馬曉東,王明慧,李衛(wèi)紅,邢旭明,張瑞群
(1. 新疆師范大學(xué)生命科學(xué)學(xué)院, 烏魯木齊 830054; 2. 荒漠與綠洲生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 烏魯木齊 830011)
極端干旱區(qū)多枝檉柳幼苗對(duì)人工水分干擾的形態(tài)及生理響應(yīng)
馬曉東1,*,王明慧1,李衛(wèi)紅2,邢旭明1,張瑞群1
(1. 新疆師范大學(xué)生命科學(xué)學(xué)院, 烏魯木齊 830054; 2. 荒漠與綠洲生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 烏魯木齊 830011)
在塔里木河下游斷流河道人工生態(tài)輸水的大背景下,多枝檉柳(Tamarixramosissima)作為當(dāng)?shù)貎?yōu)勢(shì)物種,其更新恢復(fù)研究對(duì)下游荒漠河岸林的恢復(fù)尤為重要。通過(guò)研究多枝檉柳幼苗形態(tài)、水分和光合生理對(duì)不同灌溉處理的響應(yīng),分析不同人工水分干擾模式對(duì)檉柳幼苗生長(zhǎng)發(fā)育的影響。實(shí)驗(yàn)設(shè)計(jì)了側(cè)滲分層(LSI)和地表灌溉(AGI)兩種給水方式,以及高灌(W1,50 L/株)、中灌(W2,25 L/株)、低灌(W3,12.5 L/株)3 個(gè)給水水平,并在整個(gè)生長(zhǎng)季定期監(jiān)測(cè)幼苗的形態(tài)參數(shù)變化、生物量、水勢(shì)和光合速率。結(jié)果顯示:(1)側(cè)滲分層灌溉方式對(duì)幼苗基徑、株高、冠幅以及前期生長(zhǎng)速率都有促進(jìn)作用;(2)在側(cè)滲分層灌溉高灌下,幼苗地下及總生物量都顯著高于地表灌溉(Plt;0.05),且地表灌溉下根冠比(R/S:Root shoot ratio)明顯高于側(cè)滲分層灌溉;(3)側(cè)滲分層灌溉下,幼苗莖水勢(shì)高于地表漫灌,且在中灌和低灌下達(dá)到顯著水平(Plt;0.05),表明側(cè)滲分層灌溉下幼苗的水分吸收效率更高;(4)在側(cè)滲分層高灌及中灌下,實(shí)際光化學(xué)光量子產(chǎn)量值高于地表灌溉處理,并在高灌時(shí)差異極顯著(Plt;0.01)。研究表明,側(cè)滲分層灌溉方式對(duì)多枝檉柳幼苗早期生長(zhǎng)及水分和光合生理都具有顯著促進(jìn)作用。
地表灌溉;側(cè)滲分層灌溉;水勢(shì);光化學(xué)量子產(chǎn)量;塔里木河下游
塔里木河流域地處極端干旱氣候區(qū),是中國(guó)西北部重要的綠色走廊,其下游地區(qū)保持可持續(xù)的人工生態(tài)輸水,是維系下游荒漠河岸植被和防止土地荒漠化的前提。2000年以來(lái),生態(tài)輸水工程的實(shí)施使地下埋深的抬升明顯,退化荒漠植被群落也得以一定的恢復(fù)[1- 2]。多枝檉柳(Tamarixramosissima)作為下游優(yōu)勢(shì)物種,成為生態(tài)恢復(fù)研究的重要對(duì)象[3- 6]。但是,河道間歇性輸水對(duì)下游地下水位的抬升都十分有限[7- 8],雖然對(duì)檉柳群落的復(fù)壯起到重要作用,但仍不能很好的滿足多枝檉柳幼苗初期生長(zhǎng)的水分需求,從而導(dǎo)致檉柳群落更新極為緩慢。因此,采用人工水分干擾的方式對(duì)天然或人工移植檉柳幼苗進(jìn)行灌溉成為重要手段;同時(shí),探究人工水分干擾的生態(tài)效應(yīng)顯現(xiàn)出重要的研究?jī)r(jià)值。在干旱區(qū),土壤水分對(duì)植物存活與生長(zhǎng)至關(guān)重要,土壤水分的空間分布直接影響到根系功能,以及整株的水分和光合生理變化[9- 10]。水分在土壤中的分布模式由不同給水方式造成,一些研究報(bào)道了半根灌溉、地表灌溉、滴灌導(dǎo)致的土壤中水分分布模式的差異,這種差異同樣能導(dǎo)致植物形態(tài)參數(shù)的顯著變化[11- 12]。研究檉柳形態(tài)響應(yīng)的同時(shí),結(jié)合生物量參數(shù),有助于我們更好地分析土壤水分對(duì)植物體地上和地下部分生長(zhǎng)的影響。
