亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Telegraph Equation with Hysteresis*

        2013-09-11 09:13:52XULongfengXUELiang
        吉首大學學報(自然科學版) 2013年5期

        XU Long-feng,XUE Liang,2

        (1.School of Math.&Phys.,Anhui University of Technology,Maanshan 243002,Anhui China;2.Department of Basic Courses,Anhui Vocational and Technology College,Tongling 244000,Anhui China)

        A Telegraph Equation with Hysteresis*

        XU Long-feng1,XUE Liang1,2

        (1.School of Math.&Phys.,Anhui University of Technology,Maanshan 243002,Anhui China;2.Department of Basic Courses,Anhui Vocational and Technology College,Tongling 244000,Anhui China)

        This paper discusses a telegraph equation with hysteresis.First,the properties of Ishlinskiǐhysteresis operator are given.Secondly,the existence of a C1+α,αstrong solution is obtained to this equation.Key words:Ishlinskiǐhysteresis operator;telegraph equation;monotone operator;strong solution

        1 Introduction

        Hysteresis is a kind of objective existence natural phenomenon.Since 1920s,people have begun to study Hysteresis phenomenon,to put forward a lot of models of hysteresis operators,and to discuss developing equation with Hysteresis(see ref.[1-4]).Krejci Pavel studied the quasi-stationary telegraph equation in ferromagnetic media in ref.[4]:

        where Fis Ishlinskiǐhysteresis operator.Using difference method with regard to variable xand peculiarity of periodic function,he proved that if g∈Cω([0,1]×[0,∞)),then there exists at least a function u∈([0,1]×[0,∞))satisfying eq.(1),(2)under week meaning when t≥ω.This paper is devoted to the study for the solution of initial-boundary value problem to eq.(1).The main result is as follows:

        Theorem1 If g∈C0,1(Q)(Q=(0,1)×(0,T]),a∈([0,1]),then there exists at least a solution u∈W(0,T;L2(0,1))∩L∞(0,T;H2(0,1))to eq.(1),(2)and

        Especially,if g∈Cα0,1+α0(),a∈C1+α0([0,1])(0<α0<1),then there exists a constant 0<α≤α0such that u∈C1+α,α(ˉQ).

        2 IshlinskiǐOperator

        Let us consider a free cylinder of length 2h,for any h>0,in the interior of which we move a piston.Let v(t)denote the position of the piston on the axis of the movement at the instant t∈[0,T],and let lh(v)(t)=λ(t)denote the position of the center of the cylinder.If the function v(t)is continuous and piecewise monotone,then

        It is easy to see thatλ(t)is also continuous and piecewise monotone.In addition,it is easy to prove(see ref.[2])that let v,w∈C0([0,T])be piecewise monotone,then for any t∈[0,T],we have

        (iii)Let v∈C0([0,T]),0≤t0<t1≤T.If for any t∈[t0,t1],we have always v(t0)≤v(t)≤v(t1)(or v(t0)≥v(t)≥v(t1)),and there exists w∈C0[0,T]which is nondecreasing on[t0,t1](or nonincreasing)satisfying w(t0)=v(t0),w(t1)=v(t1),lh(w)(t0)=lh(v)(t0),then lh(w)(t1)=lh(v)(t1).

        Take arbitraryφ[2]:(0,∞)→(0,∞)is a twice continuously differentiable function satisfying:(?。│?is increasing,φ(0+)=0,0<φ′(0+)<∞.There exists a>0,α∈(0,1),for any h>0,φ(h)<ahα.(ⅱ)For any r>0,denoteγ(r)=inf{-φ″(h),0<h≤r}.There exists b>0,β∈(0,α],r0>1such that for any r≥r0,γ(r)≥brβ-2.

        It is easy to prove thatφis convex,φ′(h)≤φ(h)/h≤ahα-1,andφ′(h)≥b1hβ-1when h>r0,φ(h)≥b2hβwhen h>r1≥r0.Letψbe inverse function ofφ,denote s1=φ(r1),thenψ(s)≤C0s1/βwhen s>s1,and ψ′(s)≥C1s1/β-1,ψ″(s)≥C2(ψ(s))1+β-3α.For any v∈C0([0,∞))and any t∈[0,T],we define two operators Fand L:C0([0,T])→C0([0,T]),

        Lemma 1[2]Lis inverse operator of Fi.e.L=F-1,and for any v,w∈C0([0,T]),any t∈[0,T],it follows that

        Corollary 1 For any v∈C0([0,T]),and any 0≤t1<t2≤T,we have

        Lemma 2 Assume that v∈C0([0,T]),t0∈(0,T],ε>0,h1>h2>0.If vis nondecreasing in(t0-ε,t0]and lh1(v)(t0)=v(t0)-h(huán)1,then it follows surely that lh2(v)(t0)=v(t0)-h(huán)2;if vis nonincreasing in(t0-ε,t0]and lh1(v)(t0)=v(t0)+h1,then it follows surely that lh2(v)(t0)=v(t0)+h2.

