姚勝忠 謝 莎 肖燕子 閉水清 謝小薰 肖紹文
(廣西醫(yī)科大學(xué)第一附屬醫(yī)院神經(jīng)外科,南寧530021)
癌-睪丸抗原(Cancer-Testis Antigen,CTA)是一類廣譜的腫瘤特異性抗原。CTA能在多種腫瘤組織中廣泛表達(dá),而在正常組織(除胎盤和睪丸)中幾乎不表達(dá),并且在一些腫瘤患者體內(nèi)可引起免疫反應(yīng)?;谶@些特性,CTA已成為腫瘤免疫治療研究的熱點(diǎn)靶抗原之一,其中一些 CTA如 MAGEA3、NY-ESO-1已進(jìn)入臨床試驗(yàn)階段,并在一些腫瘤的治療中收到較好的療效[1,2]。黑色素瘤相關(guān)抗原(Melanoma-associated Antigen,MAGE)是CTA家族的重要成員,迄今為止,已鑒定出MAGE家族多個亞家族,其中MAGE-A亞家族包含13個高度同源的基因,依次命名為MAGEA1—A12;MAGE家族成員最大特征是其氨基酸序列存在一個MAGE同源結(jié)構(gòu)域 (MAGE Homology Domain,MHD)。MAGEA2是MAGE-A亞家族的重要成員之一,研究人員對其潛在功能的研究以及其在臨床中的應(yīng)用不斷深入,現(xiàn)就MAGE-A2基因、mRNA的表達(dá)、免疫原性、表達(dá)機(jī)理和生物學(xué)功能方面進(jìn)行綜述。
MAGE-A2 又稱為 MAGE2,MGC131923,根據(jù)MAGE-A2在CTA家族中的排名又命名為CT1.2(http://www.CTA.lncc.br/)。De等[3]于 1994 年通過T細(xì)胞抗原表位克隆的方法從人類黑色素細(xì)胞中分離并鑒定出MAGE-A2,mage-a2基因定位于染色體 Xq28,基因全長3 977 bp,mRNA長1 979 bp,包含3個外顯子,開放閱讀框位于第3個外顯子,編碼蛋白由314個氨基酸組成。
研究人員通過RT-PCR和寡核苷酸微矩陣技術(shù),對成年人各種正常組織及20周以上胚胎組織進(jìn)行檢測,除睪丸、胎兒及成人角蛋白細(xì)胞外,均未能檢測到 MAGE-A2 mRNA[3-7],這表明 MAGE-A2 mRNA在正常組織中的表達(dá)具有明顯的限制性。
MAGE-A2 mRNA分別在多種組織類型腫瘤中存在表達(dá)。由于MAGE-A2是在黑色素瘤細(xì)胞中發(fā)現(xiàn),因此研究人員檢測了大量黑色素瘤組織樣品,證實(shí)了MAGE-A2 mRNA在黑色素瘤中的高表達(dá),但在轉(zhuǎn)移瘤和原位瘤中MAGE-A2 mRNA表達(dá)有一定差異,轉(zhuǎn)移瘤表達(dá)率為70%(101/145),而原位瘤表達(dá)率為41%(41/100),在良性黑素細(xì)胞痣及發(fā)育異常痣中均未檢測到 MAGE-A2 mRNA[8-12]。在腦腫瘤中,MAGE-A2 mRNA尤其以小兒腦瘤中表達(dá)多見,如在小兒室管膜瘤(8/14,57%)、小兒多形性惡性膠質(zhì)瘤(1/9,11%)、小兒成神經(jīng)管細(xì)胞瘤(9/15,60%),其在成人多形性惡性膠質(zhì)瘤(1/20,5%)亦有表達(dá)[13,14]。MAGE-A2 mRNA 在肝癌中的表達(dá)有一定特點(diǎn),在分化良好的肝癌組織中不表達(dá),而在低分化及中等分化肝癌組織中有表達(dá)[15,16]。另外,在各種類型肺癌中均能檢測到MAGE-A2 mRNA,如腺癌(4/35,11%)、鱗癌(3/14,21%)、小細(xì)胞癌(2/3,67%)及非小細(xì)胞肺癌(13/46,28%)[17,18]。此外,在漿液性卵巢腺癌(4/19,21%),卵黃囊瘤(?,25%)和骨肉瘤(23/28,82%)中也檢測到MAGEA2 mRNA[19,20]。