多枝檉柳在我國(guó)西北部平原荒漠、沙地和鹽堿地分布廣泛,作為塔里木河下游荒漠河岸林的優(yōu)勢(shì)灌木,它對(duì)該地區(qū)河岸林的穩(wěn)定起動(dòng)重要作用[13]。單立山、張希明、李彥等對(duì)多枝檉柳和塔克拉瑪干檉柳(Tamarixtaklamakanensis)幼苗和成株對(duì)水分脅迫的形態(tài)和生理響應(yīng)進(jìn)行了一定的研究,發(fā)現(xiàn)多枝檉柳是典型的深根性植物,主要利用地下水和深層土壤水[3,10,14- 15]。有國(guó)外學(xué)者研究美國(guó)西部河岸林入侵種多枝檉柳對(duì)地下水利用時(shí),發(fā)現(xiàn)多枝檉柳在極端干旱時(shí)期的生存競(jìng)爭(zhēng)力極強(qiáng)[16- 17],朱成剛等對(duì)多枝檉柳成株的熒光特性做了深入研究,凸顯了檉柳成年個(gè)體強(qiáng)大的耐旱能力[4]。然而,檉柳幼苗處在形態(tài)建成的關(guān)鍵時(shí)期和脆弱期,人工灌溉處理對(duì)多枝檉柳幼苗形態(tài)和生物量有何影響,幼苗水分和光合生理方面又如何響應(yīng),是否存在“水分自維持能力”建成的積極方式?此類研究尚不多見(jiàn)。
1.1 研究區(qū)概況
研究區(qū)位于塔里木河下游,本區(qū)屬暖溫帶荒漠極干旱氣候區(qū),太陽(yáng)年總輻射5692 — 6360 MJ / m2,日照時(shí)數(shù)2780 — 2980 h,≥ l0 ℃年積溫為4040 — 4300 ℃;年平均降水量?jī)H為20 — 50 mm;而年平均潛在蒸發(fā)量卻高達(dá)2500 — 3000 mm。研究區(qū)土壤質(zhì)地以沙土、沙壤土為主,土壤類型主要有草甸土、鹽土和風(fēng)沙土。主要植物有胡楊(Populuseuphratica)、多枝檉柳(T.ramosissima)、剛毛檉柳(T.hispida)、黑刺(Lyciumruthenicum)、蘆葦(Phragmitescommunis)、疏葉駱駝刺(Alhagisparsifolia)、大花羅布麻(Apocyumvenetum)、花花柴(Kareliniacaspica)、脹果甘草(Glycyrrhizainflata)等。其中,多枝檉柳為當(dāng)?shù)刂参锶郝渲械膬?yōu)勢(shì)種和灌木層建群種。
1.2 實(shí)驗(yàn)設(shè)計(jì)
春季在塔里木河下游河道附近,挖取1年生多枝檉柳幼苗,挑選出高度約30 cm 的幼苗72株,移栽到24個(gè)木質(zhì)根箱中(寬50 cm、長(zhǎng)150 cm、高160 cm)。根箱用木隔板分割為50 cm × 50 cm的3檔,每檔1株,每箱3株。根箱等分為兩組,對(duì)照組采用地表灌溉(AGI)方式,實(shí)驗(yàn)組每個(gè)根箱從上至下在側(cè)壁(50 cm × 160 cm)30、50、70 cm和90 cm深處水平插入長(zhǎng)度2 m的硬質(zhì)塑料進(jìn)水管,進(jìn)行側(cè)滲分層灌溉(LSI)。根箱中填充沙壤土。實(shí)驗(yàn)組和對(duì)照組,基于研究區(qū)合理地下水位下的土壤水分設(shè)計(jì)了3個(gè)灌溉水平,即高灌(W1)50 L / 株、中灌(W2)25 L / 株和低灌(W3)12.5 L/株。灌溉時(shí)間,實(shí)驗(yàn)組從4個(gè)深度分4個(gè)時(shí)期(30 cm—第1天、50 cm—第30天、70 cm—第70天、90 cm—第120天)給水,對(duì)照組按相同時(shí)間從地表給水。于30、70、120 d和170 d后挖掘根系進(jìn)行形態(tài)參數(shù)和生物量的測(cè)定,每次1個(gè)處理挖掘3株幼苗(1個(gè)根箱),6個(gè)處理共需挖掘18株。實(shí)驗(yàn)在塔里木河下游實(shí)驗(yàn)站內(nèi)的露天試驗(yàn)場(chǎng)進(jìn)行,實(shí)驗(yàn)期內(nèi)無(wú)降水發(fā)生。
1.3 觀測(cè)方法
幼苗株高、冠幅和基徑采用常規(guī)方法于根系挖掘時(shí)同步測(cè)量。幼苗根系挖掘前,采用烘干法測(cè)定土壤含水率;幼苗根系挖掘后,測(cè)定其地上部分和根系鮮重,后進(jìn)行烘干處理,再分別測(cè)定干重,計(jì)算根冠比(R/S)。莖水勢(shì)分4個(gè)時(shí)期使用露點(diǎn)水勢(shì)儀(HR-33 T)測(cè)定;熒光參數(shù)應(yīng)用便攜式熒光儀(Mini-PAM)測(cè)定,主要測(cè)定參數(shù)包括:實(shí)際光化學(xué)光量子產(chǎn)量和光合有效輻射。
