薛 廉
(南京大學工程管理學院,江蘇 南京 210093)
隨著家庭理財理財意識的不斷提高以及金融產(chǎn)品日趨豐富,家庭資產(chǎn)組合選擇問題開始進入了學術視野。在2006年的美國金融年會上,Compbell曾經(jīng)提出了一個獨立的新研究方向,即家庭金融。與傳統(tǒng)的金融研究方向資產(chǎn)定價,公司金融相比,家庭金融已經(jīng)成為目前金融學研究的前沿領域。
與基于投資者的資產(chǎn)組合理論相比,家庭資產(chǎn)組合理論研究引入了經(jīng)濟特征,生命周期,人口統(tǒng)計特征等因素對金融資產(chǎn)選擇的影響。Yoo(1994)是有SCF的三個獨立年份的界面數(shù)據(jù)分析資產(chǎn)配良種的年齡效應,年輕和年老的家庭參與風險資產(chǎn)的概率更低。Guiiso等(1996)使用意大利的面板數(shù)據(jù)研究發(fā)現(xiàn)較高的工資收入風險與較低的風險資產(chǎn)持有有關。
Heaton和Lucas(2000)在研究中引入工資機制,分析發(fā)現(xiàn)家庭的工資收入與股票收益之間呈現(xiàn)出高度相關,一般具有高背景風險的家庭對于風險資產(chǎn)的持有比較少。Shum和Aig(2006)在研究中考慮了人口統(tǒng)計特征,分析發(fā)現(xiàn)性別,婚姻狀況以及受教育程度都會影響家庭金融資產(chǎn)的配置。Guiso,Sapienza(2004)研究發(fā)現(xiàn)家庭對外界社會,金融機構(gòu)的信任度越高,那么他們持有風險資產(chǎn)的比例也就越高。
到目前為止,關于我國居民投資的實證研究相對較少。樣本選擇以及有效樣本數(shù)據(jù)的獲取是主要難點。有部分學者對居民的資產(chǎn)結(jié)構(gòu)進行了考察,如史代敏、宋艷(2005),利用四川省統(tǒng)計局在2002年四川省城鎮(zhèn)居民家庭金融財產(chǎn)的抽樣調(diào)查數(shù)據(jù),分別考慮了年齡、收入、財富規(guī)模、受教育程度、住房所有權(quán)五方面的因素建立線性模型,考察各因素對家庭金融資產(chǎn)總量,以及儲蓄存款和股票在金融資產(chǎn)中所占比例的影響。吳曉求等(1999)利用證券持有的增加量統(tǒng)計出我國居民金融資產(chǎn)的增量結(jié)構(gòu),并重點分析了影響該結(jié)構(gòu)的因素以及改革開放以來居民收入資本化趨勢。另外汪紅駒、張慧蓮(2006)以最優(yōu)資產(chǎn)選擇模型為基礎探討了通貨膨脹、股市收益波動、消費者風險偏好對消費者儲蓄需求的影響。
近期,出現(xiàn)的一些有關于家庭金融資產(chǎn)投資的文獻有:邢大偉(2009)基于江蘇揚州的調(diào)查,對城鎮(zhèn)居民家庭資產(chǎn)選擇結(jié)構(gòu)的實證研究,文章分析了性別,年齡,學歷等方面對金融資產(chǎn)結(jié)構(gòu)和實物資產(chǎn)結(jié)構(gòu)的影響。陳國進,姚佳(2009)的基于美國SCF數(shù)據(jù)庫的風險性金融資產(chǎn)投資影響因素分析,文章采用美國消費者金融調(diào)查數(shù)據(jù)為樣本,建立回歸模型對影響因素進行分析。盧家昌,顧金宏(2009)基于江蘇南京的調(diào)查,對城鎮(zhèn)居民家庭資產(chǎn)選擇行為的影響因素分析,主要分析了家庭金融資產(chǎn)在貨幣類產(chǎn)品,證券類產(chǎn)品,保障類產(chǎn)品三個方面投資影響因素。
通過對已有文獻的梳理和歸納,并結(jié)合中國的國情,提出以下可能對中國城鎮(zhèn)家庭風險性金融投資產(chǎn)生影響的因素:
1.家庭財富和人口統(tǒng)計特征。Alessie和Soest曾經(jīng)對荷蘭家庭1993~1998的數(shù)據(jù)進行分析,運用Probit回歸模型和選擇模型發(fā)現(xiàn),年齡較大的戶主和比較富裕的戶主持有相對較高比例的風險性金融資產(chǎn),同時隨著家庭財富的增加,家庭持有風險性金融資產(chǎn)的比例也會增加。
2.住房投資。在我國,住房問題是長期以來絕大多數(shù)家庭都很關注的問題,房價的波動對中國家庭的投資行為也會產(chǎn)生一定的影響,而且由于房產(chǎn)具有消費與投資的雙重性質(zhì),還可能使中國家庭的投資呈現(xiàn)出隨生命周期變化的特征。
