡萄糖的合成[26]。ACC活性直接影響丙二酰-CoA的水平。中樞注射AMPK的激動劑(AICAR)可以降低ACC的活性,減少丙二酰 -CoA 的積累并提高食欲[27-28]。而中樞注射脂肪酸合成酶抑制劑C75可以下調(diào)AgRP/NPY表達(dá)和上調(diào)POMC/CART表達(dá),提高下丘腦丙二酰-CoA的水平,起到降低食欲并減少體重的作用[29]。有趣的是,長期節(jié)食減肥可以提高丙二酰-CoA的水平,而急性饑餓狀態(tài)下則情況相反,但在上述2種情況下神經(jīng)肽的表達(dá)卻是一致的[30]。研究還表明 MCD可以調(diào)節(jié)下丘腦丙二酰-CoA的水平進(jìn)而影響食欲。過氧化物酶體增殖劑活化受體α(PPARα)能通過調(diào)節(jié)MCD的表達(dá)來控制丙二酰-CoA的水平[31]。有報(bào)道稱,女孩缺乏MCD極度厭食[32],而下丘腦過表達(dá)MCD的小鼠可以顯著提高其食欲和體重,并最終導(dǎo)致肥胖[33]。在骨骼肌中,MCD可以直接被 AMPK活化[34],而下丘腦的 AMPK是否能直接調(diào)控MCD來控制食欲有待于進(jìn)一步研究來揭示。丙二酰-CoA還可以通過與CPT1-c結(jié)合來調(diào)節(jié)食欲。CPT1-c是CPT1的同型體,在下丘腦VMH中表達(dá)并參與調(diào)節(jié)能量平衡。CPT1-c基因敲除小鼠的食欲和體重大大降低,但是在高脂飼糧條件下體重又會顯著上升[35]。因此,CPT1-c可能并非丙二酰-CoA唯一的效應(yīng)器,是否還存在丙二酰-CoA影響其他酶活性的具體作用途徑仍需進(jìn)一步揭示。所以,下丘腦的 AMPK-ACC-MCD-FAS-丙二酰-CoA軸又是一條調(diào)節(jié)能量動態(tài)平衡的脂質(zhì)感應(yīng)的信號軸。

        圖1 下丘腦脂肪酸感應(yīng)Fig.1 Hypothalamic sensing of fatty acids

        2 下丘腦對脂肪酸衍生物的營養(yǎng)感應(yīng)

        脂肪酸乙醇胺(FAEs)是一類廣泛存在于動物體內(nèi)的脂肪酸衍生物,包括N-油酰乙醇胺(OEA)和 N - 花生四烯酸乙醇胺(AEA)等[36]。這些物質(zhì)由小腸分泌的一種活性物質(zhì)N-?;字R掖及?NAPEs)在NAPE特異性磷脂酶D(NAPE-PLD)的催化下形成。新近研究表明,F(xiàn)AEs也可作為信號分子參與下丘腦的營養(yǎng)感應(yīng)進(jìn)而調(diào)節(jié)食欲和能量穩(wěn)態(tài)[37-39]。

        放射性示蹤結(jié)果顯示,NAPEs可以穿過血腦屏障并集中在下丘腦,直接作用于中樞神經(jīng)系統(tǒng)而調(diào)節(jié)食欲,而且切斷大鼠的迷走神經(jīng)后,NAPEs降低食欲的效應(yīng)并未受影響。但中樞側(cè)腦室直接注射NAPE降低食欲的具體靶點(diǎn)和信號通路目前尚不明確[40-41]。