為了更好地分析“營(yíng)改增”對(duì)生產(chǎn)性服務(wù)業(yè)一般納稅人的影響,現(xiàn)做以下前提假設(shè):假設(shè)1,企業(yè)的應(yīng)稅銷售額為R;外購(gòu)固定資產(chǎn)與設(shè)備為C1,扣除率為17%;外購(gòu)服務(wù)為C2,扣除率為6%;人力成本為C。假設(shè)2,企業(yè)“營(yíng)改增”前后銷售額保持不變。假設(shè)3,“營(yíng)改增”前后企業(yè)不存在混合銷售及兼營(yíng)行為,即“營(yíng)改增”前企業(yè)就其應(yīng)稅行為繳納營(yíng)業(yè)稅,“營(yíng)改增”后企業(yè)就其應(yīng)稅行為繳納增值稅。假設(shè)4,企業(yè)不存在營(yíng)業(yè)外收入與營(yíng)業(yè)外支出,僅就其銷售收入、成本與相關(guān)稅費(fèi)計(jì)算其所得。
1.4 數(shù)據(jù)處理
利用SPSS(18.0 for Windows)統(tǒng)計(jì)軟件進(jìn)行線性回歸、ANOVA方差分析。
2.1 不同水分處理下幼苗根際土壤水分變化
由圖1不同灌溉處理下土壤水分的垂直分布可見(jiàn),實(shí)驗(yàn)組和對(duì)照組土壤水分空間分布存在明顯差異。實(shí)驗(yàn)組側(cè)滲分層灌溉方式下,雖然不同灌溉水平使土壤含水量存在差異,但土壤水分峰值主要集中在80 — 140 cm深的土壤層;而對(duì)照組地表灌溉下的峰值出現(xiàn)的深度僅為40 — 60 cm,土壤平均含水率也顯示實(shí)驗(yàn)組和對(duì)照組土壤水分均值有60 cm的差距。同等灌溉水平比較,實(shí)驗(yàn)組土壤含水率峰值比對(duì)照組高出6.3% — 36.7%。另外,土壤含水率總體上隨土層深度增加呈先升高后降低的趨勢(shì),反映出極端干旱環(huán)境下表層(0 — 10 cm)土壤含水率很低,僅有1.6% — 2.5%,但深層土壤水分峰值可達(dá)10%,是幼苗維持生長(zhǎng)極為重要的水分來(lái)源。
圖1 不同灌溉處理下土壤水分的垂直分布Fig.1 The vertical distribution of soil water content under different irrigation treatments
2.2 不同處理組合下幼苗形態(tài)指標(biāo)的響應(yīng)
如圖2不同灌溉處理下多枝檉柳幼苗生長(zhǎng)變化所示,兩種灌溉方式作用下,生長(zhǎng)發(fā)育的時(shí)間長(zhǎng)度對(duì)幼苗基徑、株高和冠幅變異的解釋率都很高,且達(dá)到了極顯著的水平(Plt; 0.01)?;鶑降臄M合結(jié)果顯示,實(shí)驗(yàn)組側(cè)滲分層灌溉方式下,幼苗的基徑在生長(zhǎng)旺盛期增長(zhǎng)率較對(duì)照組地表灌溉下大,冠幅的增長(zhǎng)特征與基徑一致。幼苗株高的增長(zhǎng)在整個(gè)生長(zhǎng)季節(jié)都呈地下分層灌溉大于地表灌溉的趨勢(shì)。3項(xiàng)生長(zhǎng)指標(biāo)變化表明,在40—150 d 的生長(zhǎng)期內(nèi)側(cè)滲分層灌溉方式對(duì)幼苗地上部分的生長(zhǎng)具有明顯的促進(jìn)作用,圖1中基徑的生長(zhǎng)速率也表明前期實(shí)驗(yàn)組生長(zhǎng)速率較快。由此推斷,側(cè)滲分層灌溉方式對(duì)檉柳幼苗早期光合作用及其生物量的積累具有積極作用。以170 d生長(zhǎng)期為標(biāo)準(zhǔn),以相同的幼苗生長(zhǎng)量為衡量指標(biāo),可計(jì)算出,實(shí)驗(yàn)組灌溉方式下植被耗水量平均降低5.6%—10.9%,也說(shuō)明側(cè)滲分層灌溉方式增大了土壤水分對(duì)幼苗生長(zhǎng)的貢獻(xiàn)率。
2.3 不同處理組合下幼苗生物量變化
圖2 不同灌溉處理下多枝檉柳幼苗生長(zhǎng)變化Fig.2 The growth of Tamarix ramosissima seedlings under different irrigation treatments
灌溉方式Irrigationmethod灌溉水平Waterlevel地下生物量/gBelowgroundbiomass地上生物量/gAbovegroundbiomass總生物量/gTotalbiomass根冠比Rootshootratio(R/S)側(cè)滲分層灌溉(LSI)高灌(W1)31.24+1.61a52.35+5.91a83.59+5.46a0.60+0.01aLayeredsideirrigation中灌(W2)22.48+1.06b34.32+2.79b56.8+2.4b0.66+0.07ab低灌(W3)16.83+1.83b24.28+1.57bce41.11+3.40bc0.69+0.03ac地表灌溉(AGI)高灌(W1)22.07+0.81b26.67+3.09bd48.74+3.89bd0.83+0.06dAbovegroundirrigation中灌(W2)19.03+1.31bc23.28+1.63cd42.31+2.90cde0.82+0.02cd低灌(W3)14.51+0.70c18.83+2.18d33.34+2.72e0.77+0.06bcd灌溉方式Irrigationmethod0.0200.0020.0030.001灌溉水平Waterlevel0.0040.0690.0300.875灌溉方式×灌溉水平Irrigationmethod×Waterlevellt;0.001lt;0.001lt;0.0010.011
