亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        玉米植株不同部位還田土壤活性碳、氮的動(dòng)態(tài)變化

        2013-10-16 10:30:44把余玲田霄鴻王淑娟

        把余玲, 田霄鴻, 萬(wàn) 丹, 李 錦, 王淑娟

        (西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,農(nóng)業(yè)部西北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)

        玉米植株不同部位還田土壤活性碳、氮的動(dòng)態(tài)變化

        把余玲, 田霄鴻*, 萬(wàn) 丹, 李 錦, 王淑娟

        (西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,農(nóng)業(yè)部西北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)

        探討玉米植株不同部位腐解對(duì)還田土壤活性碳、 氮?jiǎng)討B(tài)變化的影響。采用室內(nèi)培養(yǎng)方法,通過(guò)動(dòng)態(tài)監(jiān)測(cè)土壤微生物量碳(SMBC)、微生物量氮(SMBN)、可溶性碳(DOC)和礦質(zhì)氮含量,研究等量玉米根茬、秸稈、莖及葉4個(gè)部位在連續(xù)7季還田(秸稈+根茬還田)和不還田土壤(僅根茬還田)中的腐解轉(zhuǎn)化特征。結(jié)果表明,秸稈腐解的最初7 d是土壤活性碳、 氮?jiǎng)討B(tài)變化的高峰期;腐解期間(62 d)SMBC、SMBN含量表現(xiàn)為添加秸稈始終高于根茬,葉分別在前28 d、14 d內(nèi)高于莖,后期則低于莖,秸稈介于莖、葉之間;土壤DOC、礦質(zhì)氮含量為葉>秸稈>莖>根茬;培養(yǎng)結(jié)束時(shí),各處理SMBC和礦質(zhì)氮含量均較起始(0 d)顯著提高,DOC含量基本保持不變,SMBN含量顯著下降。與不還田土壤相比,還田土壤對(duì)新鮮殘?bào)w的腐解影響不顯著,且兩者間土壤活性氮組分的差異較碳組分明顯。腐解期間土壤活性碳、 氮的動(dòng)態(tài)變化主要取決于各器官碳、 氮等化學(xué)組分的差異性,等量秸稈較根茬更有利于補(bǔ)充土壤活性碳、氮數(shù)量,土壤活性氮組分對(duì)還田土壤的響應(yīng)較碳組分靈敏。

        玉米殘?bào)w; 微生物量碳; 微生物量氮; 可溶性有機(jī)碳; 礦質(zhì)氮

        作物秸稈作為農(nóng)田生態(tài)系統(tǒng)中土壤有機(jī)物歸還的主要來(lái)源,已廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)實(shí)踐[1-3],其在土壤中的腐解主要取決于殘?bào)w來(lái)源和成分[4]。殘?bào)w來(lái)源因受人為利用和管理措施影響,其各部分歸還到土壤中的數(shù)量和比例有所不同[5-6],尤其在機(jī)械化程度較高地區(qū),作物收獲后根茬幾乎全部留在土壤中被腐解[7-8]。此外,同一作物各器官因生長(zhǎng)條件不同,其成分間存在高度差異性[7]。不少研究表明,秸稈腐解不僅顯著提高土壤有機(jī)質(zhì)含量[3, 9-10],而且提高包括土壤微生物量、可溶性碳等活性有機(jī)質(zhì)的含量[11-13],進(jìn)而影響土壤微生物對(duì)氮素的固持與釋放[1,14]。有研究指出,與作物秸稈相比,根茬對(duì)土壤結(jié)構(gòu)的改善及有機(jī)碳的貢獻(xiàn)作用更顯著,且對(duì)根際影響最大[15-18]。Puget等研究發(fā)現(xiàn),雖然秸稈施入土壤后能迅速分解并為下茬作物提供氮源,但根茬可能更有利于短期土壤結(jié)構(gòu)的改善及長(zhǎng)期土壤有機(jī)質(zhì)的累積[17]。因此,在農(nóng)業(yè)實(shí)踐中,如何協(xié)調(diào)秸稈和根茬腐解在土壤養(yǎng)分供應(yīng)中所起的作用是值得關(guān)注的重要問(wèn)題。

