亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Telegraph Equation with Hysteresis*

        2013-09-11 09:13:52XULongfengXUELiang

        XU Long-feng,XUE Liang,2

        (1.School of Math.&Phys.,Anhui University of Technology,Maanshan 243002,Anhui China;2.Department of Basic Courses,Anhui Vocational and Technology College,Tongling 244000,Anhui China)

        A Telegraph Equation with Hysteresis*

        XU Long-feng1,XUE Liang1,2

        (1.School of Math.&Phys.,Anhui University of Technology,Maanshan 243002,Anhui China;2.Department of Basic Courses,Anhui Vocational and Technology College,Tongling 244000,Anhui China)

        This paper discusses a telegraph equation with hysteresis.First,the properties of Ishlinskiǐhysteresis operator are given.Secondly,the existence of a C1+α,αstrong solution is obtained to this equation.Key words:Ishlinskiǐhysteresis operator;telegraph equation;monotone operator;strong solution

        1 Introduction

        Hysteresis is a kind of objective existence natural phenomenon.Since 1920s,people have begun to study Hysteresis phenomenon,to put forward a lot of models of hysteresis operators,and to discuss developing equation with Hysteresis(see ref.[1-4]).Krejci Pavel studied the quasi-stationary telegraph equation in ferromagnetic media in ref.[4]:

        where Fis Ishlinskiǐhysteresis operator.Using difference method with regard to variable xand peculiarity of periodic function,he proved that if g∈Cω([0,1]×[0,∞)),then there exists at least a function u∈([0,1]×[0,∞))satisfying eq.(1),(2)under week meaning when t≥ω.This paper is devoted to the study for the solution of initial-boundary value problem to eq.(1).The main result is as follows:

        Theorem1 If g∈C0,1(Q)(Q=(0,1)×(0,T]),a∈([0,1]),then there exists at least a solution u∈W(0,T;L2(0,1))∩L∞(0,T;H2(0,1))to eq.(1),(2)and

        Especially,if g∈Cα0,1+α0(),a∈C1+α0([0,1])(0<α0<1),then there exists a constant 0<α≤α0such that u∈C1+α,α(ˉQ).

        2 IshlinskiǐOperator

        Let us consider a free cylinder of length 2h,for any h>0,in the interior of which we move a piston.Let v(t)denote the position of the piston on the axis of the movement at the instant t∈[0,T],and let lh(v)(t)=λ(t)denote the position of the center of the cylinder.If the function v(t)is continuous and piecewise monotone,then

        It is easy to see thatλ(t)is also continuous and piecewise monotone.In addition,it is easy to prove(see ref.[2])that let v,w∈C0([0,T])be piecewise monotone,then for any t∈[0,T],we have

        (iii)Let v∈C0([0,T]),0≤t0<t1≤T.If for any t∈[t0,t1],we have always v(t0)≤v(t)≤v(t1)(or v(t0)≥v(t)≥v(t1)),and there exists w∈C0[0,T]which is nondecreasing on[t0,t1](or nonincreasing)satisfying w(t0)=v(t0),w(t1)=v(t1),lh(w)(t0)=lh(v)(t0),then lh(w)(t1)=lh(v)(t1).

        Take arbitraryφ[2]:(0,∞)→(0,∞)is a twice continuously differentiable function satisfying:(?。│?is increasing,φ(0+)=0,0<φ′(0+)<∞.There exists a>0,α∈(0,1),for any h>0,φ(h)<ahα.(ⅱ)For any r>0,denoteγ(r)=inf{-φ″(h),0<h≤r}.There exists b>0,β∈(0,α],r0>1such that for any r≥r0,γ(r)≥brβ-2.

        It is easy to prove thatφis convex,φ′(h)≤φ(h)/h≤ahα-1,andφ′(h)≥b1hβ-1when h>r0,φ(h)≥b2hβwhen h>r1≥r0.Letψbe inverse function ofφ,denote s1=φ(r1),thenψ(s)≤C0s1/βwhen s>s1,and ψ′(s)≥C1s1/β-1,ψ″(s)≥C2(ψ(s))1+β-3α.For any v∈C0([0,∞))and any t∈[0,T],we define two operators Fand L:C0([0,T])→C0([0,T]),

        Lemma 1[2]Lis inverse operator of Fi.e.L=F-1,and for any v,w∈C0([0,T]),any t∈[0,T],it follows that

        Corollary 1 For any v∈C0([0,T]),and any 0≤t1<t2≤T,we have

        Lemma 2 Assume that v∈C0([0,T]),t0∈(0,T],ε>0,h1>h2>0.If vis nondecreasing in(t0-ε,t0]and lh1(v)(t0)=v(t0)-h(huán)1,then it follows surely that lh2(v)(t0)=v(t0)-h(huán)2;if vis nonincreasing in(t0-ε,t0]and lh1(v)(t0)=v(t0)+h1,then it follows surely that lh2(v)(t0)=v(t0)+h2.