數(shù)據(jù)為平均值+(標(biāo)準(zhǔn)偏差),相同字母表示差異不顯著(Pgt; 0.05),不同字母表示差異顯著(Plt; 0.05);表中根系性狀數(shù)據(jù)為生長(zhǎng)期末測(cè)量數(shù)據(jù)
2.4 不同水分干擾下幼苗水分和光合生理變化
7月中旬是幼苗生長(zhǎng)的旺盛期,也是氣溫最高的一段時(shí)期,此時(shí)幼苗莖水勢(shì)的變化趨勢(shì)最能反映干旱脅迫的影響。由圖3不同灌溉處理下多枝檉柳幼苗莖水勢(shì)變化可見(jiàn),幼苗莖水勢(shì)日變化呈清晨較高,中午最低。實(shí)驗(yàn)組和對(duì)照組由于給水方式不同,莖水勢(shì)存在差異。7月16:00氣溫可達(dá)45 ℃,實(shí)驗(yàn)組側(cè)滲分層灌溉處理使莖水勢(shì)最低值總體上高于對(duì)照組的地表灌溉處理;但高灌處理下莖水勢(shì)隨氣溫升高下降幅度較小,而中灌和低灌處理下水勢(shì)下降幅度較大,這與給水量成正相關(guān)關(guān)系。實(shí)驗(yàn)組在不同給水水平上的幼苗莖水勢(shì)平均值高于對(duì)照組,且在中灌和低灌下達(dá)到顯著水平(Plt; 0.05)。說(shuō)明,在灌水量趨于減少的態(tài)勢(shì)下,側(cè)滲分層灌溉下幼苗的水分吸收效率更高。
圖3 不同灌溉處理下多枝檉柳幼苗莖水勢(shì)變化Fig.3 The variation of the stem water potential of Tamarix ramosissima seedlings under different irrigation treatments
對(duì)不同處理下幼苗的葉片隨機(jī)進(jìn)行熒光參數(shù)的測(cè)定,并計(jì)算檉柳幼苗PSⅡ在部分反應(yīng)中心關(guān)閉下實(shí)際光化學(xué)量子產(chǎn)量值。從圖4不同灌溉處理下多枝檉柳幼苗光化學(xué)量子產(chǎn)量可見(jiàn),在不同灌溉量下,兩種灌溉方式對(duì)不同光合有效輻射下檉柳幼苗的 光化學(xué)量子產(chǎn)量的影響存在差異。高灌條件下,實(shí)驗(yàn)組側(cè)滲分層灌溉處理的光化學(xué)量子產(chǎn)量隨光合有效輻射的增加,呈總體上大于且降幅小于對(duì)照組地表灌溉處理下的值,二者差異達(dá)到極顯著水平(Plt;0.01);中灌條件下,在光合有效輻射約在300—1200 μmol m-2s-1時(shí),兩種灌溉方式使光化學(xué)量子產(chǎn)量的降幅基本保持一致,大于1200 μmol m-2s-1時(shí),地表灌溉下的光化學(xué)量子產(chǎn)量降幅才高于實(shí)驗(yàn)組;低灌條件下,地表灌溉下該值總體上已高于地下分層灌溉處理,但二者差異未達(dá)到顯水平(P﹥ 0.1)。這表明除了灌溉量對(duì)檉柳幼苗的光合作用有明顯的影響外,灌溉方式是一個(gè)重要因素。
圖4 不同灌溉處理下多枝檉柳幼苗光化學(xué)量子產(chǎn)量變化Fig.4 The variation of Tamarix ramosissima seedlings′ photochemical quantum yield under different irrigation treatments
灌溉方式的不同改變的是土壤水分的分布模式[6],這可以從土壤水分的變化特征上得到印證。側(cè)滲分層灌溉對(duì)檉柳幼苗早期發(fā)育產(chǎn)生促進(jìn)作用,其環(huán)境解釋可以從水分在根箱微環(huán)境中的分布差異入手。側(cè)滲分層灌溉創(chuàng)造了多樣化的水分富集區(qū)分布模式,從土壤淺層到深層的給水方式人為地加速了水分重力運(yùn)移的過(guò)程,減少水分在土壤淺層的蒸散損失,提高了土壤水分在時(shí)間序列上的保有量,從某種意義上講,該方式是一種有效的節(jié)水保墑措施。干旱區(qū)常用滴灌的方式達(dá)到節(jié)水和水分高效利用的目的[18],還有通過(guò)半根灌溉的方式實(shí)現(xiàn)植物生理抗旱性的提升[19]。與本實(shí)驗(yàn)中的側(cè)滲分層給水方式比較,前者改變土壤水分的水平空間分布,后者則是側(cè)重于土壤水分垂直空間分布的優(yōu)化。這種非傳統(tǒng)灌溉方式對(duì)干旱區(qū)植被幼苗初期的生長(zhǎng)發(fā)育具有重要作用。正如本實(shí)驗(yàn)的觀測(cè)結(jié)果,檉柳幼苗的基徑、株高和冠幅都在側(cè)滲分層灌溉的方式下明顯提高。