        隨著農(nóng)業(yè)機(jī)械化的普及,關(guān)中平原小麥、玉米秸稈還田面積越來(lái)越大,即使秸稈不還田,仍有大量根茬留在土壤中被腐解。在這種情況下,多年秸稈還田與不還田土壤相比,對(duì)作物殘?bào)w腐解影響究竟能產(chǎn)生多大差異的報(bào)道尚不多見(jiàn),且對(duì)同一作物不同部位(秸稈、根茬、莖、葉)各自的腐解特性,以及腐解過(guò)程中土壤活性碳、 氮等養(yǎng)分動(dòng)態(tài)變化的研究很少。因此,本試驗(yàn)采用室內(nèi)培養(yǎng)方法,初步研究玉米各部位殘?bào)w(根茬、秸稈、莖、葉)還田和不還田后,土壤微生物量碳、 氮、可溶性碳及礦質(zhì)氮的動(dòng)態(tài)變化,旨在進(jìn)一步探討作物各部位殘?bào)w腐解過(guò)程中養(yǎng)分供應(yīng)與土壤肥力的關(guān)系,為合理還田與農(nóng)田養(yǎng)分科學(xué)管理提供依據(jù)。

        1 材料與方法

        1.1 供試材料

        1.2 培養(yǎng)試驗(yàn)

        1.2.1 試驗(yàn)設(shè)計(jì) 以上述2種土壤(還田土、不還田土)和4種玉米植株不同部位(根茬、秸稈、莖、葉)為研究因素,另設(shè)不加玉米殘?bào)w土壤作為對(duì)照,共組成10個(gè)處理,每個(gè)處理重復(fù)3次。

        1.2.2 培養(yǎng)過(guò)程 稱土250 g(烘干土)裝入1 L塑料培養(yǎng)盆中,加蒸餾水至田間持水量(WHC)的60%,在20℃下預(yù)培養(yǎng)4 d,以恢復(fù)土壤微生物活性。然后,將2.5 g玉米根茬、秸稈、莖、葉殘?bào)w分別施入相應(yīng)土壤中,并依各殘?bào)wC、N含量,加入適量尿素溶液調(diào)節(jié)C/N至25 ∶1(使土壤含水量調(diào)至70% WHC),同時(shí)設(shè)不加殘?bào)w的2種土樣作為對(duì)照,充分混合均勻,置于培養(yǎng)箱中,25±1℃恒溫培養(yǎng)62 d,每隔5 d采用稱重法補(bǔ)充水分。在培養(yǎng)的第0(6 h后)、 3、 7、 14、 28、 42、 62 d分別從各培養(yǎng)盆中取樣,測(cè)定土壤微生物量碳、微生物量氮、可溶性碳和礦質(zhì)氮含量。

        1.3 測(cè)定項(xiàng)目與方法

        表1 土壤及玉米植株樣品的基本性質(zhì)Table 1 Basic properties of soil samples and maize residues

        采用Microsoft Excel 2007、SigmaPlot 12.0軟件對(duì)數(shù)據(jù)進(jìn)行預(yù)處理及作圖,用SAS 8.0軟件進(jìn)行方差分析及LSD0.05差異顯著性檢驗(yàn)。

        2 結(jié)果與分析

        2.1玉米秸稈和根茬腐解過(guò)程中土壤活性碳、氮組分含量的動(dòng)態(tài)變化

        圖1 玉米秸稈和根茬腐解過(guò)程中土壤微生物量碳含量的動(dòng)態(tài)變化Fig.1 Dynamics of soil microbial biomass carbon contents during maize straw and root decomposition [注(Note): 豎線長(zhǎng)度代表最小顯著差異值 (P<0.05) Vertical bars means the least-significant differences at the 0.05 probability level.]

