王文俠,舒婷婷,李 靜,陳非洲
(1:中國科學(xué)院南京地理與湖泊研究所湖泊與環(huán)境國家重點(diǎn)實(shí)驗(yàn)室,南京 210008)
(2:中國科學(xué)院大學(xué),北京 100049)
淡水生態(tài)系統(tǒng)中,幽蚊幼蟲等無脊椎動(dòng)物不僅可以直接捕食浮游動(dòng)物枝角類,而且可以通過間接方式如釋放信息素對(duì)其產(chǎn)生影響[1-3].信息素自Karlson 等[4]研究以來得到廣泛關(guān)注,捕食者能通過信息素對(duì)被捕食者的形態(tài)、行為、生活史及生理等各方面產(chǎn)生影響[5].淡水枝角類溞(Daphnia)由于分布廣泛,易于培養(yǎng),且條件適宜時(shí)進(jìn)行孤雌生殖已成為研究捕食者信息素的模式動(dòng)物[6-7].研究發(fā)現(xiàn)溞在胚胎期第3 次脫膜后便有了感知信息素的能力并出現(xiàn)形態(tài)上的可塑性反應(yīng)[7].
溞在幽蚊幼蟲等無脊椎捕食者釋放的信息素刺激下產(chǎn)生不同的生活史變化[8-9].一方面捕食者信息素導(dǎo)致的可塑性反應(yīng)存在種的特異性,如相同實(shí)驗(yàn)條件下蚤狀溞(Daphnia pulex)體長無顯著變化,玫瑰溞(Daphnia rosea)體長顯著變長[10].另一方面對(duì)同一物種的研究也出現(xiàn)不同的結(jié)果[11-13].表型可塑性引起廣泛關(guān)注,不僅是因?yàn)樗鼈冊谏鷳B(tài)系統(tǒng)食物網(wǎng)中發(fā)揮重要的生態(tài)效應(yīng),而且它們會(huì)導(dǎo)致進(jìn)化的產(chǎn)生[14],為更好地了解物種進(jìn)化和群落演替提供理論支持.
幽蚊幼蟲是湖泊中重要的無脊椎動(dòng)物,在淡水湖泊上層食物網(wǎng)的能量轉(zhuǎn)換中起著關(guān)鍵性作用[15],它可以控制獵物的種類、豐度及空間分布[16-17].當(dāng)其密度達(dá)到0.4 只/L 時(shí),每天會(huì)消耗50%的浮游動(dòng)物生產(chǎn)量或13%的總浮游動(dòng)物生物量[18].由于幽蚊幼蟲口裂寬度有限,通常優(yōu)先捕食較小個(gè)體,大于其口裂寬度的獵物有更大的逃生機(jī)會(huì)[19].
同形溞(Daphnia similis)是淡水湖泊中常見的枝角類,是太湖等湖泊的春季優(yōu)勢種[20].本實(shí)驗(yàn)的主要目的是研究其在幽蚊幼蟲環(huán)境中生活史參數(shù)的變化,分析其對(duì)無脊椎動(dòng)物的反捕食策略及可能的適應(yīng)機(jī)制.
實(shí)驗(yàn)用同形溞和幽蚊幼蟲均取自太湖梅梁灣旁水泥池.幽蚊幼蟲選擇2 ~3 齡個(gè)體.同形溞分離出懷卵個(gè)體若干,置于燒杯中用培養(yǎng)液單克隆培養(yǎng),加入濃度為2×106cells/L 用BG-11 培養(yǎng)液培養(yǎng)的柵藻作為食物,單克隆培養(yǎng)至第3 代,挑選出生12 ~24 h 的個(gè)體90 只(平均體長0.73 mm).
本實(shí)驗(yàn)設(shè)3 個(gè)處理,每個(gè)處理3 個(gè)重復(fù),首先將90 只同形溞幼體隨機(jī)放入9 個(gè)500 ml 的燒杯中,每個(gè)燒杯放10 只.處理1(加幽蚊):燒杯中加入3 只幽蚊幼蟲,將其固定于直徑5 cm 的特制圓柱形網(wǎng)(孔徑約38 μm)內(nèi)部使其與同形溞分開,并用特制培養(yǎng)液培養(yǎng).處理2(加幽蚊培養(yǎng)液):燒杯中不加入幽蚊幼蟲,同形溞的培養(yǎng)液為實(shí)驗(yàn)前一天培養(yǎng)過幽蚊幼蟲的水,此水事先用孔徑約38 μm 的生物網(wǎng)過濾.處理3(對(duì)照):燒杯中不加幽蚊幼蟲,同形溞的培養(yǎng)液為特制培養(yǎng)液.為避免圓柱形網(wǎng)可能造成的干擾,每只燒杯均在相同的位置加入同樣的圓柱形網(wǎng).為避免自然水體中可能存在的信息物質(zhì),實(shí)驗(yàn)所用特制培養(yǎng)液為稀釋的 BG-11 培養(yǎng)液,主要離子濃度為:Na+34 μmol/L,Mg2+30 μmol/L,Ca2+26 μmol/L,NO3-34 μmol/L,30 μmol/L,Cl-52 μmol/L.為減少代謝廢物的干擾,每24 h 更換培養(yǎng)液.實(shí)驗(yàn)在室溫下進(jìn)行,于2011年8月12日開始,持續(xù)10 d.每24 h 測量同形溞體長并記錄懷卵和產(chǎn)仔狀況.