        OEA可作為動物體內(nèi)G蛋白偶聯(lián)受體(GPCRs)、PPARα、瞬時感受器電位離子通道香草素受體亞家族1(TRPV1)等的配體,與機(jī)體食欲調(diào)節(jié)、體內(nèi)脂肪的沉積、激素的分泌等生理過程密切相關(guān)。OEA在進(jìn)食后分泌明顯增多以減少食物攝入,故被作為飽感信號[37];腸道上皮細(xì)胞產(chǎn)生OEA后作用于核受體PPARα,刺激迷走傳入感覺神經(jīng),增加下丘腦室旁核(PVN)和視上核(抑采食區(qū))的c-fos基因表達(dá)量和催產(chǎn)素的釋放,通過延長采食間隔時間來降低食欲。腦室注射催產(chǎn)素受體拮抗劑 L-368,899則會減弱 OEA的厭食效應(yīng)[39]。而且下丘腦外側(cè)區(qū)注射OEA都能夠顯著降低大鼠1和4 h采食量,同時促采食區(qū)的c-fos基因表達(dá)量顯著降低,而24 h的采食量無顯著差異[42]。AEA是一種能夠結(jié)合并激活大麻素1(CB1)受體的內(nèi)源性大麻素[43]。大麻素系統(tǒng)在肥胖的發(fā)生中發(fā)揮了關(guān)鍵的作用。激活CB1受體可以顯著提高食欲,藥理學(xué)抑制CB1可以減輕體重并緩解肥胖相關(guān)的代謝紊亂的病癥[44-45]。飽食的大鼠下丘腦VMH區(qū)注射AEA 3 h后可以顯著提高其采食量,而注射大麻素受體阻斷劑SR141716則會減弱AEA誘導(dǎo)的促采食效應(yīng)[46]。下丘腦PVN區(qū)注射AEA可以顯著提高食欲和呼吸商,而注射CB1受體反向激動劑AM251則會逆轉(zhuǎn)此效應(yīng)[47-48]。以上研究表明,PVN 的 CB1 在調(diào)節(jié)食欲和能量穩(wěn)態(tài)上發(fā)揮了關(guān)鍵作用。下丘腦CB1敲除成年小鼠飼喂標(biāo)準(zhǔn)飼糧可以減輕體重并增加能量消耗,這與褐色組織中腎上腺素能受體和解偶聯(lián)蛋白的表達(dá)上升有關(guān)。但值得注意的是小鼠的采食量并無明顯變化[45]。還有研究顯示CB1受體具有雙向調(diào)控采食的作用。激活位于皮質(zhì)谷氨酸能(興奮性遞質(zhì))神經(jīng)元末梢的CB1受體能夠提高食欲,而激活位于γ-氨基丁酸(GABA)能神經(jīng)元上的CB1受體則能夠降低食欲[49]。Yoshida等[50]研究還顯示甜味感受蛋白3(T1R3)受體和CB1受體在Ⅱ型味覺細(xì)胞中共表達(dá),提示味蕾也是大麻素的作用靶點(diǎn)之一。由于大麻素還可以正反饋調(diào)節(jié)小腸消耗脂肪,所以大麻素如何在下丘腦-口腔-腸道這個調(diào)控食欲的功能連續(xù)系統(tǒng)中發(fā)揮作用需要更進(jìn)一步的探索。

        3 下丘腦營養(yǎng)感應(yīng)的影響因素

        細(xì)胞內(nèi)的脂類、糖類及碳水化合物的代謝存在相互轉(zhuǎn)化,因此,下丘腦神經(jīng)細(xì)胞在感應(yīng)脂類營養(yǎng)物質(zhì)的信號的同時,還與葡萄糖等營養(yǎng)物質(zhì)感應(yīng)的信號通路彼此關(guān)聯(lián)。CNS根據(jù)葡萄糖和脂肪相對利用的指數(shù),調(diào)節(jié)機(jī)體能量的狀態(tài)。采用電生理學(xué)檢測ARC和VMH神經(jīng)元對葡萄糖和OA的應(yīng)答效應(yīng)也表明,中樞葡萄糖和脂類感應(yīng)之間存在直接的相互作用[51]。OA可以調(diào)節(jié)ARC中3種葡萄糖依賴型神經(jīng)元,表明葡萄糖與脂肪酸在調(diào)節(jié)ARC神經(jīng)元感應(yīng)中存在交互作用[52]。下丘腦營養(yǎng)感應(yīng)發(fā)揮效應(yīng)的同時還受到一系列因素的調(diào)節(jié),如 ROS、胰島素、瘦素和生長激素釋放肽等[53]。

        3.1 ROS對下丘腦營養(yǎng)感應(yīng)的影響

        葡萄糖和脂肪酸的代謝產(chǎn)物均要進(jìn)入電子呼吸鏈產(chǎn)生ATP,線粒體呼吸的過程自然會產(chǎn)生ROS。新近研究表明,下丘腦ROS可以影響營養(yǎng)感應(yīng),具有調(diào)控食欲的作用[54-55]。研究表明,NPY/AgRP和POMC神經(jīng)元存在不同的能量底物從而形成了不同的代謝信號。POMC神經(jīng)元利用葡萄糖作為主要的能量來源[7],而NPY/AgRP則將脂肪酸作為主要的能量底物[54]。糖酵解可以增強(qiáng)POMC神經(jīng)元活性,抑制NPY/AgRP神經(jīng)元活性,而β-氧化增強(qiáng)了NPY/AgRP神經(jīng)元活性,抑制了POMC神經(jīng)元活性。不論利用葡萄糖還是脂肪酸作為能量來源,其氧化產(chǎn)物都是ROS,而且ROS在下丘腦神經(jīng)元對脂類及葡萄糖信號感應(yīng)中發(fā)揮了決定性的功能(圖2)[55-57]。負(fù)能量平衡狀態(tài)下,NPY/AgRP神經(jīng)元被激活并利用LCFA,如生長激素釋放肽激活的信號途徑使ROS水平上調(diào),而ROS在NPY/AgRP神經(jīng)元存在前饋緩沖機(jī)制,即通過激活解偶聯(lián)蛋白2(UCP2)引起質(zhì)子漏并降低 AMP,從而抑制線粒體內(nèi) ROS產(chǎn)生[58]。UCP2可以促進(jìn)脂肪酸代謝,降低細(xì)胞內(nèi)ROS水平,抑制POMC神經(jīng)元活性,提高NPY/AgRP的活性。反之正能量平衡狀態(tài)下,POMC神經(jīng)元的激活依賴細(xì)胞內(nèi)葡萄糖的代謝以及胰島素和瘦素激活的信號途徑,這些信號均依賴于代謝產(chǎn)生的ROS。ROS大量聚集,且不存在ROS緩沖機(jī)制,持續(xù)高水平ROS促使POMC神經(jīng)元產(chǎn)生飽感信號,降低食欲[54]。因?yàn)?NPY/AgRP神經(jīng)元存在ROS緩沖機(jī)制,所以POMC暴露在ROS環(huán)境易受損。長此以往,POMC神經(jīng)元活性的降低與隨著動物和人年齡的增長體重越來越輕是一致的。因此,低能量狀態(tài)使得NPY/AgRP神經(jīng)元持續(xù)激活而對POMC神經(jīng)元沒有損傷,從而有利于健康長壽。

