王鵬帥 韓如成
(太原科技大學(xué)電子信息工程學(xué)院,太原 030024)
級聯(lián)型多電平逆變器基于低壓小容量逆變器級聯(lián)的組合方式,技術(shù)成熟,易于實現(xiàn),較適合七電平或九電平以上的多電平逆變器應(yīng)用場合,具有易實現(xiàn)模塊化、易于擴(kuò)展和調(diào)制方法簡單的優(yōu)點。所以近幾年級聯(lián)型多電平逆變器在電機(jī)驅(qū)動、大功率有源電力濾波等場合得到了廣泛應(yīng)用[1-3]。
傳統(tǒng)的 2H橋級聯(lián)型多電平逆變器,各單元直流電源電壓相等,各級聯(lián)單元采用相同的開關(guān)器件,在級聯(lián)的基本單元數(shù)目為N的情況下,其輸出的最大電平數(shù)為(2N-1),并且需要N個獨立的直流源。需要數(shù)目眾多的獨立直流源在一定程度上限制了級聯(lián)型多電平逆變器的應(yīng)用范圍[4]。另一方面,當(dāng)級聯(lián)數(shù)目為N時,需要的開關(guān)器件數(shù)目為4N,數(shù)目眾多的開關(guān)器件致使調(diào)制電路非常的龐大和復(fù)雜,所以如何簡化拓?fù)浣Y(jié)構(gòu)就成為多電平逆變器領(lǐng)域一個重點的研究方向。最近各國學(xué)者提出了幾種新型級聯(lián)型多電平逆變器拓?fù)鋄5-7]。
本文在新型拓?fù)潆娐返幕A(chǔ)之上,提出一種非對稱混合級聯(lián)型多電平逆變器拓?fù)潆娐?,該拓?fù)潆娐方Y(jié)合混合型拓?fù)潆娐芬约胺菍ΨQ結(jié)構(gòu)的優(yōu)勢,充分發(fā)揮了不同類型開關(guān)器件的優(yōu)勢和特點,減少了開關(guān)器件的使用從而簡化了調(diào)制電路。不同的拓?fù)潆娐分挥写钆渑c之相適應(yīng)的調(diào)制方法才能充分體現(xiàn)其優(yōu)勢,國內(nèi)外對于對稱型的拓?fù)潆娐氛{(diào)制方法研究已經(jīng)相當(dāng)成熟,如多載波正弦脈寬調(diào)制法、相移SPWM法、諧波消除法等,而非對稱型的拓?fù)潆娐氛{(diào)制方法的研究相對較少。但是不對稱的現(xiàn)象在很多場合都存在,比如:光伏并網(wǎng)重要環(huán)節(jié)的級聯(lián)式逆變器由于光伏電池的 V-I特性不同、接收光強(qiáng)的差異以及經(jīng)過按MPPT算法后的DC/DC輸出等都會造成逆變器的直流源電壓等級的不同,即所謂的非對稱[8]。
由于存在上述問題,本文在一種新型非對稱混合級聯(lián)型多電平逆變器拓?fù)潆娐返幕A(chǔ)之上,提出一種與之相適應(yīng)的調(diào)制方法。該方法兼具階梯波和正弦脈寬調(diào)制[9]的優(yōu)點,充分發(fā)揮了新型拓?fù)潆娐返膬?yōu)勢。文章最后對提出的方法進(jìn)行了仿真研究,驗證了該方法的正確性與有效性。
文獻(xiàn)[7]提出的新型拓?fù)浣Y(jié)構(gòu)如圖1所示,當(dāng)直流源V1=V2=…=Vn,并且開關(guān)器件均采用如圖所示的IGBT時,該拓?fù)浣Y(jié)構(gòu)即為對稱型多電平逆變器。當(dāng)V1≠V2≠…≠Vn,且各單元采用不同類型的開關(guān)器件時,該拓?fù)潆娐肪头Q為非對稱混合級聯(lián)結(jié)構(gòu),其工作原理和各開關(guān)狀態(tài)所對應(yīng)的輸出電壓,見表1。
表1中輸出電壓為H橋部分開關(guān)器件t1和t2導(dǎo)通時的輸出,合理控制H橋部分的開關(guān)器件的通斷,就能實現(xiàn)對稱的反向電壓輸出。
圖1 新型拓?fù)浣Y(jié)構(gòu)
表1 基本單元級聯(lián)結(jié)構(gòu)的輸出電壓Vo及其對應(yīng)的開關(guān)狀態(tài)
如果令第一個直流電壓源v1為基準(zhǔn)電壓,且
那么,這種級聯(lián)型逆變器就稱為對稱多電平逆變器,其最大輸出電壓可表示為
式中,n為H橋的個數(shù),而其最多有效地輸出電平數(shù)為