        圖3 玉米秸稈和根茬腐解過(guò)程中土壤微生物量氮含量的動(dòng)態(tài)變化Fig.3 Dynamics of soil microbial biomass nitrogen contents during maize straw and root decomposition

        2.2玉米莖、葉腐解過(guò)程中土壤活性碳、氮的動(dòng)態(tài)變化

        表2可見(jiàn),培養(yǎng)最初7 d內(nèi),各處理土壤活性碳、氮含量波動(dòng)幅度較大,微生物量碳顯著增加,微生物量氮先增加后降低,土壤可溶性碳及礦質(zhì)氮先降低后增加;添加葉土壤微生物量碳、氮在培養(yǎng)28 d、14 d內(nèi)高于添加莖土壤,之后低于添加莖土壤,且這一變化在秸稈不還田土中較還田土出現(xiàn)時(shí)間提前,添加葉土壤可溶性碳含量始終高于添加莖土壤,土壤礦質(zhì)氮含量除第0 d外均為葉>莖,這可能與殘?bào)w剛施入土壤后,葉較莖更易被腐解,土壤礦質(zhì)氮被固持更快有關(guān),之后隨著腐解的進(jìn)行,礦質(zhì)氮又逐漸被釋放出來(lái)。

        還田土壤微生物量碳含量在添加莖條件下,除培養(yǎng)第7 d、 62 d外均低于不還田土處理,而添加葉處理下為前42 d高于不還田土壤,之后趨勢(shì)相反;添加莖、葉條件下,還田土壤微生物量氮含量在培養(yǎng)第3 d、 62 d高于不還田土,其余時(shí)期均顯著低于不還田土;土壤可溶性碳和礦質(zhì)氮含量基本上為還田土高于不還田土。培養(yǎng)結(jié)束時(shí),兩種培養(yǎng)土中莖、葉處理土壤微生物量碳、礦質(zhì)氮含量均較起始(0 d)顯著增加,可溶性碳含量基本保持不變,微生物量氮含量顯著下降。

        3 討論

        3.1玉米各器官(根茬、秸稈、莖、葉)腐解過(guò)程中土壤活性碳、氮含量變化的實(shí)質(zhì)

        C/N低的有機(jī)物料更能夠促進(jìn)土壤微生物量的提高而加快碳素和氮素的循環(huán)[21]。本研究中,玉米各部位殘?bào)w在添加量一致條件下,腐解期間秸稈處理(C/N=74.9)土壤微生物量碳、氮及礦質(zhì)氮含量始終顯著高于根茬(C/N=103.9),這可能是由于秸稈較根茬碳、氮含量較高,C/N較低(表1),且含有較多可溶性碳,從而更易被微生物群落吸收、礦化及循環(huán);葉處理(C/N=64.5)土壤微生物量碳、氮在培養(yǎng)前期高于莖(C/N=93.6),后期則低于莖,不還田土(僅根茬還田)較還田土(秸稈+根茬還田)出現(xiàn)時(shí)間提前,另外土壤礦質(zhì)氮含量均為葉>莖,且土壤礦質(zhì)氮的增加量與殘?bào)wC/N呈顯著負(fù)相關(guān)(r=-0.76*),這與王春陽(yáng)等的研究結(jié)果相似[22]。原因可能是莖含碳量高于葉,含氮量又低于葉,這使得后期微生物對(duì)葉碳分解利用減弱時(shí),對(duì)莖碳的利用強(qiáng)度仍能持續(xù),且在不還田土中強(qiáng)度較大,此外也不排除氯仿釋放的碳,除微生物體中的碳外還包括殘?bào)w碳。δ13C標(biāo)記試驗(yàn)發(fā)現(xiàn),土壤-玉米殘?bào)w混合物處理中土壤微生物量碳約75%來(lái)源于玉米殘?bào)w[23]。在殘?bào)w腐解過(guò)程中,有合理數(shù)量的底物碳能穿過(guò)土壤微生物量并最終以土壤微生物殘留物的形式存在,這部分碳是土壤養(yǎng)分、能源的一個(gè)重要供應(yīng)庫(kù)[11]。由此說(shuō)明,殘?bào)w碳作為土壤微生物量碳的主要來(lái)源,在腐解過(guò)程中為土壤微生物補(bǔ)充了豐富的易利用有機(jī)碳源,同時(shí)也反映出微生物利用玉米各部分殘?bào)w養(yǎng)分的特異性。

