亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Feature combination via importance-inhibition analysis

        2013-09-17 05:59:58YangSichunGaoChaoYaoJiaminDaiXinyuChenJiajun
        關鍵詞:省份河流

        Yang Sichun Gao Chao Yao Jiamin Dai Xinyu Chen Jiajun

        (1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China)

        (2School of Computer Science, Anhui University of Technology, Maanshan 243032, China)

        (3School of Computer Science and Information Engineering, Chuzhou University, Chuzhou 239000, China)

        A utomatic question answering(QA)[1]is a hot research direction in the field of natural language processing(NLP)and information retrieval(IR),which allows users to ask questions in natural language,and returns concise and accurate answers.QA systems include three major modules, namely question analysis, paragraph retrieval and answer extraction.As a crucial component of question analysis,question classification classifies questions into several semantic categories which indicate the expected semantic type of answers to questions.The semantic category of a question helps to filter out irrelevant answer candidates,and determine the answer selection strategies.

        In current research on question classification,the method based on machine learning is widely used,and features are the key to building an accurate question classifier[2-10].Li et al.[2-3]presented a hierarchical classifier based on the sparse network of winnows(SNoW)architecture, and made use of rich features, such as words,parts of speech, named entity, chunk, head chunk, and class-specific words.Zhang et al.[4]proposed a tree kernel support vector machine classifier,and took advantage of the structural information of questions.Huang et al.[5-6]extracted head word features and presented two approaches to augment hypernyms of such head words using WordNet.However, when used to train question classifiers,these features were almost combined incrementally via importance analysis(IA)which is based on the importance of individual features.This method is effective when using only a few features,but for very rich features,it may prevent question classification from further improvement due to the problem of ignoring the inhibition among features.

        In order to alleviate this problem,this paper proposes a new method for combining features via importance-inhibition analysis(IIA).By taking into account the inhibition among features as well as the importance of individual features,the IIA method more objectively depicts the process of combining features,and can further improve the performance of question classification.Experimental results on the Chinese questions set show that the IIA method performs more effectively than the IA method on the whole,and achieves the same highest accuracy as the one by the exhaustive method.

        1 Feature Extraction

        We use an open and free available language technology platform(LTP)(http://ir.hit.edu.cn/demo/ltp)which integrates ten key Chinese processing modules on morphology, word sense, syntax, semantics and other document analysis,and take the question“中國哪一條河流經(jīng)過的省份最多?(Which river flows through most provinces in China?)”as an example.The result of word segmentation, POS tagging, named entity recognition and dependency parsing of the sample question is presented in Fig.1.

        We extract bag-of-words(BOW),part-of-speech(POS), word sense(WSD,WSDm), named entity(NE),dependency relation(R)and parent word(P)as basic features.Here, WSD is the 3-layer coding, i.e.,coarse,medium and finegrained categoriesin the semantic dictionary “TongYiCiCiLin”, while WSDm is the 2-layer, i.e., coarse and medium grained word category.Tab.1 gives the features and their values of the sample question.

        Fig.1 Analysis result of the sample question with LTP platform

        Tab.1 Features and their values of the sample question

        2 Combining Features via Importance-inhibition Analysis

        The basic features described above belong to different syntactic and semantic categories,and contribute to question classification from various levels of language knowledge.We combine these basic features to further improve the performance of question classification.Since the BOW feature is the basis of other features,it is always combined with other features.For example, the POS feature follows the BOW feature when these two types of features are combined.

        With respect to the methods for combining features,the most intuitive one is the exhaustive method which lists all the feature combinations one by one.The exhaustive method is inefficient and not feasible in practical applications.In existing literature, combining features is conducted just on the basis of the importance of the features.However,this method may prevent it from further improvement on question classification due to the problem of ignoring the inhibition among features.For example,the dependency relation feature R and the POS feature belong to the same syntactic category,and they both contribute to question classification.However, since R covers POS to a large extent in syntactic expression,R will inhibit POS when they appear in the same feature combination.Similarly,the word sense features WSD and WSDm belong to the same semantic category,since the difference between WSD and WSDm is not obvious,they will inhibit each other when they are present at the same feature combination.From the above discussions, we find that an effective method for combining features should take into account the inhibition among features as well as the importance of individual features.