幼苗水分自維持能力是其自身通過(guò)形態(tài)、生理等方面的調(diào)節(jié)產(chǎn)生的對(duì)外界水分脅迫的適應(yīng)性反應(yīng),它的形成首先離不開(kāi)根系的合理分布和發(fā)育,而根系的生長(zhǎng)又離不開(kāi)幼苗地上部分的同化過(guò)程。有研究表明,一旦減少同化產(chǎn)物向幼苗細(xì)根分配,細(xì)根則出現(xiàn)衰老癥狀[9,20- 21]。實(shí)驗(yàn)中,側(cè)滲分層灌溉有利于幼苗地上部分的生長(zhǎng),這對(duì)提高光合產(chǎn)物的積累和分配至根系的碳投入都具有正效應(yīng)。從幼苗生物量分析中得出,同等給水量條件下,實(shí)驗(yàn)組的地上和地下部分絕對(duì)生物量都顯著高于對(duì)照組,顯然側(cè)滲分層灌溉方式下,光合碳積累的水分貢獻(xiàn)率居高。當(dāng)然,R/S結(jié)果呈對(duì)照組高于實(shí)驗(yàn)組,這恰恰說(shuō)明實(shí)驗(yàn)組的給水方式更有利于擴(kuò)大光合面積,有利于提升光合產(chǎn)物更多的分配至根系,進(jìn)而提升根系的吸水能力。
植物根系吸收水分受土壤植物-大氣系統(tǒng)(SPAC)系統(tǒng)中水勢(shì)梯度的影響和調(diào)節(jié)[22]。植物在黎明,隨氣孔開(kāi)放,蒸騰加強(qiáng),葉水勢(shì)下降,葉中水的流體靜壓力降低,最終導(dǎo)致葉中水分減少,滲透壓升高,從而進(jìn)一步減少了水勢(shì)。我們的研究發(fā)現(xiàn), 幼苗莖葉水勢(shì)表現(xiàn)為先降低后升高的趨勢(shì),這與付愛(ài)紅等對(duì)塔河下游多枝檉柳的水勢(shì)的研究發(fā)現(xiàn)一致[10]。尤其是高而穩(wěn)定的黎明水勢(shì)暗示著水分的補(bǔ)給基本滿足了植物體水勢(shì)下降到一天中最低點(diǎn)后再次恢復(fù)到原有水平的要求。植物莖水勢(shì)反映了植物體從土壤到大氣的導(dǎo)水能力,莖水勢(shì)越高導(dǎo)水能力越大,植物莖葉水分含量就越大,受到的干旱脅迫就越小[23]。塔里木河下游屬極端干旱氣候區(qū),降雨少蒸發(fā)強(qiáng)烈,因此,土壤水分決定了植物水勢(shì)的變化趨勢(shì)。我們?cè)趯?shí)驗(yàn)中觀察到,高灌條件下,土壤水分含量最大,從而使莖中午水勢(shì)也明顯高于其他灌溉水平下,表明植物體受到干旱脅迫??;同等灌溉水平下,側(cè)滲分層灌溉處理使根箱土壤水分峰值均大于地表灌溉,且出現(xiàn)在土層更深處,這種差異也反映在水勢(shì)上。7月下旬炎熱的夏季,中午莖水勢(shì)為實(shí)驗(yàn)組高于同等灌溉水平下地表灌溉方式處理的,說(shuō)明側(cè)滲分層灌溉方式使檉柳幼苗具有了較強(qiáng)的水分吸收和減少水分喪失的能力,從而增強(qiáng)了幼苗抗旱性。
植物的生長(zhǎng)及健康狀況與其生境之間的關(guān)系可以通過(guò)測(cè)定植物光合作用對(duì)不同外界環(huán)境的生理響應(yīng)而確定。葉綠素?zé)晒饧夹g(shù)具有反應(yīng)光合作用“內(nèi)在性”的特點(diǎn),具有測(cè)定植物光合作用快速、無(wú)損傷的優(yōu)勢(shì),近年來(lái)這一技術(shù)在不同植被對(duì)各種環(huán)境脅迫的響應(yīng)等研究領(lǐng)域被廣泛采用[4,24]。在干旱或半干旱地區(qū),植物由于受干旱脅迫常常會(huì)使其PSⅡ光能捕獲效率顯著降低,且高光照與干旱脅迫會(huì)相互疊加而加重脅迫程度[25]。高灌處理下,實(shí)驗(yàn)組側(cè)滲分層灌溉方式表現(xiàn)出顯著大于地表灌溉方式下檉柳幼苗的光能捕獲效率,表明這種非傳統(tǒng)的灌溉方式有效降低干旱脅迫的同時(shí),也對(duì)幼苗的光合作用具有顯著的促進(jìn)作用,其意義在于物質(zhì)積累的增加,尤其從根系的角度來(lái)說(shuō),其根長(zhǎng)和根表面積的增加都由此而受益,這為幼苗耐旱能力的提升和水分自維持能力的快速建成奠定了物質(zhì)基礎(chǔ)。但是,中灌和低灌處理下,兩種灌溉方式之間光化學(xué)量子產(chǎn)量的差異變小,甚至在低灌時(shí)發(fā)生轉(zhuǎn)換。這一結(jié)果暗示著,灌溉量的減少在一定程度上會(huì)削弱灌溉方式帶來(lái)的同化作用優(yōu)勢(shì)。