        3.2 激素對下丘腦營養(yǎng)感應(yīng)的調(diào)節(jié)

        3.2.1 胰島素

        胰島素是調(diào)節(jié)食欲的飽感信號。研究表明,胰島素與其相應(yīng)受體結(jié)合可以調(diào)節(jié)下丘腦VMN中POMC神經(jīng)元的KATP通道活性,進(jìn)一步通過PI3K信號途徑影響細(xì)胞內(nèi)ROS水平(圖2),以調(diào)節(jié)能量狀態(tài)和食欲[59-60]。中樞注射胰島素可抑制下丘腦AMPK活性,進(jìn)而降低食欲[61]。胰島素在中樞不僅可以調(diào)節(jié)食欲[62],還可以調(diào)控神經(jīng)元內(nèi)的營養(yǎng)物質(zhì)的代謝[63-65](圖3)。中樞注射棕櫚酸可能通過局部的炎癥反應(yīng)損害胰島素信號途徑,提高食欲并增加體重[67]。中樞注射或者口腔填飼棕櫚酸均可以提高下丘腦細(xì)胞膜蛋白激酶C-θ(PKC-θ)的表達(dá)水平,這也與下丘腦胰島素信號途徑的損害有關(guān)。而ARN特異性敲除PKC-θ基因可以減弱食物誘導(dǎo)的肥胖,并可以改良胰島素信號途徑[68]。這些結(jié)果均表明富含棕櫚酸的高脂肪食物,可以使CNS通過PKC-θ介導(dǎo)減弱胰島素敏感性,對于治療肥胖癥具有重要的應(yīng)用價(jià)值。

        圖2 ROS對POMC和NPY/AgRP神經(jīng)元的調(diào)節(jié)Fig.2 ROS control in POMC and NPY/AgRP neurons[57]

        圖3 葡萄糖和脂肪感應(yīng)激素調(diào)節(jié)的交叉Fig.3 Crosstalk and hormonal regulation of glucose and lipid sensing[66]

        3.2.2 瘦素

        瘦素是調(diào)節(jié)能量穩(wěn)態(tài)的另一重要因子。在相對飽感時,瘦素打開非特異性陽離子通道使POMC神經(jīng)元去極化,激活Jak2并使Stat3磷酸化(圖2),進(jìn)而增加 POMC的表達(dá)來降低食欲[68]。此外,瘦素還可以通過Janus激酶2-腺苷酸活化蛋白激酶-電壓門控鈣電流(Jak2-MAPK-VGCC)通路抑制下丘腦大麻素的釋放,削弱大麻素的促食欲效應(yīng)[69]。瘦素可以提高下丘腦ARC的丙二酰-CoA水平,進(jìn)而介導(dǎo)瘦素的抑食欲效應(yīng),而且這種效應(yīng)并不依賴于CPT1-a活性的改變[70]。而下丘腦CPT1-c過表達(dá)卻可以阻斷瘦素的抑食欲效應(yīng),而且瘦素是通過改變丙二酰-CoA水平、CPT1-c的活性和神經(jīng)酰胺的從頭合成的信號通路來影響神經(jīng)酰胺的代謝進(jìn)而起到降低食欲的效果[71]。因此,調(diào)控CPT1-c和神經(jīng)酰胺的代謝同樣可以成為治療肥胖等疾病的有效手段。