不對稱的拓?fù)浣Y(jié)構(gòu)可以在不增加H橋數(shù)目的基礎(chǔ)上,增加輸出電壓的電平數(shù)。在文獻(xiàn)[7]中提出了一種不對稱多電平逆變器的電壓選取方案,其最大輸出電壓和電平數(shù)可由下式表示:
當(dāng)vj= 2j-1v1,其中j=1, 2, 3, …, n
對應(yīng)的最大打壓等級:
當(dāng)vj= 2j-1v1,其中j=1, 2, 3, …, n
當(dāng)vj= 3j-1v1,其中j=1, 2, 3, …, n
其對應(yīng)的最大電壓等級:
當(dāng)vj= 3j-1v1,其中j=1, 2, 3, …, n
當(dāng)圖 1中的電路結(jié)構(gòu)采用非對稱式的電路結(jié)構(gòu),并且開關(guān)器件采用不同類型的開關(guān)器時,該級聯(lián)型逆變器電路結(jié)構(gòu)就稱為非對稱混合型多電平逆變器。
本部分通過二單元級聯(lián)與三單元級聯(lián)的拓?fù)潆娐穪磉M(jìn)行對上文中提出的非對稱混合級聯(lián)多電平逆變器的調(diào)制方法進(jìn)行研究。
對于圖2中的兩單元級聯(lián)型拓?fù)浣Y(jié)構(gòu),第一單元的開關(guān)器件采用GTO,第二個單元則采用IGBT,由于GTO具有更高的耐壓值,而IGBT則具有更高的開關(guān)頻率,所以第一個單元采用消諧波 PWM而第二單元采用SPWM,不同于傳統(tǒng)SPWM的地方是其調(diào)制波為正弦調(diào)制波us與第一單元的輸出電壓的波形之差,即
圖2 二單元級聯(lián)電路
其調(diào)制和輸出波形在0~π區(qū)間內(nèi)的如圖3所示。
對第一單元的輸出電壓波形進(jìn)行傅里葉分析可得
在n=5時,令cos(5θ1)=0,可以得到開關(guān)切換角θ1=π/10。
對于圖4中的三單元級聯(lián)型拓?fù)浣Y(jié)構(gòu),一單元和二單元均采用耐壓值較高的開關(guān)器件,如GTO,而第三單元則采用開關(guān)頻率較高的器件,如IGBT。
其調(diào)制方法為:第一單元采用固定觸發(fā)角驅(qū)動,以消除5次諧波,第二單元采用給定的觸發(fā)角驅(qū)動法,而第三單元采用高頻載波的SPWM控制法用來改善波形消除諧波。需要指出的是第三單元的調(diào)制波是正弦波us與一二單元的輸出電壓瞬時值波形之差的電壓波形 us=(up1+up2)。各個單元的輸出電壓up1、up2、up3的串聯(lián)疊加,就可以合成圖中所示的輸出電壓uo的波形。
圖4 三單元級聯(lián)電路
圖5 調(diào)制和輸出波形
圖5(c)中所示的輸出電壓波形的傅里葉級數(shù)展開為
式中,n為一二單元輸出電壓所含有的諧波次數(shù),理想情況下,給定的基波電壓V1,可以通過計算得出開關(guān)角θ1θ2θ3使高次諧波全部為零。這時V(wt)=V1sin(wt)。對于三相的多電平逆變器,每相中的三次諧波可以在線電壓中自動消除。本文要實現(xiàn)的目的是計算出基波電壓,并且消除5次和7次諧波。要解決的問題就是下面的式子:
在仿真軟件包Matlab/Simulink平臺上搭建了二單元和三單元非對稱混合級聯(lián)型多電平逆變器的模型,對本文中提出的調(diào)制方法進(jìn)行了仿真驗證。仿真結(jié)果驗證了本文中提出的調(diào)制方法的正確性。
仿真參數(shù):V1=3500V, V2=1500V,負(fù)載R=10Ω,L=0.01H,載波比:fc/fr=50,調(diào)制度 M=0.85,開關(guān)切換角:θ1=π/10。設(shè)置仿真時間為 0.04s,仿真結(jié)果如下。
仿真結(jié)果分析:從仿真結(jié)果可以看出,多電平逆變器的電壓輸出等級得到提高,同時5次諧波得到了很好的抑制。但是電壓波形受到影響,具有較多的高次諧波,不過諧波問題可以在增加級聯(lián)數(shù)目的條件下得到很好地解決。
圖6 二單元級聯(lián)仿真
這是一個有三個未知數(shù)的超越方程組??梢杂泻芏喾N方法來得到這三個開關(guān)角,本文采用在Matlab中編寫m文件來計算得到。本文中定義調(diào)制比
仿真參數(shù):V1=4000V, V2=2000V, V3=1000V,負(fù)載R=10Ω,L=0.01H,載波比:fc/fr=50。