除了腫瘤的臨床標(biāo)本外,在乳腺癌、結(jié)腸癌、胃癌、白血病、肺癌、黑色素瘤、黑色素瘤干細(xì)胞、畸胎瘤、口腔鱗狀細(xì)胞癌、卵巢癌、前列腺癌、橫狀肌肉瘤、甲狀腺癌等多種細(xì)胞株也檢測到MAGE-A2 mRNA[4,5,21-28]。
目前已有報道MAGE-A2引起細(xì)胞免疫[29],以下為已鑒定出的MAGE-A2抗原表位。
MAGE-A2蛋白在細(xì)胞漿內(nèi)可被降解為短肽(多為九肽或十肽),在與HLA分子結(jié)合后,被遞呈至細(xì)胞膜上為 CTL所識別,并誘導(dǎo)細(xì)胞免疫應(yīng)答[30-34]。Akiyama 等[35]聯(lián)合 MAGE-A2157-166肽段與其他黑色素瘤相關(guān)抗原肽段如MAGE-1、3制備多重黑素瘤相關(guān)抗原負(fù)載的DC疫苗,在9位轉(zhuǎn)移性黑色素瘤患者腹股溝皮下進(jìn)行注射。除短暫的肝臟異常外,該疫苗對患者無明顯全身反應(yīng);9位患者中有6位患者可檢測到超過2種黑色素瘤相關(guān)抗原的CTL,而患者1和6展示了顯著的腫瘤退化現(xiàn)象,尤其在患者1體內(nèi),肺黑色素瘤出現(xiàn)明顯退化。與注射疫苗前相比,5個患者體內(nèi)Th1比例更高,3個患者對于復(fù)合疫苗顯示出明顯的遲發(fā)型變態(tài)反應(yīng)。最后,研究組對疫苗注射后的患者臨床反應(yīng)進(jìn)行檢測,分別從PD(Progressive disease,疾病進(jìn)展)、SD(Stable disease,疾病穩(wěn)定)、PR(Partial response,部分緩解)、CR(Complete response,完全緩解)方面進(jìn)行觀察,在患者1體內(nèi),黑色素瘤在肺癌中的轉(zhuǎn)移灶及肺門淋巴結(jié)尺寸明顯減小,并且隨著疫苗注射肺門淋巴結(jié)最后幾乎完全消失。注射疫苗后,患者1、2、6有明顯的CTL應(yīng)答反應(yīng),且伴隨明顯的CTL增加,而患者4、5、7無CTL應(yīng)答反應(yīng),且除患者7外其他均無明顯的CTL增加。上述研究顯示出負(fù)載DC的黑色素瘤復(fù)合疫苗確實(shí)在轉(zhuǎn)移性黑色素瘤體內(nèi)有一定作用,且其臨床反應(yīng)也顯示出較強(qiáng)的抑制作用,但在所選的患者中,出現(xiàn)明顯異質(zhì)性,這可能與患者個體異質(zhì)性有關(guān),目前還不清楚其具體機(jī)制。
表1 MAGE-A2抗原表位Tab.1 MAGE-A2 Epitopes
Shichijo等[36]首先發(fā)現(xiàn)通過甲基化轉(zhuǎn)移酶抑制劑DAC(5-Aza-CdR),可誘導(dǎo)淋巴細(xì)胞性白血病的腫瘤細(xì)胞和T細(xì)胞系(經(jīng)植物血凝素/白細(xì)胞介素-2刺激)和B細(xì)胞系(EB病毒感染)表達(dá)MAGE-A2。隨后,Sigalotti等[37]分析56名皮膚黑色素瘤患者腫瘤組織中MAGE-A2的表達(dá)與其啟動子區(qū)域甲基化狀態(tài),結(jié)果發(fā)現(xiàn)在MAGE-A2陽性的腫瘤組織中,其啟動子區(qū)域?yàn)榉羌谆癄顟B(tài),而在MAGE-A2陰性的腫瘤組織中,其啟動子區(qū)域?yàn)榧谆?。用DAC處理MAGE-A2陰性的黑色素瘤細(xì)胞株后,可誘導(dǎo)MAGE-A2表達(dá)。為了進(jìn)一步驗(yàn)證甲基化對MAGEA2表達(dá)調(diào)控,他們還構(gòu)建MAGE-A2啟動子的報告基因質(zhì)粒,將該質(zhì)粒進(jìn)行甲基化處理后,分別將經(jīng)甲基化處理和未經(jīng)甲基化處理的質(zhì)粒轉(zhuǎn)入黑色素瘤細(xì)胞株中,結(jié)果發(fā)現(xiàn)未經(jīng)甲基化處理的質(zhì)粒顯示報告基因活性,這說明了啟動子甲基化對于MAGE-A2的轉(zhuǎn)錄起調(diào)控作用。