        3.2.3 生長激素釋放肽

        ?;L激素釋放肽具有促進(jìn)生長激素釋放、促進(jìn)胰島素分泌和調(diào)節(jié)糖脂代謝及能量穩(wěn)態(tài)的作用[72-73](圖3)。中樞和外周注射生長激素釋放肽均可以顯著提高機(jī)體的食欲。現(xiàn)有的研究表明,下丘腦AMPK→脂肪酸代謝途徑介導(dǎo)了生長激素釋放肽的促采食效應(yīng)[74]。生長激素釋放肽與NPY/AgRP神經(jīng)元上的同族膜GHSR結(jié)合,提高胞內(nèi)鈣離子水平并激活NPY神經(jīng)元的CaMKK2,進(jìn)而激活下丘腦AMPK,經(jīng)ACCα→丙二酰-CoA→CPT1→脂肪酸β-氧化→ROS水平上調(diào)→UCP2表達(dá)上調(diào)途徑激活A(yù)gRP/NPY神經(jīng)元(圖2),提高食欲[8,74-75]。此外,腦室注射生長激素釋放肽不能提高CB1缺失小鼠的食欲,同時AMPK也不能被激活。生長激素釋放肽還可以提高下丘腦大麻素的水平,阻斷CB1后可逆轉(zhuǎn)此效應(yīng),因此內(nèi)源性大麻素→CB1→AMPK信號途徑也參與了生長激素釋放肽提高食欲的生理機(jī)能[76](圖2)。非常有趣的是,mTOR的抑食欲作用一直以來被人們所熟知。而最新研究表明,大鼠中樞注射生長激素釋放肽也能激活A(yù)RC中的mTOR,并使pCREB和FoxO1水平提高,進(jìn)而提高了AgRP和NPY水平,促進(jìn)了食欲[77]。因此,mTOR對食欲的調(diào)控作用也是多元化的,其分子機(jī)制同樣也需要深入研究來闡明。

        3.2.4 下丘腦的營養(yǎng)感應(yīng)與激素信號的整合

        下丘腦的營養(yǎng)感應(yīng)與激素信號的整合主要通過KATP通道和AMPK介導(dǎo)。當(dāng)葡萄糖和脂類氧化程度增加時,胞內(nèi)ATP的水平有所提高,從而關(guān)閉了KATP通道,影響了胞內(nèi) LCFA-CoA 的積聚[78],進(jìn)而提高抑采食神經(jīng)元的興奮性。中樞胰島素處理對食欲和肝臟糖異生作用的調(diào)節(jié)通過激活PI3K產(chǎn)生 PIP3,進(jìn)而調(diào)節(jié) KATP通道活性[59-60]。因此KATP通道的激活代表下丘腦葡萄糖和脂類感應(yīng)激素和營養(yǎng)信號整合的一種分子機(jī)制。當(dāng)胞內(nèi)ATP的水平降低時則可以激活A(yù)MPK,使ACC磷酸化減少,丙二酰-CoA的生成增加,促進(jìn)了β-氧化。瘦素還可以抑制下丘腦 AMPK活性[61],AMPK突變可以削弱瘦素的食欲調(diào)節(jié)作用,表明AMPK是瘦素影響食欲和脂類代謝最重要的介導(dǎo)者[79-81](圖3)。中樞生長激素釋放肽處理可以通過激活鈣離子信號增強(qiáng)AMPK的活性[82]。所以下丘腦AMPK活性的調(diào)節(jié)可以作為激素和營養(yǎng)信號控制神經(jīng)元興奮性的更進(jìn)一步的整合位點(diǎn)??傊?,下丘腦營養(yǎng)感應(yīng)和激素信號整合成多種信號共同維持機(jī)體能量穩(wěn)態(tài)。

        4 小結(jié)

        下丘腦的脂類營養(yǎng)感應(yīng)與其他信號共同調(diào)節(jié)食欲并維持機(jī)體的能量穩(wěn)態(tài)。越來越多的證據(jù)表明能量感應(yīng)機(jī)制在中樞調(diào)節(jié)食欲和能量穩(wěn)態(tài)中發(fā)揮了關(guān)鍵作用。其中,KATP通道、FAT/CD36(中央脂類感受器)、丙二酰-CoA和AMPK均已被證實(shí)是下丘腦葡萄糖和脂類感應(yīng)中的核心能量感受器。但是,調(diào)節(jié)能量穩(wěn)態(tài)的營養(yǎng)感應(yīng)機(jī)制還有待更深入的研究。比如,F(xiàn)AT/CD36作為中樞脂類感受器的作用機(jī)制如何?激活或者抑制神經(jīng)元最終的反應(yīng)就是釋放神經(jīng)遞質(zhì)或者神經(jīng)肽,那么下丘腦神經(jīng)元對營養(yǎng)信號做出反應(yīng)時釋放何種神經(jīng)遞質(zhì)或神經(jīng)肽?脂肪酸感應(yīng)及其代謝中間產(chǎn)物如何改變不同神經(jīng)元的興奮性?對上述問題的深入闡述有助于全面解析中樞食欲調(diào)節(jié)網(wǎng)絡(luò)并尋找關(guān)鍵的信號整合位點(diǎn),從而為治療代謝相關(guān)疾病或者開發(fā)應(yīng)用于實(shí)踐的食欲調(diào)控劑提供新的依據(jù)。

        [1] MORTON G J,CUMMINGS D E,BASKIN D G,et al.Central nervous system control of food intake and body weight[J].Nature,2006,443(7109):289 -295.