        Proof Let v be nondecreasing in(t0-ε,t0](method of proof is similar to that when vis nonin-creasing in(t0-ε,t0]).If there exists t*∈[0,t0]such thatby property(ii),lh(v)1(t*)=max{0,v(t*)-h(huán)1}.It is obvious that lh1(v)(t*)=v(t0)-h(huán)1as t*=t0,so lh2(v)(t*)=v(t0)-h(huán)2. When t*<t0,take t*<t1<t0such that v(t1)≤v(t)for any t∈[t*,t0].Noticing property(iii),we can assume that vis a segment of straight line on[t*,t1]and[t1,t0].Since lh1(v)(t0)=v(t0)-h(huán)1,it is easy to derive that lh1(v)(t*)=v(t*)-h(huán)1holds surely.lh1(v)(t1)=v(t1)+h1and v(t0)-v(t1)≥2h1;therefore,lh2(v)(t*)=v(t*)-h(huán),lh2(v)(t1)=v(t1)+h2,lh2(v)(t0)=v(t0)-h(huán)2.

        If there exists t*∈[0,t0]such that v(t*)=-‖v‖,then lh1(v)(t*)=min{0,v(t*)+h1}.Take t*<t2≤t0such that v(t2)≥v(t),for any t∈[t*,t0].If t2=t0,it is easy that lh1(v)(t*)=v(t*)+h1,lh1(v)(t0)=v(t0)-h(huán)1,so lh2(v)(t*)=v(t*)+h2,lh2(v)(t0)=v(t0)-h(huán)2.If t2<t0,take again t2<t1<t0such that v(t1)≤v(t)for any t∈[t2,t0].Since lh1(v)(t0)=v(t0)-h(huán)1,it is easy to derive that lh1(v)(t*)=v(t*)+h1,lh1(v)(t2)=v(t2)-h(huán)1,lh1(v)(t1)=v(t1)+h1and v(t0)-v(t1)≥2h1holds surely;therefore,lh2(v)(t*)=v(t*)+h2,lh2(v)(t2)=v(t2)-h(huán)2,lh2(v)(t1)=v(t1)+h2,lh2(v)(t0)=v(t0)-h(huán)2.

        Now we introduce two operators Eand J:C0([0,T])→L∞(0,T).Take any v∈C0([0,T]),v(0)>0(or v(0)<0).If there exists aε>0such that vis nondecreasing(or nonincreasing)on[0,ε],then we set E(v)(0)=φ′(h0),J(v)(0)=ψ′(h0);otherwise,we set E(v)(0)=φ′(0+),J(v)(0)=ψ′(0+);if for any t0∈(0,T],there exists aε>0such that vis monotone in(t0-ε,t0],then we set E(v)(t0)=φ′(h0),J(v)(t0)=ψ′(h0);if how smallε>0is no matter,visn’t monotone in(t0-ε,t0],then we set E(v)(t0)=φ′(0+),J(v)(t0)=ψ′(0+).

        Lemma 3 For any v∈C1([0,T]),we have F(v),L(v)∈O1([0,T])={φ∈C0([0,T]):φ′∈L∞(0,T)},and for any t0∈[0,T],F(xiàn)(v)′(t0)=E(v)(t0)v′(t0),L(v)′(t0)=J(v)(t0)v′(t0).

        Proof We prove only the first formula.The second formula is similar to the first proof.

        If v′(t0)=0,by lemma 1,it is easy to derive F(v)′(t0)=0=E(v)(t0)v′(t0);if v′(t0)=a>0(a<0is similar),and there exists aε>0such that vis strictly monotone increasing in(t0-ε,t0+ε)∩[0,T],then

        Corollary 2 For any v∈H1(0,T),we have that F(v),L(v)belong to H1(0,T)and DtF(v)(t)=E(v)(t)Dtv(t),DtL(v)(t)=J(v)(t)Dtv(t)a.e.[0,T].