Takahito等[28]發(fā)現(xiàn)在低表達(dá)MAGE-A2的前列腺癌細(xì)胞株中,用DAC處理可上調(diào)MAGE-A2表達(dá)。另一研究報道也顯示用DAC處理后的白血病、肝癌、前列腺癌、乳腺癌和結(jié)腸癌細(xì)胞株,MAGE-A2表達(dá)明顯上調(diào),而這種現(xiàn)象僅發(fā)現(xiàn)在MAGE-A2低表達(dá)的細(xì)胞株[38];另外,該研究還發(fā)現(xiàn)乙?;D(zhuǎn)移酶TSA(Trichostatin A,曲古抑菌素A)能協(xié)同DAC上調(diào)MAGE-A2表達(dá),聯(lián)合應(yīng)用DAC和TSA處理細(xì)胞株可使MAGE-A2上調(diào)率更高,而單獨(dú)使用TSA僅微弱上調(diào)MAGE-A2的表達(dá);為了功能性地檢測DNA去甲基化和組蛋白乙?;瘜幼踊钚缘挠绊?,進(jìn)一步通過構(gòu)建含報告基因的MAGE-A2啟動子質(zhì)粒,將其甲基化處理后,分別將經(jīng)甲基化處理和未經(jīng)甲基化處理的質(zhì)粒轉(zhuǎn)染不表達(dá)MAGE-A2的乳腺癌細(xì)胞MCF-7,結(jié)果發(fā)現(xiàn)與非甲基化質(zhì)粒相比,轉(zhuǎn)染甲基化質(zhì)粒的組別其啟動子活性下降明顯,然而,轉(zhuǎn)染甲基化質(zhì)粒的細(xì)胞經(jīng)TSA處理后,啟動子活性上升,而轉(zhuǎn)染非甲基化質(zhì)粒的細(xì)胞經(jīng)TSA處理后,啟動子活性上升明顯,這些結(jié)果說明MAGE-A2的轉(zhuǎn)錄不但受甲基化的調(diào)控,而且也與乙酰化有關(guān)。然而,在表達(dá)MAGE-A2的卵巢癌細(xì)胞株中,DAC處理細(xì)胞卻下調(diào)MAGE-A2表達(dá),這可能與不同細(xì)胞對DAC的反應(yīng)不同有關(guān)[39]。
甲基化CpG結(jié)合域蛋白(Methyl-CpG binding domain proteins,MBD)是一類結(jié)合在甲基化的CpG位點(diǎn)起轉(zhuǎn)錄抑制作用的蛋白,為了深入探討甲基化對 MAGE-A2 表達(dá)的調(diào)控,Wischnewski等[40]研究了目前較熱門的幾種 MBD,如 MBD1、MBD2a和MeCP2,電泳遷移率檢測結(jié)果顯示MBD1與甲基化和非甲基化的MAGE-A2啟動子都有親和力,而使用針對MBD1和MeCP2的染色質(zhì)免疫沉淀技術(shù)后,結(jié)果顯示MAGE-A2基因表達(dá)上調(diào),而 MeCP2對MAGE-A2親和力更高,這表明MBD1和MeCP2可抑制MAGE-A2啟動子活性。另外,體外構(gòu)建甲基化及非甲基化的MAGE-A2啟動子質(zhì)粒,與MBD1共同轉(zhuǎn)染乳腺癌細(xì)胞株和MBD1缺失的小鼠細(xì)胞,結(jié)果發(fā)現(xiàn)在這兩種細(xì)胞株中,轉(zhuǎn)染甲基化MAGE-A2啟動子質(zhì)粒的組別,MAGE-A2啟動子活性幾乎全部消失,而轉(zhuǎn)染非甲基化MAGE-A2啟動子質(zhì)粒的組別MAGE-A2啟動子活性有下降,說明MBD1可抑制MAGE-A2表達(dá),然而對MBD2a及MeCP2進(jìn)行同樣研究,結(jié)果卻發(fā)現(xiàn)MBD2a可上調(diào)MAGE-A2啟動子活性,而MeCP2對MAGE-A2啟動子活性并無影響。上述結(jié)果顯示甲基化抑制MAGE-A2表達(dá)機(jī)理是涉及多種MBD的共同作用。