        [2] YANG C S,LAM C K,CHARI M,et al.Hypothalamic AMP-activated protein kinase regulates glucose production[J].Diabetes,2010,59(10):2435 - 2443.

        [3] LAGE R,DIEGUEZ C,VIDALl-PUIG A,et al.AMPK:a metabolic gauge regulating whole-body energy homeostasis[J].Trends in Molecular Medicine,2008,14(12):539 -549.

        [4] DE MORENTIN P B M,GONZALEZ C R,SAHA A K,et al.Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance[J].Reviews in Endocrine & Metabolic Disorders,2011,12(3):127-140.

        [5] WICZER B M,THOMAS G.The role of the mTOR pathway in regulating food intake[J].Current Opinion in Drug Discovery & Development,2010,13(5):604-612.

        [6] DIGEUEZ C,F(xiàn)RUHBECK G,LOPEZ M,et al.Hypothalamic lipids and the regulation of energy homeostasis[J].Obesity Facts,2009,2(2):126 - 135.

        [7] IBRAHIM N,BOSCH M A,SMART JL,et al.Hypothalamic proopiomelanocortin neurons are glucose responsive and express K-ATP channels[J].Endocrinology,2003,144(4):1331 -1340.

        [8] LOPEZ M,LAGE R,SAHA A K,et al.Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin[J].Cell Metabolism,2008,7(5):389 -399.

        [9] MORGAN K,OBICI S,ROSSETTI L.Hypothalamic responses to long-chain fatty acids are nutritionally regulated[J].Journal of Biological Chemistry,2004,279(30):31139-31148.

        [10] JO Y H,SU Y,GUTIERREZ-JUAREZ R,et al.Oleic acid directly regulates pomc neuron excitability in the hypothalamus[J].Journal of Neurophysiology,2009,101(5):2305-2316.

        [11] SCHWINKENDORF D R,TSATSOS N G,GOSNELL B A,et al.Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism[J].International Journal of Obesity,2011,35(3):336 -344.

        [12] RUGE T,HODSON L,CHEESEMAN J,et al.Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage[J].Journal of Clinical Endocrinology and Metabolism,2009,94(5):1781 -1788.

        [13] FICK L J,F(xiàn)ICK G H,BELSHAM D D.Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized,hypothalamic neurons[J].Biochemical and Biophysical Research Communications,2011,413(3):414-419.

        [14] CINTRA D E,ROPELLE E R,MORAES J C,et al.Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity[J].PLoS One,2012,7(1):e30571.

        [15] ZHENG H F,LI X L,JIN Z Y,et al.Effects of unsaturated fatty acids on calcium-activated potassium current in gastric myocytes of guinea pigs[J].World Journal of Gastroenterology,2005,11(5):672 -675.

        [16] HONEN B N,SAINT D A,LAVER D R.Suppression of calcium sparks in rat ventricular myocytes and direct inhibition of sheep cardiac RyR channels by EPA,DHA and oleic acid[J].Journal of Membrane Biology,2003,196(2):95 -103.

        [17] MIGRENNE S, MAGNAN C, CRUCIANIGUGLIELMACCI C.Fatty acid sensing and nervous control of energy homeostasis[J].Diabetes & Metabolism,2007,33(3):177 -182.

        [18] LE FOLL C,IRANI B G,MAGNAN C,et al.Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing[J].American Journal of Physiology-Regulatory Integrative and Comparative Physiology,2009,297(3):R655 - R664.

        [19] MARTIN C,PASSILY-DEGRACE P,GAAILLARD D,et al.The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds:impact on spontaneous fat preference[J].PLoS One,2011,6(8):e24014.

        [20] GAILLARD D,LAUGERETTE F,DARCEL N,et al.The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse[J].The FASEB Journal,2008,22(5):1458 -1468.

        [21] CHEVROT M,MARTIN C,PASSILLY-DEGRACE P,et al.Role of CD36 in oral and postoral sensing of lipids[J].Handbook of Experimental Pharmacology,2012,209:295 -307.

        [22] SORENSEN A,TRAVERSM T,VEMON R G,et al.Localization of messenger RNAs encoding enzymes associated with malonyl-CoA metabolism in mouse brain[J].Brain Research Gene Experimental Patterns,2002,1(3/4):167 -173.

        [23] LOPASCHUK G D,USSHER J R,JASWAL J S,et al.Targeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite[J].Pharmacological Reviews,2010,62(2):237 -264.