        表2 玉米莖和葉腐解過(guò)程中土壤活性碳、 氮組分含量的動(dòng)態(tài)變化 (mg/kg)Table 2 Dynamics of soil carbon, nitrogen components during maize stem and leaf decomposition

        注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異顯著(P<0.05) Values followed by different small letters mean significantly different in the same column at the 0.05 level (P<0.05).

        3.2玉米各器官(根茬、秸稈、莖、葉)腐解過(guò)程中土壤活性碳、氮含量變化特性

        3.3 秸稈還田土壤對(duì)新鮮殘?bào)w腐解特性的影響

        培養(yǎng)期間,還田土中各處理微生物量碳、可溶性碳及礦質(zhì)氮含量均高于不還田土,微生物量氮含量則相反,大部分時(shí)期差異未達(dá)顯著水平,兩種土壤間活性氮組分的差異較碳組分明顯,表明7季秸稈還田土對(duì)新鮮殘?bào)w的腐解影響不顯著,且氮組分對(duì)培養(yǎng)土壤是否還田的響應(yīng)較碳組分靈敏。原因可能是土壤原有有機(jī)碳組成已相對(duì)穩(wěn)定,殘?bào)w腐解過(guò)程中土壤活性碳組分主要受殘?bào)w影響,而氮組分主要受土壤控制;此外,不還田土較還田土有機(jī)質(zhì)含量低,微生物活性較弱,殘?bào)w施入土壤后激發(fā)效應(yīng)反而更強(qiáng)烈,氮素更易被固持[32]。

        在土壤有機(jī)質(zhì)不斷形成和分解過(guò)程中,激發(fā)效應(yīng)的存在是不可忽略的。研究發(fā)現(xiàn),以復(fù)雜、不溶性化合物形式提供的殘?bào)w碳可能更易引起激發(fā)效應(yīng)[33];此外,與養(yǎng)分充足土壤相比,較為瘠薄土壤中的激發(fā)效應(yīng)反而更為激烈[32]。本研究采用的室內(nèi)培養(yǎng)條件與田間實(shí)際情況存在較大差異,在自然條件下作物凋落物會(huì)或多或少不斷投入到土壤中[33],活根的存在也刺激產(chǎn)生根際激發(fā)效應(yīng)[34-35],新鮮有機(jī)質(zhì)腐解的最初階段作物與微生物爭(zhēng)奪養(yǎng)分的效應(yīng)等[36]。由此從本試驗(yàn)結(jié)果中得出是否存在正負(fù)激發(fā)效應(yīng)還比較困難。因此,有必要采用同位素標(biāo)記法定量研究殘?bào)w腐解期間土壤微生物對(duì)施入殘?bào)w碳、氮的固持與釋放,進(jìn)一步驗(yàn)證激發(fā)效應(yīng)是否存在,以評(píng)價(jià)土壤活性有機(jī)質(zhì)組分在土壤碳、氮循環(huán)中的作用。

        [1] Khalil M I, Hossaina M B, Schmidhalter U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials[J]. Soil Biol. Biochem., 2005, 37: 1507-1518.

        [2] Zeng D H, Mao R, Chang Scott Xetal. Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China: a laboratory study[J]. Appl. Soil Ecol., 2010, 44: 133-137.

        [3] Goyal S, Chander K, Mundra M Cetal. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions[J]. Biol. Fertil. Soils, 1999, 29: 196-200.