綜上所述,側(cè)滲分層的灌溉方式通過(guò)改變土壤水分的空間分布摸式,從而顯著地促進(jìn)了多枝檉柳幼苗早期(生長(zhǎng)脆弱期)生長(zhǎng),在水分和光合生理方面也找到相應(yīng)證據(jù)。塔里木河下游氣候極端干旱,改變水分干擾的方式可降低干旱脅迫對(duì)幼苗生長(zhǎng)早期的負(fù)面影響,積極探索該地區(qū)檉柳群落更新恢復(fù)中人工水分干擾模式的優(yōu)化問(wèn)題,對(duì)充分利用下游地區(qū)寶貴的水資源和維系荒漠河岸林植被群落具有重要意義。
[1] Chen Y N, Pang Z H, Chen Y P, Li W H, Xu C C, Hao X M, Huang X, Huang T M, Ye Z X. Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeology Journal, 2008, 16 (7): 1371- 1379.
[2] Hao X M, Li W H, Huang X, Zhu C C, Ma J X. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrological Processes, 2010, 24 (2): 178- 186.
[3] Shan L S, Zhang X M, Wang Y, Wang H, Yan H N, Wei J, Xu H. Influence of moisture on the growth and biomass allocation inHaloxylonammodendronandTamarixramosissimaseedlings in the shelterbelt along the Tarim Desert Highway, Xinjiang, China. Chinese Science Bulletin, 2008, 53 (2): 93- 101.
[4] Zhu C G, Li W H, Ma J X, Ma X D. Effects of groundwater level on chlorophyll fluorescence characteristics of Tamarix hispida in lower reaches of Tarim River. Chinese Journal of Applied Ecology 2010, 21 (7): 1689- 1696.
[5] Yan C, Wei Y, and Yang M L. Comparative germination ofTamarixramosissimaspring and summer seeds. EXCLI Journal, 2011, 42 (10): 198- 204.
[6] Ma X D, Zhu C G and Li W H. Response of root morphology and biomass of Tamarix ramosissima seedlings to different water irrigations. Chinese Journal of Plant Ecology, 2012, 36 (10): 1024- 1032.
[7] Chen Y N, Chen Y P, Xu C C, Ye Z X, Li Z Q, Zhu C G, Ma X D. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrological Processes, 2010, 24 (10): 170- 177.
[8] Ma X D, Zhu C G and Li W H. The variation in soil moisture and the appropriate groundwater table for desert riparian forest along the lower Tarim River. Journal of Geographical Science, 2011, 21 (10): 150- 162.
[9] Xu G Q, Li Y and Xu H. Seasonal variation in plant hydraulic traits of two co-occurring desert shrubs,TamarixramosissimaandHaloxylonammodendron, with different rooting patterns. Ecological Research, 2011, 26 (6): 1071- 1080.