        [24] MERA P,BENTEBIBELAL A,LOPEZ-VINAS E,et al.C75 is converted to C75-CoA in the hypothalamus,where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight[J].Biochemical Pharmacology,2009,77(6):1084 -1095.

        [25] CABOU C,VACHOUX C,CAMPISTRON G,et al.Brain GLP-1 signaling regulates femoral artery blood flow and insulin sensitivity through hypothalamic PKC-delta[J].Diabetes,2011,60(9):2245 -2256.

        [26] LANE M D,WOLFGANG M,CHA S H,et al.Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA[J].International Journal of O-besity,2008,32:S49 - S54.

        [27] KIM E K,MILLER I,AJA S,et al.C75,a fatty acid synthase inhibitor,reduces food intake via hypothalamic AMP-activated protein kinase[J].Journal of Biological Chemistry,2004,279(19):19970 -19976.

        [28] HU Z Y,DAI Y,PRENTKI M,et al.A role for hypothalamic malonyl-CoA in the control of food intake[J].Journal of Biological Chemistry,2005,280(48):39681-39683.

        [29] PROULX K,COTA D,WOODS SC,et al.Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system[J].Diabetes,2008,57(12):3231-3238.

        [30] SUCAJTYS-SZULC E,TURYN J,GOYKE E,et al.Differential effect of prolonged food restriction and fasting on hypothalamic malonyl-CoA concentration and expression of orexigenic and anorexigenic neuropeptides genes in rats[J].Neuropeptides,2010,44(1):17-23.

        [31] LEE G Y,KIM N H,ZHAO Z S,et al.Peroxisomalproliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene:a key regulation of malonyl-CoA level[J].Journal of Biological Chemistry,2004,378:983 -990.

        [32] DE WIT M C,DE COO I F,VERBEEK E,et al.Brain abnormalities in a case of malonyl-CoA decarboxylase deficiency[J].Molecular Genetics and Metabolism,2006,87(2):102 -106.

        [33] HE W,LAM T K,OBICI S,et al.Molecular disruption of hypothalamic nutrient sensing induces obesity[J].Nature Neuroscience,2006,9(2):227 -233.

        [34] SAHA A K,SCHWARSIN A J,RODUIT R,et al.Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside[J].Journal of Biological Chemistry,2000,275(32):24279 -24283.

        [35] WOLFGANG M J,LANE M D.Hypothalamic malonyl-CoA and CPT1c in the treatment of obesity[J].The FEBS Journal,2011,278(4):552 -558.

        [36] KINGSLEY P J,MARNETT L J.Analysis of endocannabinoids,their congeners and COX-2 metabolites[J].Journal of Chromatography B,2009,877(26):2746-2754.

        [37] CAPASSO R,IZZO A.Gastrointestinal regulation of food intake:general aspects and focus on anandamide and oleoylethanolamide[J].Journal of Neuroendocrinology,2008,20:39 -46.

        [38] DIPASQUALE P,ROMANO A,CIANCI S,et al.Oleoylethanolamide:a new player in energy metabolism control.Role in food intake[J].Drug Discovery Today:Disease Mechanisms,2010,7(3/4):169 -174.

        [39] GAETANI S,F(xiàn)U J,CASSANO T,et al.The fat-induced satiety factor oleoylethanolamide suppresses feeding through central release of oxytocin[J].Journal of Neuroendocrinology,2010,30(24):8096 -8101.

        [40] GILLUM M P,ZHANG D,ZHANG X M,et al.N-acylphosphatidylethanolamine,a gut-derived circulating factor induced by fat ingestion,inhibits food intake[J].Cell,2008,135(5):813 - 824.

        [41] QUARTA C,MAZZA R,OBICI S,et al.Energy balance regulation by endocannabinoids at central and peripheral levels[J].Trends in Molecular Medicine,2011,17(9):518 -526.

        [42] SORIA-GOMEZ E,GUZMAN K,PECH-RUEDA O,et al.Oleoylethanolamide affects food intake and sleep-waking cycle through a hypothalamic modulation[J].Pharmacological Research,2010,61(5):379 -384.

        [43] DE FONSECA F R,NAVARRO M,GOMEZ R,et al.An anorexic lipid mediator regulated by feeding[J].Nature,2001,414:209 -211.

        [44] QUARTA C,BELLOCCHIO L,MANCINI G,et al.CB1 signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance[J].Cell Metabolism,2010,11(4):273 -285.

        [45] CARDINAL P,BELLOCCHIO L,CLARK S,et al.Hypothalamic CB1 cannabinoid receptors regulate energy balance in mice[J].Endocrinology,2012,153(9):4136-4143.

        [46] JAMSHIDI N,TAYLOR D A.Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats[J].British Journal of Pharmacology,2001,134(6):1151 -1154.