        [4] Nicolardot B, Recous S, Mary B. Simulation of C and N mineralisation during crop residue decomposition: A simple dynamic model based on the C: N ratio of the residues[J]. Plant Soil, 2001, 228: 83-103.

        [5] 蔡苗, 董燕婕, 李佰軍, 等. 不同施氮處理玉米根茬在土壤中的礦化分解特性[A]. 中國(guó)土壤學(xué)會(huì). 面向未來(lái)的土壤科學(xué)[C]. 成都: 電子科技大學(xué)出版社, 2012. 119-130. Cai M, Dong Y J, Li B Jetal. Decomposition characteristics of maize roots under different nitrogen rates in soils [A]. Soil Science Society of China. The future of soil science [C]. Chengdu: University of Electronic Science and Technology Press, 2012. 119-130.

        [6] 謝光輝, 王曉玉, 任蘭天. 中國(guó)作物秸稈資源評(píng)估研究現(xiàn)狀[J]. 生物工程學(xué)報(bào), 2010, 26(7): 855-863. Xie G H, Wang X Y, Ren L T. China’s crop residues resources evaluation[J]. Chin. J. Biotech., 2010, 26(7): 855-863.

        [7] Balesdent Samuel, Sylvie Recous, Victor Reyesetal. Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality[J]. Biol. Fertil. Soils, 2005, 42: 119-128.

        [8] Vanlauwe B, Nwoke O C, Sanginga N. Impact of residue quality on the C and N mineralization of leaf and root residues of three agro forestry species[J]. Plant Soil, 1996, 183: 221-231.

        [9] Jawson M D, Elliott L F. Carbon and nitrogen transformation during wheat straw and root decomposition[J]. Soil Biol. Biochem., 1986, 18(1): 15-22.

        [10] Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility: a laboratory study[J]. Soil Biol. Biochem., 2003, 35: 391-399.

        [11] Mueller T, Jensen L S, Nielsent N E. Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field[J]. Soil Biol. Biochem., 1998, 30(5): 561-571.

        [12] Sarmiento L, Bottner P. Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: indications for fertility restoration[J]. Appl. Soil Ecol., 2002, 19: 79-89.

        [13] 周江敏, 陳華林, 唐東民, 等. 秸稈施用后土壤溶解性有機(jī)質(zhì)的動(dòng)態(tài)變化[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2008, 14(4): 678-684. Zhou J M, Chen H L, Tang D Metal. Dynamic changes of dissolved organic matter in the soils amended with rice straw[J]. Plant Nutr. Fert. Sci., 2008, 14(4): 678-684.

        [14] 梁斌, 趙偉, 周建斌, 等. 氮肥及其與秸稈配施在不同肥力土壤的固持及供應(yīng)[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(9): 1750-1757. Liang B, Zhao W, Zhou J Betal. Nitrogen retention and supply after addition of N fertilizer and its combination with straw in the soils with different fertilities[J]. Sci. Agric. Sin., 2012, 45(9): 1750-1757.

        [15] Rasse D P, Rumpel C, Dignac M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J]. Soil Biol. Biochem., 2005, 269: 341-356.

        [16] Lu Y, Watanabe A, Kimura M. Carbon dynamics of rhizodeposits, root and shoot-residues in a rice soil[J]. Soil Biol. Biochem., 2003, 35: 1223-1230.

        [17] Puget P, Drinkwater L E. Short-term dynamics of root- and shoot-derived carbon from a leguminous green manure[J]. Soil Sci. Soc. Am., 2001, 65: 771-779.

        [18] Wilts A R, Reicosky D C, Allmaras R R. Long-term corn residue effects: Harvest alternatives, soil carbon turnover, and root-derived carbon[J]. Soil Sci. Soc. Am., 2004, 68: 1342-1351.

        [19] 鮑士旦. 土壤農(nóng)化分析 (第三版)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2005. Bao S D. Analysis of soil and agricultural chemistry (3rd edition)[M]. Beijing: China Agriculture Press, 2005.