        Lemma 4 If vis a segment of straight line on[t0,t1],then(L(v)(t1)-L(v)(t0))·(v(t1)-v(t0))≥ψ′(0+)(v(t1)-v(t0))2.

        3 Proof of Main Theorem

        Lemma 5 Eq.(4),(5),(6)have at least solution v∈H1(0,T;L2(0,1))∩L∞(0,T;H),where H={φ∈H1(0,1):φx(0)=φx(1)=0}.

        By definition of operator L,under the case that,...,are all known,(x)depends only on

        By corollary 1and lemma 4,φnmis continuous and monotone with regard to(x).ObviouslyH→H*is strictly monotone,continuous and coercive,so it is also mapping fully,and there exists(x)as the solution of eq.(7).

        By ineq.(11),(13),it yields

        Let wm(x,t)be the function obtained by interpolating linearly value.For n=0,1,...,m,wm(x,nk)=(x)a.e.[0,1].In addition,for(n-1)k<t≤nk,n=1,...,m,denote(x,t)=(x)a.e.[0,1],so eq.(7)turn into

        From ineq.(12),(14),we get

        From ineq.(15),(17),we have

        Therefore,there exist v,wsuch that(possibly taking subsequences):vm→vin H1(0,T;L2(0,1))week,and in L∞(0,T;H)week star;→vin Hγ(0,T;L2(0,1))week,for anyγ<,and in L∞(0,T;H)week star;wm→win H1(0,T;H*)week.

        Reference:

        [1] KRASNOSELSKII M A,POKROVSKII A V.Systems with Hysteresis[M].Moscow:Nauka,1983.

        [2] PAVEL KREJCI.Hysteresis and Periodic Solutions of Semilinear and Quasilinear Wave Equations[J].Mathematische Zeitschrife,1986,193:247-264.

        [3] PAVEL KREJCI.Periodic Solutions of a Parabolic Equation with Hysteresis[J].Mathematische Zeitschrife,1987,194:61-70.

        [4] MAYERGOYZ I D.Mathematical Models of Hysteresis[M].New York:Springer-Verlag,1991.

        [5] LADYZENSKAAJA O A.Linear and Quasi-Linear Equations of Parabolic Type[M].American:The American Mathematical Society,1968:204-210.

        O175.29 Document code:A

        10.3969/j.issn.1007-2985.2013.05.003

        1007-2985(2013)05-0006-05

        *Received date:2013-01-12

        Supported by National Natural Science Foundation of China(11001001);Natural Science Foundation of Anhui Province Office of Education(KJ2010A043)

        Biography:XU Long-feng(1952-),male,was born in Anqing City,professor of School of Math.&Phys.,Anhui U-niversity of Technology;research area is partial differential equations.

        日本女优免费一区二区三区| 99这里只有精品| 一本久道久久综合五月丁香| 国产三级三级三级看三级日本| 亚洲天堂av一区二区| 亚洲av无码国产精品色午夜字幕 | 免费国产黄片视频在线观看| 亚洲国产天堂av成人在线播放| 中文乱码字幕精品高清国产| www射我里面在线观看| 伊人精品在线观看| 国产精品视频免费一区二区三区| 久草视频在线手机免费看| 激情综合丁香五月| 久草视频福利| 精品国产乱来一区二区三区| av黄页网国产精品大全| 亚洲国产精品ⅴa在线观看| 国产第一草草影院| 亚洲国产精品国自产拍av在线| 人妻久久一区二区三区| 免费人成视频x8x8入口| 欧美色欧美亚洲另类二区不卡| 国产美女高潮流白浆免费观看| 亚洲国产精品国自产拍久久蜜av| 亚洲啪av永久无码精品放毛片| 久久久久久久久久久熟女AV| 日韩在线精品视频免费| 最新国产精品精品视频| 国产精品亚洲一区二区麻豆| 亚洲热线99精品视频| 一本大道香蕉视频在线观看| 国产一区二区av男人| 亚洲精品国产一二三区| 真人直播 免费视频| 无码区a∨视频体验区30秒 | 中文字幕成人乱码熟女精品国50| 污污内射在线观看一区二区少妇| 98精品国产综合久久| 美国黄色av一区二区| 国产精品久久久久9999无码|