        Proof Let v be nondecreasing in(t0-ε,t0](method of proof is similar to that when vis nonin-creasing in(t0-ε,t0]).If there exists t*∈[0,t0]such thatby property(ii),lh(v)1(t*)=max{0,v(t*)-h(huán)1}.It is obvious that lh1(v)(t*)=v(t0)-h(huán)1as t*=t0,so lh2(v)(t*)=v(t0)-h(huán)2. When t*<t0,take t*<t1<t0such that v(t1)≤v(t)for any t∈[t*,t0].Noticing property(iii),we can assume that vis a segment of straight line on[t*,t1]and[t1,t0].Since lh1(v)(t0)=v(t0)-h(huán)1,it is easy to derive that lh1(v)(t*)=v(t*)-h(huán)1holds surely.lh1(v)(t1)=v(t1)+h1and v(t0)-v(t1)≥2h1;therefore,lh2(v)(t*)=v(t*)-h(huán),lh2(v)(t1)=v(t1)+h2,lh2(v)(t0)=v(t0)-h(huán)2.

        If there exists t*∈[0,t0]such that v(t*)=-‖v‖,then lh1(v)(t*)=min{0,v(t*)+h1}.Take t*<t2≤t0such that v(t2)≥v(t),for any t∈[t*,t0].If t2=t0,it is easy that lh1(v)(t*)=v(t*)+h1,lh1(v)(t0)=v(t0)-h(huán)1,so lh2(v)(t*)=v(t*)+h2,lh2(v)(t0)=v(t0)-h(huán)2.If t2<t0,take again t2<t1<t0such that v(t1)≤v(t)for any t∈[t2,t0].Since lh1(v)(t0)=v(t0)-h(huán)1,it is easy to derive that lh1(v)(t*)=v(t*)+h1,lh1(v)(t2)=v(t2)-h(huán)1,lh1(v)(t1)=v(t1)+h1and v(t0)-v(t1)≥2h1holds surely;therefore,lh2(v)(t*)=v(t*)+h2,lh2(v)(t2)=v(t2)-h(huán)2,lh2(v)(t1)=v(t1)+h2,lh2(v)(t0)=v(t0)-h(huán)2.

        Now we introduce two operators Eand J:C0([0,T])→L∞(0,T).Take any v∈C0([0,T]),v(0)>0(or v(0)<0).If there exists aε>0such that vis nondecreasing(or nonincreasing)on[0,ε],then we set E(v)(0)=φ′(h0),J(v)(0)=ψ′(h0);otherwise,we set E(v)(0)=φ′(0+),J(v)(0)=ψ′(0+);if for any t0∈(0,T],there exists aε>0such that vis monotone in(t0-ε,t0],then we set E(v)(t0)=φ′(h0),J(v)(t0)=ψ′(h0);if how smallε>0is no matter,visn’t monotone in(t0-ε,t0],then we set E(v)(t0)=φ′(0+),J(v)(t0)=ψ′(0+).

        Lemma 3 For any v∈C1([0,T]),we have F(v),L(v)∈O1([0,T])={φ∈C0([0,T]):φ′∈L∞(0,T)},and for any t0∈[0,T],F(xiàn)(v)′(t0)=E(v)(t0)v′(t0),L(v)′(t0)=J(v)(t0)v′(t0).

        Proof We prove only the first formula.The second formula is similar to the first proof.

        If v′(t0)=0,by lemma 1,it is easy to derive F(v)′(t0)=0=E(v)(t0)v′(t0);if v′(t0)=a>0(a<0is similar),and there exists aε>0such that vis strictly monotone increasing in(t0-ε,t0+ε)∩[0,T],then

        Corollary 2 For any v∈H1(0,T),we have that F(v),L(v)belong to H1(0,T)and DtF(v)(t)=E(v)(t)Dtv(t),DtL(v)(t)=J(v)(t)Dtv(t)a.e.[0,T].