[10] Fu A H, Li W H and Chen Y N. The threshold of soil moisture and salinity influencing the growth ofPopuluseuphraticaandTamarixramosissimain the extremely arid region. Environmental Earth Sciences, 2012, 66(8): 2519- 2529.
[11] Coleman M. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant and Soil, 2007, 299 (1/2): 195- 213.
[12] Wang J, Kang S Z, Li F S, Zhang F C, Li Z J, Zhang J H. Effects of alternate partial root-zone irrigation on soil microorganism and maize growth. Plant and Soil, 2008, 302 (1/2): 45- 52.
[13] Chen Y N, Li W H, Chen Y P, Xu C C, Zhang L H. Water conveyance in dried-up riverway and ecological restoration in the lower reaches of Tarim River, China. Acta Ecologica Sinca, 2007, 27 (2): 538- 545.
[14] Xu H and Li Y. Water-Use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant and Soil, 2006, 285 (1/2): 5- 17.
[15] Yang X L, Zhang X M, Shan L S, Wei J, Xie T T, Li Y L. Analysis on root structure ofTamarixtaklamakanensisin the Hinterland of the Taklimakan Desert. Arid Zone Research, 2008, 25 (5): 659- 667.
[16] Nippert J B, Butler J J, Kluitenberg G J, Whittemore D O, Arnold D, Ward J K.Tamarixramosissimaphysiology and groundwater use during a record drought. In: GSA Denver Annual Meeting. pp 265. USA, October 28- 31, 2007.
[17] Nippert J B, Butler J J, Kluitenberg G J, Whittemore D O, Arnold D, Spal S E, Ward J K. Patterns ofTamarixwater use during a record drought. Oecologia, 2010, 162 (2): 283- 292.
[18] Fan W B, Wu P T and Ma F M. Socio-economic impacts of under-film drip irrigation technology and sustainable assessment: a case in the Manas River Basin, Xinjiang, China. Acta Ecologica Sinca, 2012, 32 (23): 7559- 7567.
[19] Yang Q L, Zhang F C, Liu X G, Ge Z Y. Effects of controlled alternate partial root-zone drip irrigation on apple seedling morphological characteristics and root hydraulic conductivity. Chinese Journal of Applied Ecology, 2012, 23 (5): 1233- 1239.
[20] King J S, Albaugh T J, Allen H L, Buford M, Strain B R, Dougherty P. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 2002, 154 (2): 389- 398.
[21] Pregitzer K S, Deforest J L, Burton A J, Allen M F, Ruess R W, Hendrick R L. Fine root architecture of nine North American trees. Ecological Monographs, 2002, 72 (2): 293- 309.
[22] Gries D, Zeng F, Foetzki A, Arndt S K, Bruelheide H, Thomas F M, Zhang X, Runge M. Growth and water relations ofTamarixramosissimaandPopuluseuphraticaon Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell and Environment, 2003, 26 (5): 725- 736.
[23] Deng M J. Theory and ractice of Water Control in China′s Tarim River. Beijing: Science Press, 2004: 433- 440.
[24] Corney H J, Sasse J M and Ades P K. Assessment of salt tolerance in eucalypts using chlorophyll fluorescence attributes. New Forests, 2003, 26 (3): 233- 246.
[25] Remorini D, Melgar J C, Guidi L, Innocenti D E, Castelli S, Traversi M L, Massai R, Tattini M. Interaction effects of root-zone salinity and solar irradiance on the physiology and biochemistry ofOleaeuropaea. Environmental and Experimental Botany, 2009, 65 (2 - 3): 210- 219.
參考文獻(xiàn):
[4] 朱成剛, 李衛(wèi)紅, 馬建新, 馬曉東. 塔里木河下游地下水位對(duì)檉柳葉綠素?zé)晒馓匦缘挠绊? 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(7): 1689- 1696.
[6] 馬曉東, 朱成剛, 李衛(wèi)紅. 多枝檉柳幼苗根系形態(tài)及生物量對(duì)不同灌溉處理的響應(yīng). 植物生態(tài)學(xué)報(bào), 2012, 36(10): 1024- 1032.
[13] 陳亞寧, 李衛(wèi)紅, 陳亞鵬, 徐長(zhǎng)春, 張麗華. 新疆塔里木河下游斷流河道輸水與生態(tài)恢復(fù). 生態(tài)學(xué)報(bào), 2007, 27(2): 538- 545.
[15] 楊小林, 張希明, 單立山, 魏疆, 解婷婷, 李義玲. 塔克拉瑪干沙漠腹地塔克拉瑪干檉柳根系構(gòu)筑型研究. 干旱區(qū)研究, 2008, 25(5): 659- 667.