        In this paper,we propose a new method for combining features via importance-inhibition analysis.Before introducing the IIA method in detail,we should specify some notations.In our importance-inhibition analysis setting,the feature set is a basic concept following the common feature combination.

        A feature setFconsists of each featurefiextracted from a question, i.e.F={fii=1,2, …};F'is a subset ofF,and consists of each featuref(i)which has side effects for feature combinations, i.e.F'={f(i)i=1,2,…};F(ij)denotes thej-th one in thei-th round of feature combination,and it is a subset ofF;F*idenotes a feature combination with the highest accuracy in thei-th round,and it is also a subset ofF.

        Now we can give some formal definitions.

        Definition 1(importance) Given featuresfiandfj,fiis more important thanfjif the accuracy offiis higher than that offj.

        Definition 2(inhibition) Given a featurefiand a feature combinationF(ij),there exists inhibition betweenFi(j)andfiif the accuracy of the feature combinationF(ij)∪{fi}is lower than that ofF(ij)orfi.

        Definition 3(k_ary combination) Given a feature set F(ij),it is ak_ary feature combination in whichkfeatures are contained.

        Definition 4(bestk_ary combination) Given a(k-1)_ary combinationF(ij)and a candidate featurefi,F(xiàn)(ij)∪{fi}is the bestk_ary combination if it has the highest accuracy in the current round of feature combinations.

        Now let us move to the details of the IIA method.From the above definitions, we can easily see that, given featuresfi,fjand a feature combinationF(ij),the accuracy ofF(ij)∪{fi}is not always higher than that ofF(ij)∪{fj}whenfiis more important thanfj.By taking into account the inhibition among features,we combine features via a heuristic algorithm.First,choose BOW as the best 1_ary feature combination,and combine each candidate feature from the rest with BOW to form 2_ary feature combinations.Then choose the one with the highest accuracy as the best 2_ary feature combination,and filter out those features lower than the best 1_ary feature combination.Finally,repeat the above steps until the current candidate feature set is empty or all the feature combinations are no longer higher than the highest in the previous round.

        Algorithm 1 gives the implement of the IIA method.

        Algorithm 1Importance-inhibition analysis algorithm

        The IIA method is on the basis of the(k-1)_ary feature combination to obtain the bestk_ary one,so compared with the exhaustive method,it can significantly improve the efficiency of feature combination.In addition,since the IIA method takes into account the inhibition among features as well as the importance of individual features, compared with the IA method, it can more objectively depict the process of combining features and ensure a better performance of question classification.

        3 Experimental Results and Analysis

        3.1 Data set and evaluation

        In our experiments,we use the Chinese questions set provided by IRSC lab of HIT(http://ir.hit.edu.cn),which contains 6 266 questions belonging to 6 categories and 77 classes.

        The open and free available Liblinear-1.4(http://www.csie.ntu.edu.tw/~ cjlin/liblinear/)which is a linear classifier for data with millions of instances and features which is used to be the classifier.We use 10-fold cross validation on the total question set to evaluate the performance of the question classifications.

        3.2 Combining features via IIA

        According to the IIA method,we take BOW as the initial feature,and combine POS,NE,WSD,WSDm,R and P features gradually to form feature combinations,such as 2_ary,3_ary,4_ary and so on.The accuracies of individual features are presented in Fig.2(a).Figs.2(b)to(d)list all the accuracies of 2_ary,3_ary and 4_ary feature combinations respectively, where Base1, Base2 and Base3 stand for the corresponding best 1_ary, 2_ary,3_ary feature combinations.

