劉柏楓,韓玉良,孫喜東
(山東工商學(xué)院 數(shù)學(xué)與信息科學(xué)學(xué)院,山東 煙臺(tái) 264005)
概周期函數(shù)是比周期函數(shù)更廣的一類(lèi)函數(shù),在物理、 生物、 數(shù)學(xué)、 控制論及神經(jīng)網(wǎng)絡(luò)等領(lǐng)域應(yīng)用廣泛,目前已有許多研究結(jié)果[1-3]. 文獻(xiàn)[4-11]研究了It隨機(jī)微分方程的概周期解、 偽概周期解及概自守解等. 積分-微分方程在力學(xué)、 電磁學(xué)、 原子反應(yīng)動(dòng)力系統(tǒng)及人口動(dòng)力系統(tǒng)中應(yīng)用廣泛. 文獻(xiàn)[8]研究了如下隨機(jī)積分-微分方程:
文獻(xiàn)[8]在假設(shè)隨機(jī)微分方程(1)對(duì)應(yīng)線(xiàn)性部分是指數(shù)穩(wěn)定的條件下,給出了方程(1)均方概周期解的存在唯一性定理. 但由于指數(shù)型穩(wěn)定性是一個(gè)非常強(qiáng)的條件,因此即使形如A=diag{1,-1}的系統(tǒng)指數(shù)穩(wěn)定也很難做到,而這樣的系統(tǒng)顯然滿(mǎn)足指數(shù)型二分性. 本文在指數(shù)型二分性的條件下研究形如隨機(jī)積分-微分方程(1)的均方概周期解的存在唯一性.
對(duì)x∈L2(P,Rn),定義
易驗(yàn)證當(dāng)賦予范數(shù)‖·‖∞時(shí),L2(P,Rn)是一個(gè)Banach空間. 用AP(R,L2(P,Rn))表示所有x: R →L2(P,Rn)均方概周期隨機(jī)過(guò)程的集合,用AP(R×L2(P,Rn),L2(P,Rn))表示所有f: R×L2(P,Rn) →L2(P,Rn)一致概周期隨機(jī)過(guò)程的集合.
類(lèi)似于文獻(xiàn)[2]的證明,有:
考慮如下線(xiàn)性隨機(jī)積分-微分方程:
(2)
定義1對(duì)于一個(gè) Rn值的{Ft,t∈R}相適的隨機(jī)過(guò)程{x(t)}t∈R,如果對(duì)任意的t≥s,有
則稱(chēng){x(t)}t∈R為方程(2)的一個(gè)解.
定義2如果存在投影算子P(P是線(xiàn)性的且滿(mǎn)足P2=P)及常數(shù)α1>0,α2>0和β1>1,β2>1,使得:
‖X(t)PX-1(s)‖2≤β1e-α1(t-s),t≥s,
(3)
‖X(t)(I-P)X-1(s)‖2≤β2eα2(s-t),t≤s,
(4)
則系統(tǒng)(2)所對(duì)應(yīng)的齊次線(xiàn)性微分方程稱(chēng)為滿(mǎn)足指數(shù)型二分性. 其中X(t)是方程(2)所對(duì)應(yīng)齊次線(xiàn)性微分方程的基本解矩陣.
定理1假設(shè)方程(2)所對(duì)應(yīng)的齊次線(xiàn)性微分方程滿(mǎn)足指數(shù)型二分性,A(t)∈AP(R,Rn×Rn). 則對(duì)給定的f1,f2,gj∈AP(R,L2(P,Rn))(j=1,2,…,m),方程(2)存在唯一均方概周期解.
證明:設(shè)隨機(jī)過(guò)程{x(t)}t∈R由下式定義:
由式(3)~(5)、 Cauchy-Schuwarz不等式和隨機(jī)積分的It等距公式[12]易證
所以由式(5)定義的隨機(jī)過(guò)程{x(t)}t∈R是有意義的,并且容易驗(yàn)證對(duì)t∈R,由式(5)定義的x(t)是方程(2)的一個(gè)解.