[18] 范文波, 吳普特, 馬楓梅. 膜下滴灌技術(shù)生態(tài)-經(jīng)濟(jì)與可持續(xù)性分析——以新疆瑪納斯河流域棉花為例. 生態(tài)學(xué)報(bào), 2012, 32(23): 7559- 7567.
[19] 楊啟良, 張富倉(cāng), 劉小剛, 戈振揚(yáng). 控制性分根區(qū)交替滴灌對(duì)蘋果幼樹(shù)形態(tài)特征與根系水分傳導(dǎo)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(5): 1233- 1239.
[23] 鄧銘江. 中國(guó)塔里木河治水理論與實(shí)踐. 北京: 科學(xué)出版社, 2004: 433- 440.
ThemorphologicalandphysiologicalresponsesofTamarixramosissimaseedlingtodifferentirrigationmethodsintheextremelyaridarea
MA Xiaodong1,*, WANG Minghui1, LI Weihong2, XING Xuming1, ZHANG Ruiqun1
1SchoolofLifeSciences,XinjiangNormalUniversity,Urumqi830054,China2StateKeyLaboratoryofDesertandOasisEcology,XinjiangInstituteofEcologyandGeography,ChineseAcademyofSciences,Urumqi830011,China
Water shortages are not only the main limiting factor of plant survival and growth in many habitats, but also are the direct cause for vegetation degradation in arid regions. The lower reaches of Tarim River are located in an extremely arid climate in northwestern China. The vegetation structure along the river banks of the lower reaches of the Tarim River is relatively simple, with only a few plant species present. Major plant species include such trees asPopuluseuphraticaand shrubs such asTamarixramosissima, andTamarixhispida. During the past 50 years, intense human activities effects in this region have led to the nearly complete interception of water in 321 km of the watercourse in the lower reaches of the Tarim River; as a result, the groundwater table has dropped considerably and natural vegetation which depends on that groundwater has become severely degraded. To preserve the endangered desert river bank forest vegetation and restore the damaged ecological system, an Ecological Water Conveyance Project was initiated in 2000. Artificially planting native dominant plant species includingTamarixspp. to initiate rapid rehabilitation of the plant community has become an important research subject in this area. However, the increased river flow from this project has produced very limited results in increasing both the amount of intermittent water flow in the river and in raising the downstream ground water table. As a result, the water demands of theT.ramosissimaseedlings in the early growth stage could not be met. Therefore, irrigating field transplanted seedlings during the early stage of growth has been very important.T.ramosissimawas once widely distributed in the desert plains and in the sandy and alkaline lands in northwestern China. It was also a dominant shrub in the desert riparian forest in the lower reaches of the Tarim River and played a key role in ecological rehabilitation and maintenance of the stability of the riparian forest in this area. The objective of this study was to test the growth and physiological responses ofT.ramosissimaseedling to different irrigation methods, i.e. layered side irrigation (LSI) and aboveground irrigation (AGI), using three water levels, i.e. high (W1, 50 L plant-1repetition-1), medium (W2, 25 L plant-1repetition-1) and low (W3, 12.5 L plant-1repetition-1) water levels. The results showed that LSI increased basal diameter, stem length, crown width and growth rate of the seedling; LSI also increased soil moisture under the same water level conditions when compared with the AGI method. LSI significantly increased belowground biomass, total biomass and the root shoot ratio (R/S) of the seedling under W1 (Plt; 0.05). LSI significantly increased stem water potential under W1 and W2 (Plt; 0.05). The findings show that LSI can be used to increase water use efficiency of the seedlings. LSI increased photochemical quantum yield of PSⅡ in the light (Yield) of the seedlings under W1 and W2, and this increase was statistically significant under W1 (Plt; 0.05). Our results suggest that LSI caused rapid and large amounts of growth and biomass production inT.ramosissimaseedlings, as well as had a valuable positive effect on water potential and photosynthesis which benefited the seedling′s survival rates during the early stage of growth.
AGI; LSI; photochemical quantum yield of PSⅡ in the light; the lower reaches of Tarim River; water potential
國(guó)家自然科學(xué)基金資助項(xiàng)目(41261103);新疆維吾爾自治區(qū)自然科學(xué)基金資助項(xiàng)目(2012211B18)
2013- 05- 09;
2013- 07- 23
*通訊作者Corresponding author.E-mail: mxd1107@126.com
10.5846/stxb201305091000
馬曉東,王明慧,李衛(wèi)紅,邢旭明,張瑞群.極端干旱區(qū)多枝檉柳幼苗對(duì)人工水分干擾的形態(tài)及生理響應(yīng).生態(tài)學(xué)報(bào),2013,33(19):6081- 6087.
Ma X D, Wang M H, Li W H, Xing X M, Zhang R Q.The morphological and physiological responses ofTamarixramosissimaseedling to different irrigation methods in the extremely arid area.Acta Ecologica Sinica,2013,33(19):6081- 6087.