劉 令,王國銘,謝嘉寧
(1.吉林建筑大學(xué) 基礎(chǔ)科學(xué)部,長春130118;2.吉林大學(xué) 數(shù)學(xué)學(xué)院,長春130012;3.東北財(cái)經(jīng)大學(xué) 數(shù)學(xué)與數(shù)量經(jīng)濟(jì)學(xué)院,遼寧 大連116025)
考慮如下初邊值問題:
為方便,引進(jìn)如下符號(hào):
這里
設(shè)Lr(·)(Ω)表示如下可測函數(shù)空間:
其范數(shù)為
易驗(yàn)證Lr(·)(Ω)是Banach空間[4,6].由范數(shù)定義有
根據(jù)文獻(xiàn)[4,6]可知
令B1=max{B,m1/p}.定義
則
引理1 函數(shù)E(t)關(guān)于時(shí)間變量t是非增的.
證明:由問題(1)及式(8),對(duì)函數(shù)E(t)求導(dǎo)得
證明:由式(5),(8)有
其中α=‖▽um‖.易驗(yàn)證h(α)在區(qū)間(0,α1)上單調(diào)遞增,在區(qū)間(α1,+∞)上單調(diào)遞減且h(α)→-∞,當(dāng)α→+∞時(shí),h(α1)=E1,其中E1,α1的定義如式(6),(7).由于E(0)<E1,故存在α2>α1,使得h(α2)=E(0).令α0=‖▽‖,由式(11)有h(α0)≤E(0)=h(α2),進(jìn)一步還可證明α0≥α2.
假設(shè)式(9)不成立,即存在t0>0,使得‖▽um(·,t0)‖<α2.由于‖▽um(·,t)‖關(guān)于時(shí)間t連續(xù),故可選取t1>0,使得‖▽um(·,t1)‖>α1.進(jìn)一步,根據(jù)函數(shù)h(α)的單調(diào)性,有
這與引理1矛盾.
定義 H(t)=E1-E(t).
引理3 對(duì)所有t>0,均有
證明:由引理1,有H′(t)≥0,即 H(t)≥H(0)>0,?t≥0.根據(jù)式(8),(11)有
定理1 假設(shè)r(x)滿足式(2),(3),且如下條件成立:
則問題(1)的解在有限時(shí)刻爆破.
由式(8),(12),有
其中
由式(4),有
由Lr(·)+m(Ω)?Lm+1(Ω),有
又根據(jù)式(15)~(17),有
[1]Levine H A.Some Nonexistence and Instability Theorems for Solutions of Formally Parabolic Equations of the FormPut=-Au+F(u)[J].Arch Rationale Mech Anal,1973,51(5):371-386.
[2]LIU Wen-jun,WANG Ming-xin.Blow-up of the Solution for a p-Laplacian Equation with Positive Initial Energy[J].Acta Appl Math,2008,103:141-146.
[3]Dibenedetto E.Degenerate Parabolic Equations[M].New York:Springer-Verlag,1993.
[4]Ruzicka M.Electrorheological Fluids:Modelling and Mathematical Theory [M].Lecture Notes in Math.Vol.1748.Berlin:Springer,2000.
[5]Acerbi E,Mingione G,Seregin G A.Regularity Results for Parabolic Systems Related to a Class of Non-Newtonian Fluids[J].Annal del’Institut Henri Poincare:Analyse Non-lineaire,2004,21:25-60.
[6]Diening L,Harjulehto P,Hasto P,et al.Lebesgue and Sobolev Spaces with Variable Exponents[M].Lecture Notes in Math.Vol.2017.Berlin:Springer-Verlag,2011.
[7]Ferreira R,Pablo A,de,Prez-Llanos M,et al.Critical Exponents for a Semilinear Parabolic Equation with Variable Reaction[J].Proc Roy Soc Edinburgh:Sect A,2012,142(5):1027-1042.
[8]WU Xiu-lan,GUO Bin,GAO Wen-jie.Blow-up of Solutions for a Semilinear Parabolic Equation Involving Variable Exponent Source and Positive Initial Energy[J].Appl Math Lett,2013,26(5):539-543.
[9]YIN Jing-xue,LI Jing,JIN Chun-h(huán)ua.Non-extinction and Critical Exponent for a Polytropic Filtration Equation[J].Nonlinear Anal:Theory,Methods & Applications,2009,71(1/2):347-357.
[10]MU Chun-lai,ZENG Rong,CHEN Bo-tao.Blow-up Phenomena for a Doubly Degenerate Equation with Poitive Initial Energy[J].Nonlinear Anal,2010,72(2):782-793.