設(shè)置調(diào)制度m=1.5,計算超越方程組:
文獻(xiàn)[4]中關(guān)于超越方程組的分析,設(shè)置初始切換角度:θ1=40°, θ2=56°, θ3=80°,在 Matlab 中編寫 m文件,經(jīng)過迭代計算可得:θ1=39.76°,θ2=55.99°, θ3=81.78°。設(shè)置仿真時間為 0.04s,仿真結(jié)果如圖7所示,從輸出波形頻譜圖7(b)中可以看出5次和7次諧波得到了很好的抑制。
圖7 三單元級聯(lián)仿真
仿真結(jié)果分析:從3單元級聯(lián)結(jié)構(gòu)的仿真結(jié)果可以看出,較2單元聯(lián)結(jié)構(gòu),輸出電壓的波形得到改善,減少了高次諧波的產(chǎn)生。同時可以看出,開關(guān)切換角的確定方法正確,5次和 7次諧波得到了很好的抑制,含量極少。
本文在新型級聯(lián)型多電平逆變器的基礎(chǔ)之上,研究了非對稱混合級聯(lián)情況下該新型拓?fù)涞恼{(diào)制方法。提出了階梯波和正弦脈寬調(diào)制相結(jié)合作用于該新型拓?fù)潆娐返乃悸?,該方法充分發(fā)揮了不同開關(guān)器件的優(yōu)勢,對非對稱的情況尤其適用,具有一定的應(yīng)用價值。
[1] 劉風(fēng)君,多電平逆變器技術(shù)及其應(yīng)用[M].北京:機(jī)械工業(yè)出版社, 2007.
[2] TOLBERT L M, PENG F Z, HABETLER T G,Multilevel converters for large electric drivers[J].IEEE. Trans. on. Ind. Appl, 1999, 35(1): 36-44.
[3] ZHANG D, TOLBERT L M, CHIASSON J N,OZPINECI B, LI H, Huang A Q: HYBRID CASCADED H-BRIDGES multilevel motor drive control for electric vehicles[C]. IEEE Power electronics specialiconference. Juju, Korea, 2006, 6:1-6.
[4] ZHONG D, TOLBERT L M, OZPINECI B, CHIASSON J N. Fundamental frequency switching strategies of a seven-level hybrid cascaded H-Bridge multilevel inverter[J]. IEEE in IEEE Transactions on Power Electronics. 2009, 24(1): 25-33.
[5] BABAEI E. A cascade multilevel converter topology with reduced number of switches[C]. IEEE Trans Power Electron 2008, 23(6).
[6] HINAGO Y A Single-Phase multilevel inverter using switched series/parallel DC voltage sources. IEEE Transactions On IndustrialElectronics 2010, 57(8).
[7] BABAEI E, HOSSEINI S H. New cascaded multilevel inverter topology with minimum number of switches[J]. Energy Conversion and Management 2009(50): 2761-2767.
[8] 陳元娣,劉滌塵,宋慶國.階梯波調(diào)制級聯(lián)逆變器觸發(fā)角的一種簡便算法[J].電工電能新技術(shù), 2010, 29(1):35-40.
[9] 費(fèi)萬民,呂征宇,姚文熙.多電平逆變器特定諧波消除脈寬調(diào)制方法的研究[J].中國電機(jī)工程學(xué)報, 2003,23(9): 11-15.