為了證明x(t)是均方概周期的,分別定義
(6)
(7)
設(shè)
考慮如下非線(xiàn)性隨機(jī)積分-微分方程:
其中:A(t)是一個(gè)n×n連續(xù)矩陣;F1:R×L2(P,Rn) →L2(P,Rn),F2:R×L2(P,Rn) →L2(P,Rn),Gj:R×L2(P,Rn) →L2(P,Rn)(j=1,2,…,m)是連續(xù)隨機(jī)過(guò)程;B,C,W(t)如前所述.
假設(shè):
(H1) 方程(10)所對(duì)應(yīng)的齊次線(xiàn)性微分方程滿(mǎn)足指數(shù)型二分性,A(t)∈AP(R,Rn×Rn);
(H2)F1∈AP(R×L2(P,Rn),L2(P,Rn)),F2∈AP(R×L2(P,Rn),L2(P,Rn)),Gj∈AP(R×L2(P,Rn),L2(P,Rn))(j=1,2,…,m),并且分別滿(mǎn)足Lipschitz條件,即存在L1>0,L2>0,L3>0,使得對(duì)任意的x,y∈L2(P,Rn),t∈R,
(11)
又由定理1知,Λ把AP(R,L2(P,Rn))映到自身. 分別考慮作用在Banach空間AP(R,L2(P,Rn))上的非線(xiàn)性算子:
對(duì)x,y∈AP(R,L2(P,Rn)),t∈R,由Cauchy-Schwarz不等式及隨機(jī)積分的It等距公式,有
再由Cauchy-Schwarz不等式,有
(14)
(15)
對(duì)t∈R,由式(13)~(15),有
[1] Corduneanu C. Almost Periodic Functions [M]. 2nd ed. New York: Chelsea,1989.
[2] Fink A M. Almost Periodic Differential Equations [M]. Lecture Notes in Math,Vol.377. New York: Springer-Verlag,1974.
[3] Bezandry P H,Diagana T. Almost Periodic Stochastic Processes [M]. New York: Springer,2011.
[4] Varsan C. Asymptotic Almost Periodic Solutions for Stochastic Differential Equations [J]. Tohoku Math J,1989,41(4): 609-618.
[5] Morozan T,Tudor C. Almost Periodic Solutions of Affine ItEquations [J]. Stochastic Analysis and Applications,1989,7(4): 451-474.
[6] Prato G,Da,Tudor C. Periodic and Almost Periodic Solutions for Semilinear Stochastic Equations [J]. Stochastic Analysis and Applications,1995,13(1): 13-33.
[7] FU Miao-miao,LIU Zhen-xin. Square-Mean Almost Automorphic Solutions for Some Stochastic Differential Equations [J]. Proc Amer Math Soc,2010,138(10): 3689-3701.
[8] Bezandry P H. Existence of Almost Periodic Solutions to Some Functional Integro-Differential Stochastic Evolution Equations [J]. Statistics &Probability Letters,2008,78(17): 2844-2849.
[9] Bezandry P H,Diagana T. Existence of Almost Periodic Solutions to Some Stochastic Differential Equations [J]. Appl Anal,2007,86(7): 819-827.
[10] Arnold L,Tudor C. Stationary and Almost Periodic Solutions of Almost Periodic Affine Stochastic Differential Equations [J]. Stochastics and Stochastics Reports,1998,64(3/4): 177-193.
[11] CAO Jun-fei,YANG Qi-gui,HUANG Zai-tang. On Almost Periodic Mild Solutions for Stochastic Functional Differential Equations [J]. Nonlinear Analysis: Ral World Applications,2012,13(1): 275-286.
[12] Φksendal B. Stochastic Differential Equations: An Introduction with Applications [M]. 6th ed. Berlin: Springer-Verlag,2003.
[13] CHEN Xiao-xing,LIN Fa-xing. Almost Periodic Solutions of Neutral Functional Differential Equations [J]. Nonlinear Analysis: Ral World Applications,2010,11: 1182-1189.
[14] Arnold L. Stochastic Differential Equations: Theory and Applications [M]. New York: John Wiley &Sons,1974.