        [47] DIPATRIZIO N V,PIOMELLI D.The thrifty lipids:endocannabinoids and the neural control of energy conservation[J].Trends in Neurosciences,2012,35(7):403-411.

        [48] CHAPMAN C D,DONO L M,F(xiàn)RENCH M C,et al.Paraventricular nucleus anandamide signaling alters eating and substrate oxidation[J].Neuroreport,2012,23:425-429.

        [49] BELLOCCHIO L,LAFENETRE P,CANNICH A,et al.Bimodal control of stimulated food intake by the endocannabinoid system [J]Nature Neuroscience,2010,13(3):281 -283.

        [50] YOSHIDA R,OHKURI T,JYOTAKI M,et al.Endocannabinoids selectively enhance sweet taste[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(2):935 -939.

        [51] LE FOLL C,IRANI B G,MAGNAN C,et al.Effects of maternal genotype and diet on offspring glucose and fatty acid-sensing ventromedial hypothalamic nucleus neurons[J].American Journal of Physiology:Regulatory Integrative and Comparative Physiology,2009,297(5):R1351-R1357.

        [52] WANG R,CRUCIANI-GUGLIELMACCI C,MIGRENNE S,et al.Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels[J].Journal of Neurophysiology,2006,95(3):1491-1498.

        [53] DIEGUEA C,VAZQUEZ M J,ROMERO A,et al.Hypothalamic control of lipid metabolism:focus on leptin,ghrelin and melanocortins[J].Neuroendocrinology,2011,94(1):1 -11.

        [54] ANDREWS Z B,LIU Z W,WALLLINGFORD N,et al.UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals[J].Nature,2008,454(7206):846-851.

        [55] LELOUP C,CASTEILLA L,CARRIERE A,et al.Balancing mitochondrial redox signaling:a key point in metabolic regulation[J].Antioxidants & Redox Signaling,2011,14(3):519 -530.

        [56] LELOUP C,MAGNAN C,BENANI A,et al.Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing[J].Diabetes,2006,55(7):2084-2090.

        [57] DIANO S,HORVATH T L.Mitochondrial uncoupling protein 2(UCP2)in glucose and lipid metabolism[J].Trends in Molecular Medicine,2012,18(1):52-58.

        [58] MAILLOUX R J,HARPER M E.Uncoupling proteins and the control of mitochondrial reactive oxygen species production[J].Free Radical Biology and Medicine,2011,51(6):1106 -1115.

        [59] COTERO V E,ROUTH V H.Insulin blunts the response of glucose-excited neurons in the ventrolateral ventromedial hypothalamic nucleus to decreased glucose[J].American Journal of Physiology Endocrinology and Metabolism,2009,29(5):1101 -1109.

        [60] HORVATH T L,ANDREWS Z B,DIANO S.Fuel utilization by hypothalamic neurons:roles for ROS[J].Trends in Endocrinology and Metabolism,2009,20(2):78-87.

        [61] MINOKOSHI Y,ALQUIER T,F(xiàn)URUKAWA N,et al.AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J].Nature,2004,428(6982):569 -574.

        [62] SCHWARTZ M W,PPRTE D.Diabetes,obesity,and the brain[J].Science,2005,307(5708):375 - 379.

        [63] KOCH L,WUNDERLICH F T,SEIBLER J,et al.Central insulin action regulates peripheral glucose and fat metabolism in mice[J].Journal of Clinical Investigation,2008,118(6):2132 -2147.

        [64] KONNER A C,JANOSCHEK R,PLUM L,et al.Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production[J].Cell Metabolism,2007,5(6):438 -449.

        [65] YUE J T,LAM T K.Lipid sensing and insulin resistance in the brain[J].Cell Metabolism,2012,15(5):646-655.

        [66] JORDAN S D,KONNER A C,BRUNING J C.Sensing the fuels:glucose and lipid signaling in the CNS controlling energy homeostasis[J].Cellular and Molecular Life Sciences,2010,67(19):3255 -3273.

        [67] ENOIT S C,KEMP C J,ELIAS C F,et al.Palmitic acid mediates hypothalamic insulin resistance by alte-ring PKC-theta subcellular localization in rodents[J].Journal of Clinical Investigation,2009,119(9):2577-2589.

        [68] DUAN J,CHOI Y H,HARTZELL D,et al.Effects of subcutaneous leptin injections on hypothalamic gene profiles in lean and ob/ob mice[J].Obesity,2007,15(11):2624-2633.

        [69] JO Y H,CHEN Y J,CHUA S C,Jr,et al.Integration of endocannabinoid and leptin signaling in an appetiterelated neural circuit[J].Neuron,2005,48(6):1055-1066.

        [70] GAO S,KEUNG W,SERRA D,et al.Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a[J].American Journal of Physiology:Regulatory Integrative and Comparative Physiology,2011,301(1):R209 - R217.