3.勞動收入。在中國,勞動收入是大多數(shù)家庭主要的經(jīng)濟來源,也是家庭可支配收入的重要組成部分。如果能夠從一定程度上增加家庭的勞動收入,那么一定程度上能提升家庭承擔金融投資風險的愿望。
4.投資偏好及預期。中國家庭的投資行為不僅會受到對宏觀經(jīng)濟預期的影響,投資偏好近年來作為行為金融研究的一部分也成為重要的研究因素。
問卷的概念量表在設計時,先是參照了已有的“個體投資者問卷調(diào)查”的成熟量表,然后根據(jù)研究假設中所提到的影響因素進行調(diào)整修改。問卷調(diào)查主要分兩個方面:首先是對于家庭結(jié)構(gòu)的調(diào)查,包括人口統(tǒng)計特征以及家庭人口的基本情況,如:戶主的性別,年齡,受教育程度,婚姻狀況以及職業(yè);其次是關于家庭金融資產(chǎn)總量和結(jié)構(gòu)的調(diào)查,如:家庭金融資產(chǎn),人均收入,存款等。同時,問卷還設置了“驗證題”來幫助剔除無效問卷。
調(diào)查采用隨機抽樣調(diào)查,在人口比較集中的各區(qū)街口商區(qū),單位門口進行發(fā)放,調(diào)查對象覆蓋了個體戶,金融從業(yè)者,公務員,醫(yī)生,教師等人群,篩選主要是刪除通過問卷中設置的“驗證題”來刪除明顯胡亂填寫的無效問卷以及存在異常值的問卷。而對于問卷中存在的數(shù)據(jù)缺失的情況,則主要是通過兩種途徑修改:對于第二部分數(shù)據(jù)缺失或缺失數(shù)據(jù)超過2項的,直接視為無效問卷;而對于缺失數(shù)據(jù)在兩項以內(nèi)的,則采用眾數(shù)填補的法則進行數(shù)據(jù)完善。最后,通過匯總統(tǒng)計,可以得到下列數(shù)據(jù);實際發(fā)放問卷數(shù)為500份,回收得到292份,回收率為58.4%,最后被認定的有效樣本數(shù)為224份,回收有效率為76.7%。
本文的抽樣調(diào)查樣本來源于城鎮(zhèn)家庭,以江蘇無錫的抽樣調(diào)查結(jié)果作為實證的數(shù)據(jù)來源。由于無錫地處長江三角洲經(jīng)濟較發(fā)達地區(qū),因此抽樣結(jié)果更具代表性和合理性。經(jīng)過SPSS16.0對抽樣數(shù)據(jù)的處理,得到如下對有效樣本的描述性統(tǒng)計:
表一 樣本的描述性統(tǒng)計
通過表一的樣本描述性統(tǒng)計不難看出,家庭中戶主的性別為男性的比例要高于女性,也就是說男性參與風險投資決策的比例要高于女性,而且戶主年齡在35~60歲之間的比例較高。本戶主學歷為??坪捅究频恼嫉搅藢⒔?0%,此外,從家庭財富規(guī)模的角度來看,家庭擁有金融資產(chǎn)總額在10萬到100萬之間的占了絕大多數(shù)。因此,總體看來,這樣的抽樣結(jié)果基本服從正態(tài)分布,這樣的結(jié)構(gòu)大體上也是合理的。
本文研究主要是分析人口統(tǒng)計特征,家庭財富,背景風險等方面因素對城鎮(zhèn)家庭風險性金融資產(chǎn)投資選擇的影響以及影響程度。其中人口統(tǒng)計特征包括戶主的性別,年齡,受教育程度,婚姻狀況以及職業(yè);背景風險包括勞動收入,房產(chǎn)投資,其余變量還包括投資偏好,投資預期。
表二 變量名、符號及說明表
1.模型一:Logistic回歸模型。本文首先對城鎮(zhèn)家庭風險性金融資產(chǎn)是否持有產(chǎn)生影響的因素的作用程度以及顯著性進行實證分析和檢驗。持有風險性金融資產(chǎn)的為“1”,而未持有風險性金融資產(chǎn)的為“0”。在借鑒同類文獻結(jié)論和研究成果的基礎上,假設城鎮(zhèn)家庭風險性金融資產(chǎn)持有受到家庭財富,戶主的性別,年齡,受教育程度,婚姻狀況以及職業(yè),勞動收入,房產(chǎn)投資,投資偏好,投資預期等因素的共同作用,即Y=φ(x1,x2,……xi)+ε。Y表示的是城鎮(zhèn)家庭風險性金融資產(chǎn)的選擇行為,xi是影響家庭風險性金融資產(chǎn)選擇的影響因素,ε為隨即干擾項。由于在實證當中,我們遇到的被解釋變量為虛擬變量,而非連續(xù)性變量,因此傳統(tǒng)的多元回歸模型并不適用,無法進行合理的假設檢驗。所以,本文選用Logistic回歸模型來進行實證研究。Logistic回歸模型是對二元因變量的概率建模,即當因變量是一個二元變量,只取0與1兩個值時,因變量取1的概率p就是要研究的對象。這里我們假設家庭參與投資風險性金融產(chǎn)品的概率為P,P的取值范圍在0-1之間,將P做logit變換,可以得到Logistic回歸模型:
然后,通過極大似然估計的迭代方法,可以找到系數(shù)的“最可能”的估計,并采用Wald檢驗對參數(shù)進行檢驗,當Wald值大者(或Sig值小者,小于0.05)顯著性高。
2.模型二:Tobit回歸模型。本文還將從微觀角度建立城鎮(zhèn)家庭風險性金融資產(chǎn)占總金融資產(chǎn)比重的模型。由于單個家庭風險性金融資產(chǎn)可能為零,也就是存在某個家庭不投資風險性金融產(chǎn)品,即風險性金融資產(chǎn)占總金融資產(chǎn)比重為零,而已它作為被解釋變量時,顯然經(jīng)典的線性模型已經(jīng)不再適用。根據(jù)國內(nèi)外相關文獻得知,在存在截斷數(shù)據(jù)的情況下,Tobit模型是較為有效的計量經(jīng)濟學模型。
根據(jù)家庭持有風險性金融資產(chǎn)是否為零,可以將樣本分為兩類。第一類是含有不為零的因變量和自變量;第二類是僅很有不為零的自變量,而因變量為零。這樣,我們可以把變量間線性關系表示為:Yi’=βXi+εt。
實際在性質(zhì)上,截斷的觀測值與未截斷的觀測值是存在顯著差異的,這是因為風險性金融資產(chǎn)占總金融資產(chǎn)比重為0,表示該家庭不投資于風險性金融產(chǎn)品,因此即使解釋變量變化很明顯,這些家庭投資與風險性金融產(chǎn)品的比重仍為,不會有任何變化。這樣,風險性金融資產(chǎn)占總金融資產(chǎn)比重在性質(zhì)上類似于離散型的虛擬變量。因此,我們通過建立風險性金融資產(chǎn)占總金融資產(chǎn)比重的Tobit模型,來刻畫解釋變量對被解釋變量之間的影響。
根據(jù)經(jīng)濟學理論背景,我們初步建立風險性金融資產(chǎn)比重的Tobit模型如下:
模型的設計基于理論與數(shù)據(jù)相結(jié)合的思路,一方面我們考慮到經(jīng)濟理論背景來選擇變量;另一方面我們又考慮了調(diào)查所得樣本中獲得的信息。
我們在估計模型時將采用國外相關研究中普遍使用的最小二乘估計,這也是人們所探索出的適用于估計Tobit模型的主要方法,其參數(shù)檢驗的適用方法為t檢驗,Sig值小者(小于0.05)顯著性高。
本文運用對江蘇省無錫地區(qū)的實地抽樣調(diào)查數(shù)據(jù),通過運用Logistic回歸模型和Tobit回歸模型研究家庭財富,人口統(tǒng)計特征,背景風險以及投資預期和偏好對家庭風險金融資產(chǎn)投資的影響,我們可以得到以下幾個重要的結(jié)論:首先,中國城鎮(zhèn)家庭風險性金融投資的財富效應十分顯著,隨著家庭財富的不斷增加,家庭投資風險性金融資產(chǎn)的概率不斷增加,投資于風險性金融資產(chǎn)的比例也不斷提高。其次,背景風險對中國家庭投資風險性金融產(chǎn)品的有較明顯的影響:中國家庭住房投資對參與風險性金融投資具有明顯的“擠出效應”,隨著住房投資的增加,家庭參與風險性金融投資的概率以及投資比例都有所下降;此外,隨著人均勞動收入的增加,家庭投資風險金融產(chǎn)品的比例就越高。第三,人口統(tǒng)計特征對中國家庭投資風險性金融產(chǎn)品的影響比較顯著:風險性金融投資的參與率隨著學歷的增加而增加,與年齡呈一條凸曲線,年輕家庭和老年家庭參與率較低,中年家庭參與率較高。從投資比例來看,高學歷的家庭投資比例較高,而自主經(jīng)營會對投資比例有擠出效應。第四,家庭的投資預期向好會對風險性金融投資比例產(chǎn)生正的影響,而投資偏好風險性資產(chǎn)則會對風險性金融投資的參與率產(chǎn)生積極的影響。
[1]陳國進,姚佳.中國居民就愛聽金融資產(chǎn)組合研究【J】.西部金融,2008(8),20-22.
[2]史代敏,宋艷 居民家庭金融資產(chǎn)選擇的實證那個研究【J】.統(tǒng)計研究,2005(10),45-50.
[3]3.劉洪玉,鄭思齊.住宅資產(chǎn):居民家庭資產(chǎn)組合中的重要角色【J】.經(jīng)濟與管理研究,2003(4),38-4.