        [20] 吳金水, 林啟美, 黃巧云, 等. 土壤微生物量的研究方法與應(yīng)用[M]. 北京: 氣象出版社, 2006. Wu J S, Lin Q M, Huang Q Yetal. Methods and application of soil of microbial biomass[M].Beijing: Meteorological Press, 2006.

        [21] Saetre P, Stark J M. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species[J]. Oecologia, 2005, 142: 247-260.

        [22] 王春陽(yáng), 周建斌, 董燕婕, 等. 黃土區(qū)六種植物凋落物與不同形態(tài)氮素對(duì)土壤微生物碳氮含量的影響[J]. 生態(tài)學(xué)報(bào), 2010, 30(24): 7092-7100. Wang C Y, Zhou J B, Dong Y Jetal. Effects of plant residues and nitrogen forms on microbial biomass and mineral nitrogen of soil in the Loess Plateau[J]. Acta Ecol. Sin., 2010, 30(24): 7092-7100.

        [23] Potthoff M, Dyckmans J, Flessaa Hetal. Dynamics of maize (ZeamaysL.) leaf straw mineralization as affected by the presence of soil and the availability of nitrogen[J]. Soil Biol. Biochem., 2005, 37: 1259-1266.

        [24] Kalbitz K, Solinger S, Park J Hetal. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Sci, 2000, 165(4): 277-304.

        [25] Duong T T T, Baumann K, Marschner P. Frequent addition of wheat straw residues to soil enhances carbon mineralization rate[J]. Soil Biol. Biochem., 2009, 41: 1475-1482.

        [26] Bremer E, Kuikman P. Microbial utilization of14C [U] glucose in soil is affected by the amount and timing of glucose additions[J]. Soil Biol. Biochem., 1993, 26: 511-517.

        [27] Machinet G E, Bertrand I, Chabbert Betal. Decomposition in soil and chemical changes of maize roots with genetic variations affecting cell wall quality[J]. Eur. J. Soil Sci., 2009, 60: 176-185.

        [28] Robertson K, Schnorer J, Clarholm Metal. Microbial biomass in relation to C and N mineralization during laboratory incubations[J]. Soil Biol. Biochem., 1988, 20(3): 281-286.

        [29] Mary B, Recous S, Darwls Detal. Interactions between decomposition of plant residues and nitrogen cycling in soils[J]. Plant Soil, 1996, 181: 71-82.

        [30] Ocio J A, Martinez J, Brookes P C. Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil[J]. Soil Biol. Biochem., 1991, 23: 655-659.

        [31] Fog G. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biol. Rev., 1988, 63(3): 433-462.

        [32] Asmar F, Eiland F, Nielsen N E. Interrelationship between extracellular enzyme activity, ATP content, total counts of bacteria and CO2evolution[J]. Biol. Fertil. Soils, 1992, 14: 288-292.

        [33] Fontainea S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biol. Biochem., 2003, 35: 837-843.

        [34] Bottner P, Pansu M, Sallih Z. Modeling the effect of active roots on soil organic matter turnover[J]. Plant Soil, 1999, 216: 15-25.

        [35] 黃文昭, 趙秀蘭, 朱建國(guó), 等. 土壤碳庫(kù)激發(fā)效應(yīng)研究[J]. 土壤通報(bào), 2007, 38(1): 149-154. Huang W Z, Zhao X L, Zhu J Getal. Priming effect of soil carbon pools[J]. Chin. J. Soil Sci., 2007, 38(1): 149-154.

        [36] Wang J G, Bakken L R. Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N availability[J]. Soil Biol. Biochem., 1996, 29: 163-170.