        Fig.2 Accuracies of n_ary feature combinations.(a)1_ary;(b)2_ary;(c)3_ary;(d)4_ary

        In Fig.2(b)and Fig.2(c), the P feature has the highest classification accuracy among all the candidates,but the accuracies of Base1+P and Base2+P are not the highest in all the 2_ary and 3_ary feature combinations,respectively.In particular, the accuracy of Base1+P is the last but one in all the 2_ary feature combinations.

        In Fig.2(b), the accuracy of Base1+NE is lower than that of Base1,so NE is no longer considered in subsequent rounds.Similarly, in Fig.2(d), the accuracies of Base3+POS and Base3+WSDm are both lower than that of Base3,so POS and WSDm are not considered in subsequent rounds.This is greatly convenient for filtering noise features.

        In Fig.2(c)and Fig.2(d), the accuracies of Base1+NE,Base3+POS,Base3+WSDm are lower than those of Base1 and Base3, respectively.The reason is that R covers POS to a large extent in syntactic expression,and the difference between WSD and WSDm is very small.As a result,there exists the inhibition among features when they are in the same feature combination.

        3.3 Performance comparison with IA

        In order to verify the efficiency and effectiveness of IIA,we conduct performance comparison with IA.Tab.2 shows the accuracies of the feature combinations via IIA and IA,respectively,where the“2_ary”column means 2_ary combinations, the “Base”row denotes the best(n-1)_ary combinations, “+POS”row means the feature combined with its baseline,the accuracy in bold means the maximum ofn_ary combinations,and the one in bold with underline shows the maximum of all the combinations.

        Tab.2 Accuracies of feature combinations via IIA and IA %

        Fig.3 conducts the comparison of average and maximum accuracies between IIA and IA,where theXaxis denotesn_ary feature combinations,theYaxis denotes classification accuracies.

        Fig.3 Performance comparison between IIA and IA

        From Fig.3, we can see that IIA shows a gradual increase in average and maximum accuracies in all the feature combinations,while IA shows a slight decline in accuracy at the 4_ary and 7_ary ones.The reason is that IIA is based on the best previous feature combination to obtain the current one.In addition, IIA performs as well as IA in average accuracy at 3_ary feature combinations,and achieves a great improvement over IA in average and maximum accuracies at 2_ary and 4_ary feature combinations.In particular, IIA achieves 0.813 9% and 0.829 9%higher than IA in average and maximum accuracies at 4_ary feature combinations,so we can draw a conclusion that IIA performs significantly better than IA on the whole.

        In order to further verify the efficiency and effectiveness of IIA,we conduct performance comparison with the exhaustive method.Experimental results show that the exhaustive method carries on 6 rounds for acquiring 63 feature combinations,while IIA does 3 rounds with 13 feature combinations gained.This demonstrates that IIA is much more efficient and feasible than the exhaustive method in practical applications.Furthermore, IIA gets the accuracy of 82.413%which is the highest one gained by the exhaustive method.

        4 Conclusion

        In this paper,we propose a new method called IIA to combine features via importance-inhibition analysis.The method takes into account the inhibition among various features as well as the importance of individual features.Experimental results on the Chinese question set show that the IIA method performs more effectively than the IA method on the whole,and achieves the same highest accuracy as the one gained by the exhaustive method.

        The IIA method is a heuristic one in nature,and may be faced with the problem of a local optimum.In our further work,we will make great efforts to achieve more efficient and effective optimization for combining features.

        Acknowlegement We would like to thank the IRSC laboratory of Harbin Institute of Technology for their free and available LTP platform.

        [1]Zhang Z C, Zhang Y, Liu T, et al.Advances in opendomain question answering [J].Acta Electronica Sinica,2009,37(5):1058-1069.(in Chinese)

        [2]Li X, Roth D.Learning question classifiers[C]//Proc of the19th International Conference on Computational Linguistics.Taipei,China, 2002:1-7.