對MAGE-A2的生物學(xué)功能研究表明,MAGEA2可抵抗多種腫瘤藥物的作用。Duan等[41]將MAGE-A2轉(zhuǎn)入紫杉醇敏感的人卵巢癌細(xì)胞株,發(fā)現(xiàn)轉(zhuǎn)染后的細(xì)胞產(chǎn)生了明顯的抗紫杉醇及抗阿霉素作用,表現(xiàn)出顯著的生長優(yōu)勢。另外,通過siRNA敲除雄激素敏感的前列腺癌細(xì)胞株LNCaP中MAGEA2表達(dá),隨后用一種類紫杉醇藥物多西他奇(Docetaxel)處理細(xì)胞株,結(jié)果發(fā)現(xiàn)與敲除MAGE-A2前的細(xì)胞株相比,敲除后的細(xì)胞株生存率明顯下降,進(jìn)一步佐證MAGE-A2所致的細(xì)胞抗耐藥性[28]。還有研究發(fā)現(xiàn)MAGE-A2與抑癌基因p53的結(jié)合,可募集組蛋白去乙酰化酶至p53的轉(zhuǎn)錄起始位點(diǎn)達(dá)到抑制p53轉(zhuǎn)錄的作用;同時,通過DAC上調(diào)MAGE-A2表達(dá)后,黑色素瘤細(xì)胞對抗腫瘤藥物依托泊甙的抗藥性增加,這種抗藥性的改變是依賴于p53活性改變而隨之改變;將原來高表達(dá)MAGE-A2的黑色素瘤細(xì)胞,通過siRNA下調(diào)其表達(dá),結(jié)果發(fā)現(xiàn)p53活性恢復(fù),腫瘤細(xì)胞的抗藥性也隨之恢復(fù),從而驗(yàn)證了MAGE-A2通過組蛋白乙?;赣绊憄53活性而從達(dá)到抗腫瘤藥的功效[42]。有研究發(fā)現(xiàn)沉默前列腺癌細(xì)胞株中MAGE-A2表達(dá),細(xì)胞增殖受到明顯抑制,提示MAGE-A2可能在前列腺癌進(jìn)展過程中起到重要作用,其機(jī)制尚不清楚;另外,該研究還發(fā)現(xiàn)MAGE-A2在去勢治療無效的前列腺癌患者中呈高表達(dá),由于去勢的目的是消除雄激素作用,因此對MAGE-A2表達(dá)與雄激素之間關(guān)系進(jìn)行探討,使用含雄激素的培養(yǎng)液培養(yǎng)前列腺癌細(xì)胞株LNCaP,結(jié)果發(fā)現(xiàn)與常規(guī)培養(yǎng)的LNCaP細(xì)胞相比,前者細(xì)胞中MAGE-A2表達(dá)未改變,這顯示這雄激素并未涉及MAGE-A2 表達(dá)[26]。
MAGE-A2的特異性表達(dá)模式,使其成為腫瘤免疫治療的理想靶抗原。MAGE-A2引發(fā)的主要是細(xì)胞免疫,在MAGE-A2蛋白分子中,目前已知3個MHC I類分子限制性表位及1個MHC II類分子限制性表位。MAGE-A2聯(lián)合其他黑色素瘤相關(guān)抗原制備多重黑素瘤相關(guān)抗原負(fù)載的DC疫苗在黑色素瘤轉(zhuǎn)移患者體內(nèi)可誘導(dǎo)免疫反應(yīng),患者體內(nèi)腫瘤病灶及轉(zhuǎn)移灶尺寸明顯減小,顯示出復(fù)合疫苗強(qiáng)大的抗腫瘤免疫反應(yīng)。MAGE-A2的表達(dá)與其啟動子區(qū)域的甲基化及組蛋白乙酰化酶的活性有關(guān),了解了這個表達(dá)機(jī)理,將有助于我們應(yīng)用去甲基化藥物或組蛋白乙酰化酶上調(diào)MAGE-A2表達(dá),使其更有效應(yīng)用于腫瘤免疫治療。近年來的研究表明MAGEA2與腫瘤藥物耐藥性有關(guān),其耐藥性產(chǎn)生是通過影響p53活性實(shí)現(xiàn)的。且MAGE-A2可能在前列腺癌發(fā)生發(fā)展過程中其重要作用。目前對其生物學(xué)功能研究較少,相信通過對MAGE-A2生物學(xué)功能的探討,將有助于我們認(rèn)識腫瘤發(fā)生發(fā)展的過程。
1 Nishiyama T,Tachibana M,Horiguchi Y et al.Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide[J].Clin Cancer Res,2001;7(1):23-31.