        Labilecarbonandnitrogendynamicchangesinsoilsincorporatedwithdifferentpartsofmaizeplants

        BA Yu-ling, TIAN Xiao-hong*, WAN Dan, LI Jin, WANG Shu-juan

        (CollegeofNaturalResourceandEnvironment,KeyLabofPlantNutritionandtheAgri-EnvironmentinNorthwestChina,MinistryofAgriculture,NorthwestA&FUniversity,Yangling712100,China)

        An incubation experiment was carried out to investigate the labile carbon and nitrogen dynamic changes in soils added with different parts of maize plants (straw, root, stem and leaf). The straw-amended soils had been incorporated with both straw and root residues, and the control soils with only root residues in consecutive seven-seasons of summer maize and winter wheat rotation system in Guanzhong Plain, Shaanxi province, China. The soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), dissolved organic carbon (DOC), mineral nitrogen are determined regularly over 62 days, incubation. The results show that soil labile carbon and nitrogen change rapidly in the first 7 days. The contents of SMBC and SMBN amended with straw are significantly (P<0.05) higher than those with root. The SMBC and SMBN contents are greater in soils added with leaves than with stems at the first 28 d and 14 d incubation, and opposite afterwards. The SMBC and SMBN contents in soils added with straws are in between of the leaves and stems additions. The soil DOC and mineral nitrogen contents are in the order: leaf > straw > stem > root. At the end of the incubation, both the SMBC and mineral nitrogen contents increased significantly, soil DOC contents kept unchanged and the SMBN contents declined in all straw parts treatments. Compared to the non-added soils, the straw-added soils had no significant effect on the decomposition of fresh residues, and the differences in soil labile N between the two soils are greater than those in soil labile C. Therefore, soil labile C and N dynamics are influenced primarily by the ratio of C to N in the different straw parts. A same amount of straw is more efficient in replenishing soil C and N than roots after incorporated into soil, and the soil labile N is more sensitive than C to straw addition.

        maize residue; microbial biomass C; microbial biomass N; dissolved organic C; mineral N

        2012-12-20接受日期2013-06-04

        國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAD14B11);國(guó)家自然科學(xué)基金項(xiàng)目(40971179,31071863);西北農(nóng)林科技大學(xué)“創(chuàng)新團(tuán)隊(duì)建設(shè)計(jì)劃”項(xiàng)目(2010)資助。

        把余玲(1988—),女,甘肅蘭州人,碩士研究生,主要從事植物營(yíng)養(yǎng)研究。E-mail: bayuling@163.com * 通信作者 E-mail: txhong@hotmail.com

        S153.6+21

        A

        1008-505X(2013)05-1166-08

        久久综合给合久久狠狠狠97色69| 精品人妻一区二区三区在线观看| 日韩午夜福利无码专区a| 亚洲精品无码久久久久久| 精品亚洲日韩国产一二三区亚洲| 亚洲精品高清av在线播放| 久久亚洲春色中文字幕久久| 亚洲欧美牲交| 中文字幕无线码中文字幕| 成人无码激情视频在线观看| 久久精品国产9久久综合| 五月综合激情婷婷六月| 久久国产精品二国产精品| 99在线国产视频| 精品熟女视频一区二区三区国产| 日本在线 | 中文| 亚洲精品无码国模| 水蜜桃一二二视频在线观看免费| 被灌醉的日本人妻中文字幕| 各种少妇正面着bbw撒尿视频| 亚洲精品第一页国产精品| 日韩av不卡一二三区| 免费亚洲老熟熟女熟女熟女| 中文字幕免费不卡二区| 亚洲AV一二三四区四色婷婷| 91精品啪在线观看国产色| 欧美大片va欧美在线播放| 国产亚洲一区二区手机在线观看| 无码人妻中文中字幕一区二区| 免费视频亚洲一区二区三区| 熟女人妇 成熟妇女系列视频| 免费无码肉片在线观看| 亚洲女同精品久久女同| 色熟妇人妻久久中文字幕| 国产亚洲精品久久777777| av无码天堂一区二区三区| 国产精品久久av高潮呻吟| 免费女人高潮流视频在线观看| 国产欧美日韩在线观看| 国产精品综合色区av| 亚洲国产精品久久久av|