        [3]Li X, Roth D.Learning question classifiers:the role of semantic information[J].Journal of Natural Language Engineering, 2006, 12(3):229-250.

        [4]Zhang D, Lee W.Question classification using support vector machines[C]//Proc of the26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Toronto, Canada, 2003:26-32.

        [5]Huang Z H,Thint M,Qin Z C.Question classification using head words and their hypernyms[C]//Proc of the2008Conference on Empirical Methods in Natural Language Processing.Honolulu, Hawaii, USA, 2008:927-936.

        [6]Huang Z H,Thint M,Celikyilmaz A.Investigation of question classifier in question answering[C]//Proc of the2009Conference on Empirical Methods in Natural Language Processing.Singapore, 2009:543-550.

        [7]Li F T,Zhang X,Yuan J H,et al.Classifying what-type questions by head noun tagging[C]//Proc of the22nd InternationalConferenceonComputationalLinguistics.Manchester,UK, 2008:481-488.

        [8]Li X,Huang X J,Wu L D.Combined multiple classifiers based on TBL algorithm and their application in question classification [J].Journal of Computer Research and Development, 2008, 45(3):535-541.(in Chinese)

        [9]Sun J G,Cai D F,Lu D X,et al.HowNet based Chinese question automatic classification [J].Journal of Chinese Information Processing, 2007, 21(1):90-95.(in Chinese)

        [10]Zhang Z C, Zhang Y, Liu T, et al.Chinese question classification based on identification of cue words and extension of training set[J].Chinese High Technology Letters, 2009, 19(2):111-118.(in Chinese)

        猜你喜歡
        省份河流
        誰說小龍蝦不賺錢?跨越四省份,暴走萬里路,只為尋找最會養(yǎng)蝦的您
        河流
        小太陽畫報(2019年4期)2019-06-11 10:29:48
        16省份上半年GDP超萬億元
        流放自己的河流
        散文詩(2018年20期)2018-05-06 08:03:44
        河流
        散文詩(2017年17期)2018-01-31 02:34:15
        河流
        散文詩(2017年15期)2018-01-19 03:07:59
        22個省
        決策探索(2017年11期)2017-06-23 18:41:32
        當河流遇見海
        因地制宜地穩(wěn)妥推進留地安置——基于對10余省份留地安置的調(diào)研
        靜靜的河流
        雕塑(2000年2期)2000-06-22 16:13:30
        国产伦奸在线播放免费| 在线免费黄网| 不卡无毒免费毛片视频观看| 亚洲综合新区一区二区| 一区二区三区无码高清视频| 亚洲精品乱码久久久久久金桔影视| 亚洲天堂手机在线| 久久艹影院| 极品美女尤物嫩模啪啪| 日本精品av中文字幕| 免费日本一区二区三区视频 | 亚洲av日韩专区在线观看| 人妻少妇精品视频专区vr| 国产精品多p对白交换绿帽| 国产成人v爽在线免播放观看| 亚洲一区二区三区久久蜜桃| 日韩高清av一区二区| 粉嫩国产av一区二区三区| 国产乱码精品一区二区三区四川人 | 日韩AV有码无码一区二区三区| 亚洲AV综合久久九九| 久久99精品免费国产| 伊人久久这里只有精品| 麻豆国产原创视频在线播放| 在线观看免费a∨网站| 在线视频一区二区亚洲| 丰满少妇av一区二区三区 | 一边摸一边抽搐一进一出视频| 欧美成人片一区二区三区| 欧美日韩a级a| 91久久香蕉国产熟女线看| 亚洲人成无码区在线观看| 亚洲av永久无码天堂网手机版| 免费成人毛片| 91在线观看国产自拍| 国产欧美综合一区二区三区| 狠狠色噜噜狠狠狠狠色综合久| 午夜不卡亚洲视频| 亚州中文热码在线视频| 久久成人国产精品免费软件| 欧美日韩亚洲成色二本道三区|