2 Maraskovsky E,Sj?lander S,Drane DP et al.NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+t-cell-mediated immunity and protection against NY-ESO-1+tumors[J].Clin Cancer Res,2004;10(8):2879-2890.
3 De Smet C,Lurquin C,van der Bruggen P et al.Sequence and expression pattern of the human MAGE2 gene[J].Immunogenetics,1994;39(2):121-129.
4 Zammatteo N,Lockman L,Brasseur F et al.DNA microarray to monitor the expression of MAGE-A genes[J].Clin Chem,2002;48(1):25-34.
5 De Plaen E,Arden K,Traversari C et al.Structure,chromosomal localization,and expression of 12 genes of the MAGE family[J].Immunogenetics,1994;40(5):360-369.
6 Müller-Richter U D,Dowejko A,Zhou W et al.Different expression of MAGE-A-antigens in foetal and adult keratinocyte cell lines[J].Oral Oncol,2008;44(7):628-633.
7 Gjerstorff M F,Harkness L,Kassem M et al.Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation[J].Hum Reprod,2008;23(10):2194-2201.
8 Eichmüller S,Usener D,Jochim A et al.mRNA expression of tumorassociated antigens in melanoma tissues and cell lines[J].Exp Dermatol,2002;11(4):292-301.
9 Basarab T,Picard J K,Simpson E et al.Melanoma antigen-encoding gene expression in melanocytic naevi and cutaneous malignant melanomas[J].Br J Dermatol,1999;140(1):106-108.
10 Brasseur F,Rimoldi D,Liénard D et al.Expression of MAGE genes in primary and metastatic cutaneous melanoma[J].Int J Cancer,1995;63(3):375-380.
11 Chen P W,Murray T G,Uno T et al.Expression of MAGE genes in ocular melanoma during progression from primary to metastatic disease[J].Clin Exp Metastasis,1997;15(5):509-518.
12 Gibbs P,Hutchins A M,Dorian K T et al.MAGE-12 and MAGE-6 are frequently expressed in malignant melanoma[J].Melanoma Res,2000;10(3):259-264.
13 Scarcella D L,Chow C W,Gonzales M F et al.Expression of MAGE and GAGE in high-grade brain tumors:a potential target for specific immunotherapy and diagnostic markers[J].Clin Cancer Res,1999;5(2):335-341.
14 Jacobs J F,Grauer O M,Brasseur F et al.Selective cancer-germline gene expression in pediatric brain tumors[J].J Neurooncol,2008;88(3):273-280.
15 Tahara K,Mori M,Sadanaga N et al.Expression of the MAGE gene family in human hepatocellular carcinoma[J].Cancer,1999;85(6):1234-1240.
16 Suzuki K,Tsujitani S,Konishi I et al.Expression of MAGE genes and survival in patients with hepatocellular carcinoma[J].Int J Oncol,1999;15(6):1227-1232.
17 Groeper C,Gambazzi F,Zajac P et al.Cancer/testis antigen expression and specific cytotoxic T lymphocyte responses in non small cell lung cancer[J].Int J Cancer,2007;120(2):337-343.
18 Yoshimatsu T,Yoshino I,Ohgami A et al.Expression of the melanoma antigen-encoding gene in human lung cancer[J].J Surg Oncol,1998;67(2):126-129.
19 Yamada A,Kataoka A,Shichijo S et al.Expression of MAGE-1,MAGE-2,MAGE-3/-6 and MAGE-4a/-4b genes in ovarian tumors[J].Int J Cancer,1995;64(6):388-393.
20 Zou C,Shen J,Tang Q et al.Cancer-testis antigens expressed in osteosarcoma identified by gene microarray correlate with a poor patient prognosis[J].Cancer,2012;118(7):1845-1855.
21 Müller-Richter U D,Dowejko A,Reuther T et al.Analysis of expression profiles of MAGE-A antigens in oral squamous cell carcinoma cell lines[J].Head Face Med,2009;5:10.
