陸海霞
(宿遷學院教師教育系,江蘇宿遷 223800)
Banach空間中含間斷項Sturm-Liouville問題的解
陸海霞
(宿遷學院教師教育系,江蘇宿遷 223800)
利用擬上下解方法和混合單調(diào)迭代法,研究了Banach空間中含間斷項的非線性Sturm-liouville問題解的存在唯一性,并給出逼近解迭代序列的誤差估計.
擬上下解;混合單調(diào)迭代方法;Sturm-Liouville問題
E為Banach空間,考察E中非線性Sturm-Liouville問題
解的存在性及迭代求法,其中Lu=(p(t)u′)′+q(t)u,θ是E中的零元,
這里fi(t,u):I×E→E(不假定連續(xù))(i=1,2).
Banach空間E中邊值問題解的存在性引起了許多讀者的研究興趣[16].文獻[1-3]采用了拓撲度方法,文獻[5-6]應用了錐理論和相關的不動點理論,并對非線性項f增加了緊型條件,文獻[1-6]中都要求非線性項f連續(xù).本文利用擬上下解方法與混合單調(diào)迭代法,去掉f的連續(xù)性條件,在更廣泛的條件下,得到Banach空間中Sturm-Liouville問題(1)解的存在唯一性,同時給出逼近解迭代序列及其誤差估計.
在C2[I,R]中只有零解.
設k(t,s)是相應于方程(3)的Green函數(shù),即
引理2.1[8]假設(H1)滿足,那么由(4)定義的Green函數(shù)k(t,s)具有以下性質:
(i)k(t,s)在[0,1]×[0,1]上連續(xù);
(ii)u(t)∈C2[0,1]單調(diào)增加,u(t)>0,t∈[0,1];
(iii)v(t)∈C2[0,1]單調(diào)減少,v(t)>0,t∈[0,1];
(iv)ω為正常數(shù).
引理2.2假設u∈C2[I,E]滿足:
則u(t)≥θ,?t∈I.
證明任取泛函φ∈P?(P的共軛錐),令y(t)=φ(x(t)),則y∈C2[I,R]滿足:
由文獻[9]知y(t)≥0,?t∈I.再由φ的任意性可知u(t)≥θ,?t∈I.
定義2.1若函數(shù)對v0,w0∈C1[I,E]滿足條件:
則稱v0,w0為Sturm-Liouville問題(1)的擬下、擬上解對.
若上定義中四個不等號均取等號,則稱v0,w0為Sturm-Liouville問題(1)的擬解對.
定義2.2設D?E.稱算子A:D×D→E是混合單調(diào)的,若對任給ui,vi∈D(i=1,2), u1≤u2,v2≤v1,都有A(u1,v1)≤A(u2,v2).
為了方便起見,列出以下假設:
(H2)由fi(t,u)確定的抽象算子Fiu=fi(t,u)(i=1,2)把u∈C[I,E]映為強可測函數(shù).
(H3)存在v0,w0是問題(1)的擬下,擬上解對,并且v0(t)≤w0(t),?t∈I.
(H4)f具有分解式(2),且Fiv0=fi(t,v0),Fiw0=fi(t,w0)∈L1[I,E].
(H5)存在常數(shù)M1,M2>0,對一切
例4.1考察二階非線性兩點邊值問題:
-u′′=f(t,u),t∈[0,1], (16) u(0)=u(1)=θ,
其中非線性項f滿足定理1條件.
由于p(t)≡1,a=c=1,b=d=0,經(jīng)過計算可得相應齊次邊值問題的Green函數(shù)為:
當非線性項f連續(xù)時,問題(16)已被許多學者采用拓撲度及相關的不動點方法作過研究[13].該問題通常化為等價的Banach空間中的積分方程
來處理,其中k(t,s)為相應的Green函數(shù).由于在一般的Banach空間中,上述積分方程中相應的積分算子A不再具有緊性,為對算子A應用凝聚映象的拓撲度及相關的不動點方法,需對非線性項增加“緊型條件”(如文獻[6]).當非線性項f不連續(xù),上述文獻中的結論不再適用,而由本文結論可知,將(17)式定義的Green函數(shù)直接代入定理1結論即可得到問題(16)的迭代解.
[1]郭大鈞,孫經(jīng)先.抽象空間常微分方程[M].濟南:山東科學技術出版社,1989.
[2]Chandra J,Lakshm Ikantham V,Mitchell A R.Exitence of solutions of boundary value problems for nonlinear second-order systems in a Banach space[J].Nonlinear Anal.,1978,2(2):157-168.
[3]Guo Dajun,Lakshm Ikantham V.Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces[J].J.Math.Anal.Appl.,1988,129(1):211-222.
[4]魏雷,朱江.二階微分包含的邊值問題及其應用[J].純粹數(shù)學與應用數(shù)學,2007,23(1):75-82.
[5]崔玉軍,孫經(jīng)先.Banach空間中非線性Sturm-Liouville問題的解[J].系統(tǒng)科學與數(shù)學,2009,29(2):208-214.
[6]張玲忠,李永祥.緊型條件下Sturm-Liouville問題解的存在性[J].數(shù)學研究與評論,2007,27(4):854-858.
[7]Dunford N,Schwartz J T.Linear operators(Part I)[M].New York:Interscience Publishers,1958.
[8]孫經(jīng)先.非線性泛函分析及其應用[M].北京:科學出版社,2007.
[9]孫經(jīng)先,張國偉.奇異非線性Sturm-Liouville問題的正解[J].數(shù)學學報,2005,48(6):1095-1104.
Solutions of Sturm-Liouville problems with discontinuous terms in Banach spaces
Lu Haixia
(Department of Teachers Education,Suqian College,Suqian223800,China)
By using the method of quasi-upper and lower solutions and the mixed monotone iterative technique, the existence and unique solution of nonlinear Sturm-Liouville problems with discontinuous terms in Banach spaces are obtained.The error estimate of the iterative sequences of approximation solutions is given.
quasi-upper and lower solutions,mixed monotone iterative technique,Sturm-Liouville problems 2010 MSC:47H10,34B15
O175
A
1008-5513(2013)02-0125-07
10.3969/j.issn.1008-5513.2013.02.003
2011-08-05.
國家自然科學基金(10971179);宿遷學院科研基金(2011KY10).
陸海霞(1976-),碩士,講師,研究方向:非線性泛函分析.