        Lemma 4 If vis a segment of straight line on[t0,t1],then(L(v)(t1)-L(v)(t0))·(v(t1)-v(t0))≥ψ′(0+)(v(t1)-v(t0))2.

        3 Proof of Main Theorem

        Lemma 5 Eq.(4),(5),(6)have at least solution v∈H1(0,T;L2(0,1))∩L∞(0,T;H),where H={φ∈H1(0,1):φx(0)=φx(1)=0}.

        By definition of operator L,under the case that,...,are all known,(x)depends only on

        By corollary 1and lemma 4,φnmis continuous and monotone with regard to(x).ObviouslyH→H*is strictly monotone,continuous and coercive,so it is also mapping fully,and there exists(x)as the solution of eq.(7).

        By ineq.(11),(13),it yields

        Let wm(x,t)be the function obtained by interpolating linearly value.For n=0,1,...,m,wm(x,nk)=(x)a.e.[0,1].In addition,for(n-1)k<t≤nk,n=1,...,m,denote(x,t)=(x)a.e.[0,1],so eq.(7)turn into

        From ineq.(12),(14),we get

        From ineq.(15),(17),we have

        Therefore,there exist v,wsuch that(possibly taking subsequences):vm→vin H1(0,T;L2(0,1))week,and in L∞(0,T;H)week star;→vin Hγ(0,T;L2(0,1))week,for anyγ<,and in L∞(0,T;H)week star;wm→win H1(0,T;H*)week.

        Reference:

        [1] KRASNOSELSKII M A,POKROVSKII A V.Systems with Hysteresis[M].Moscow:Nauka,1983.

        [2] PAVEL KREJCI.Hysteresis and Periodic Solutions of Semilinear and Quasilinear Wave Equations[J].Mathematische Zeitschrife,1986,193:247-264.

        [3] PAVEL KREJCI.Periodic Solutions of a Parabolic Equation with Hysteresis[J].Mathematische Zeitschrife,1987,194:61-70.

        [4] MAYERGOYZ I D.Mathematical Models of Hysteresis[M].New York:Springer-Verlag,1991.

        [5] LADYZENSKAAJA O A.Linear and Quasi-Linear Equations of Parabolic Type[M].American:The American Mathematical Society,1968:204-210.

        O175.29 Document code:A

        10.3969/j.issn.1007-2985.2013.05.003

        1007-2985(2013)05-0006-05

        *Received date:2013-01-12

        Supported by National Natural Science Foundation of China(11001001);Natural Science Foundation of Anhui Province Office of Education(KJ2010A043)

        Biography:XU Long-feng(1952-),male,was born in Anqing City,professor of School of Math.&Phys.,Anhui U-niversity of Technology;research area is partial differential equations.

        秋霞午夜无码鲁丝片午夜精品| 中文字幕女同人妖熟女| 麻豆文化传媒精品一区观看| 爽爽精品dvd蜜桃成熟时电影院 | 欧美饥渴熟妇高潮喷水水| 国产日韩久久久精品影院首页| 在线观看黄片在线播放视频| 漂亮丰满人妻被中出中文字幕| 忘忧草社区www日本高清| xxxx国产视频| 亚洲一区二区精品在线看| 亚洲av不卡一区男人天堂| 国产成人亚洲综合色婷婷| 欧美午夜精品久久久久久浪潮| 99国产精品欲av麻豆在线观看 | 2019最新中文字幕在线观看| 国产成人无码av在线播放dvd| 欧美亚洲国产丝袜在线| 桃色一区一区三区蜜桃视频| 久久久亚洲av成人网站| 97色伦图片97综合影院久久| 综合激情中文字幕一区二区| 日本最新一区二区三区视频观看| 狠狠色噜噜狠狠狠狠米奇777| 久久久久久久妓女精品免费影院 | 中文字幕国产亚洲一区| 中文人妻熟妇乱又伦精品| 中文文精品字幕一区二区| 超短裙老师在线观看一区| 亚洲av成人一区二区三区本码| 人妻暴雨中被强制侵犯在线| 九一成人AV无码一区二区三区| 久久亚洲免费精品视频| 三级全黄的视频在线观看| 国产精品露脸张开双腿| 国产av黄色一区二区| 小妖精又紧又湿高潮h视频69| 3d动漫精品啪啪一区二区下载| 美女精品国产一区二区三区| 亚洲国产精品成人av网| 精品国产一区二区三区av片|