22 Abdul-Rasool S,Kidson S H,Panieri E et al.An evaluation of molecular markers for improved detection of breast cancer metastases in sentinel nodes[J].J Clin Pathol,2006;59(3):289-297.
23 Shawler D L,Bartholomew R M,Garrett M A et al.Antigenic and immunologic characterization of an allogeneic colon carcinoma vaccine[J].Clin Exp Immunol,2002;129(1):99-106.
24 Kim Y M,Lee Y H,Shin S H et al.Expression of MAGE-1,-2,and-3 genes in gastric carcinomas and cancer cell lines derived from Korean patients[J].J Korean Med Sci,2001;16(1):62-68.
25 Wroblewski J M,Bixby D L,Borowski C et al.Characterization of human non-small cell lung cancer(NSCLC)cell lines for expression of MHC,co-stimulatory molecules and tumor-associated antigens[J].Lung Cancer,2001;33(2-3):181-194.
26 Lifantseva N,Koltsova A,Krylova T et al.Expression patterns of cancer-testis antigens in human embryonic stem cells and their cell derivatives indicate lineage tracks[J].Stem Cells Int,2011;2011:795239.
27 Kayser S,Watermann I,Rentzsch C et al.Tumor-associated antigen profiling in breast and ovarian cancer:mRNA,protein or T cell recognition?[J].J Cancer Res Clin Oncol,2003;129(7):397-409.
28 Suyama T,Shiraishi T,Zeng Y et al.Expression of cancer/testis antigens in prostate cancer is associated with disease progression[J].Prostate,2010;70(16):1778-1787.
29 Goodyear O C,Pratt G,McLarnon A et al.Differential pattern of CD4+and CD8+T-cell immunity to MAGE-A1/A2/A3 in patients with monoclonal gammopathy of undetermined significance(MGUS)and multiple myeloma[J].Blood,2008;112(8):3362-3372.
30 Kawashima I,Hudson S J,Tsai V et al.The multi-epitope approach for immunotherapy for cancer:identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors[J].Hum Immunol,1998;59(1):1-14.
31 Tahara K,Takesako K,Sette A et al.Identification of a MAGE-2-encoded human leukocyte antigen-A24-binding synthetic peptide that induces specific antitumor cytotoxic T lymphocytes[J].Clin Cancer Res,1999;5(8):2236-2241.
32 Tanzarella S,Russo V,Lionello I et al.Identification of a promiscuous T-cell epitope encoded by multiple members of the MAGE family[J].Cancer Res,1999;59(11):2668-2674.
33 Breckpot K,Heirman C,De Greef C et al.Identification of new antigenic peptide presented by HLA-Cw7 and encoded by several MAGE genes using dendritic cells transduced with lentiviruses[J].J Immunol,2004;172(4):2232-2237.
34 Chaux P,Vantomme V,Stroobant V et al.Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4(+)T lymphocytes[J].J Exp Med,1999;189(5):767-778.
35 Akiyama Y,Tanosaki R,Inoue N et al.Clinical response in Japanese metastatic melanoma patients treated with peptide cocktailpulsed dendritic cells[J].J Transl Med,2005;3(1):4.
36 Shichijo S,Yamada A,Sagawa K et al.Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2'-deoxycytidine[J].Jpn J Cancer Res,1996;87(7):751-756.
37 Sigalotti L,Coral S,Nardi G et al.Promoter methylation controls the expression of MAGE2,3 and 4 genes in human cutaneous melanoma[J].J Immunother,2002;25(1):16-26.
38 Wischnewski F,Pantel K,Schwarzenbach H.Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1,-A2,-A3,and-A12 in human cancer cells[J].Mol Cancer Res,2006;4(5):339-349.
39 Adair S J,Hogan K T.Treatment of ovarian cancer cell lines with 5-aza-2'-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules[J].Cancer Immunol Immunother,2009;58(4):589-601.
40 Wischnewski F,F(xiàn)riese O,Pantel K et al.Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGEA1,MAGE-A2,MAGE-A3,and MAGE-A12 gene promoters[J].Mol Cancer Res,2007;5(7):749-759.
41 Duan Z,Duan Y,Lamendola D E et al.Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines[J].Clin Cancer Res,2003;9(7):2778-2785.
42 Monte M,Simonatto M,Peche L Y et al.MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents[J].Proc Natl Acad Sci USA,2006;103(30):11160-11165.