        [71] GAO S,ZHU G,GAO X,et al.Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(23):9691-9696.

        [72] GASCO V,BECCUTI G,MAROTTA F,et al.Endocrine and metabolic actions of ghrelin[M]//LOCHE S,CAPPA M,GHIZZONI L,et al.Pediatric neuroendocrinology.Cagliari:[n.s.],2010:86 -95.

        [73] KOJIMA M,KANGAWA K.Ghrelin:from gene to physiological function[M]//REHFELD J F,BUNDGAARD H R.Cellular peptide hormone synthesis and secretory pathways.New York:Springer-Verlag Berlin Heidelberg,2010:185 -205.

        [74] VARELA L,VAZQUEZ M J,CORDIDO F,et al.Ghrelin and lipid metabolism:key partners in energy balance[J].Journal of Molecular Endocrinology,2011,46(2):43 -63.

        [75] KOLA B,KORBONITS M.Shedding light on the intricate puzzle of ghrelin’s effects on appetite regulation[J].Journal of Endocrinology,2009,202(2):191-198.

        [76] KOLA B,F(xiàn)ARKAS I,CHRIST-CRAIN M,et al.The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system[J].PLoS One,2008,3(3):e1797.

        [77] YANG S B,TIEN A C,BODDUPALLI G,et al.Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons[J].Neuron,2012,75:425 - 436.

        [78] POCAI A,LAM TONY K T,GUTIERREZ-JUAREZ R,et al.Hypothalamic KATPchannels control hepatic glucose production[J].Nature,2005,434:1026 -1031.

        [79] ANDERSSON U,F(xiàn)ILIPSSON K,ABBOTT C R,et al.AMP-activated protein kinase plays a role in the control of food intake[J].Journal of Biological Chemistry,2004,279(13):12005 -12008.

        [80] MINOKOSHI Y,KIM Y B,PERONI O D,et al.Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase[J].Nature,2002,415:339 -343.

        [81] MOUNTJOY P D,BAILEY S J,RUTTER G A.Inhibition by glucose or leptin of hypothalamic neurons expressing neuropeptide Y requires changes in AMP-activated protein kinase activity[J].Diabetologia,2007,50(1):168 -177.

        [82] KOHNO D,SONE H,MINOKOSHI Y,et al.Ghrelin raises Ca2+(i)via AMPK in hypothalamic arcuate nucleus NPY neurons[J].Biochemical and Biophysical Research Communications,2008,366(2):388 -392.

        猜你喜歡
        中樞下丘腦食欲
        小而強(qiáng)大的下丘腦
        萵筍開胃增食欲
        中老年保健(2021年8期)2021-08-24 06:23:44
        肚子餓了卻沒食欲,原來是胃陰不足
        試議文化中樞的博物館與“進(jìn)”“出”兩種行為
        科學(xué)家發(fā)現(xiàn)控制衰老開關(guān)
        中老年健康(2017年9期)2017-12-13 07:16:39
        中藥對下丘腦作用的研究進(jìn)展
        中成藥(2017年6期)2017-06-13 07:30:34
        一切從食欲及性欲開始
        食欲大開的吃貨小編們
        回藥阿夫忒蒙丸對失眠大鼠下丘腦5-HT和5-HIAA含量的影響
        小兒推拿治療中樞協(xié)調(diào)障礙163例
        日韩精品中文字幕无码一区| 夜夜高潮夜夜爽免费观看| 国产18禁黄网站免费观看| 99久久免费国产精品| 成人欧美一区二区三区白人| av无码特黄一级| 国产精品自拍盗摄自拍| 欧美国产激情二区三区| 欧美性狂猛xxxxx深喉| 久久精品爱国产免费久久| 青青草视频网站免费看| 亚洲丁香婷婷久久一区二区| 亚洲综合无码无在线观看| 亚洲区日韩精品中文字幕| 91久久国产精品综合| 无码人妻久久一区二区三区免费丨| 久久www免费人成人片| 一区二区三区午夜视频在线| 色婷婷综合久久久中文字幕| 无码一区二区三区老色鬼| 成年人免费黄色h网| 日本一区二区高清在线观看| 中文字幕亚洲精品久久| 日韩人妻无码精品-专区| 中文字幕av一区二区三区| 色综合中文字幕综合网| 亚洲 日本 欧美 中文幕| 欧美freesex黑人又粗又大| 亚洲AV日韩Av无码久久| 亚洲乱妇熟女爽到高潮视频高清| 无码视频在线观看| 黄色资源在线观看| 午夜少妇高潮免费视频| 日韩精品无码一区二区三区| 免费国产裸体美女视频全黄 | 国产精品国产三级国产av主| 中文字幕中文字幕在线中二区 | 国产国拍精品av在线观看按摩| 国产免费播放一区二区| 日本午夜理论一区二区在线观看| 亚洲中文字幕无码不卡电影 |