同形溞體長在顯微鏡下測量,文中圖形繪制使用Excel 2007.實(shí)驗(yàn)數(shù)據(jù)采用方差分析和最小顯著差法(LSD)多重比較分析并由SAS 軟件實(shí)現(xiàn).
實(shí)驗(yàn)階段同形溞個(gè)體無死亡,實(shí)驗(yàn)結(jié)束時(shí)加幽蚊和加幽蚊培養(yǎng)液處理同形溞的平均體長分別達(dá)到2.26 ±0.08 mm 和2.24 ±0.10 mm(圖1a).方差分析表明這兩個(gè)處理同形溞的平均體長無顯著差異,但都顯著大于對(duì)照(1.99 ±0.09 mm)(P <0.05).
第5 d 起各處理同形溞均開始產(chǎn)幼仔,第7 d 加幽蚊處理同形溞的平均產(chǎn)仔數(shù)達(dá)到最大值(13 只/雌體).加幽蚊處理平均產(chǎn)仔數(shù)除第5、第6 d 與對(duì)照無顯著差異外,其余4 d 顯著多于對(duì)照(P <0.05).加幽蚊培養(yǎng)液處理平均產(chǎn)仔數(shù)在第8、第9 d 顯著大于對(duì)照(P <0.05),其余時(shí)間與對(duì)照無顯著差異.加幽蚊處理平均產(chǎn)仔數(shù)第7、第9 d 顯著大于加幽蚊培養(yǎng)液處理(P <0.05),其余時(shí)間兩處理無顯著差異(圖1b).
圖1 不同處理同形溞平均體長(a)和平均產(chǎn)仔數(shù)(b)的變化Fig.1 Average body-length(a)and average number of offspring(b)of Daphnia similis in different treatments
實(shí)驗(yàn)期間加幽蚊處理同形溞的累積產(chǎn)仔數(shù)最多,達(dá)262 只;其次為加幽蚊培養(yǎng)液處理,達(dá)233 只;對(duì)照組的累積產(chǎn)仔數(shù)只有169 只.方差分析表明,加幽蚊與加幽蚊培養(yǎng)液處理同形溞累積產(chǎn)仔數(shù)無顯著差異,但都顯著大于對(duì)照組(P <0.05).
加幽蚊及加幽蚊培養(yǎng)液處理的同形溞平均體長顯著大于對(duì)照,說明幽蚊幼蟲釋放的信息素刺激了同形溞的生長,使其體長變長,從而減小了被幽蚊幼蟲捕食的風(fēng)險(xiǎn)[21].Dodson 等[22]研究表明,第四齡期幽蚊幼蟲捕食溞體長一般不超過1.30 mm,并且優(yōu)先捕食較小個(gè)體.Krylov[23]測量了幽蚊幼蟲對(duì)小個(gè)體溞(0.77 mm)和大個(gè)體溞(1.82 mm)的攻擊效率,發(fā)現(xiàn)幽蚊幼蟲對(duì)小個(gè)體溞的攻擊效率更高.在將大、小溞1∶1 混合時(shí),幽蚊幼蟲捕食小個(gè)體溞顯著多于大個(gè)體溞.雖然大個(gè)體溞與幽蚊幼蟲的偶遇率更大,但隨著溞體長的增大,幽蚊幼蟲對(duì)其攻擊效率變小[24-25].
平均產(chǎn)仔數(shù)和累積產(chǎn)仔數(shù)是同形溞繁殖能力大小的標(biāo)志.實(shí)驗(yàn)結(jié)果表明在幽蚊幼蟲信息素作用下同形溞的繁殖能力顯著增強(qiáng).這說明同形溞感知捕食風(fēng)險(xiǎn)后可以通過自身繁殖機(jī)制的調(diào)節(jié)來增加后代數(shù)量,從而保持種群平衡,體現(xiàn)了同形溞的社會(huì)性[26].
由于較多的能量能保證體長增長和繁殖能力增強(qiáng),所以同形溞在感知捕食風(fēng)險(xiǎn)后將攝取更多食物.而在自然條件下覓食活動(dòng)的增加意味著同形溞將面對(duì)更大的被捕食風(fēng)險(xiǎn)[27].事實(shí)上,由于隨著行為活動(dòng)的增加,攝入的能量和被捕食的風(fēng)險(xiǎn)同時(shí)增加,所以被捕食者經(jīng)常面對(duì)攝食獲能與存活間的行為導(dǎo)向型權(quán)衡(behavioral mediated trade-offs)[28].環(huán)境中的激素水平可增強(qiáng)同形溞的食欲和生理機(jī)能,使其有更高的代謝率從而促進(jìn)其生長和繁殖[29],但這種促進(jìn)作用是有一定限度的[30].而溞類由行為活動(dòng)帶來的風(fēng)險(xiǎn)可以通過垂直遷移而減弱[31].所以同形溞感知捕食風(fēng)險(xiǎn)后將用于生長、繁殖及行為活動(dòng)等的能量進(jìn)行權(quán)衡和再分配[32]形成獨(dú)特的反捕食策略.從個(gè)體角度可以降低其被捕食的風(fēng)險(xiǎn),維持其生長繁殖;從種群角度來講可以增加后代數(shù)量,維持種群平衡;從群落與生態(tài)系統(tǒng)角度,可以保證各營養(yǎng)級(jí)間的平衡,維持生態(tài)系統(tǒng)結(jié)構(gòu)和功能[33].
對(duì)同形溞體長和產(chǎn)仔數(shù)據(jù)分析可知,培養(yǎng)過幽蚊幼蟲的過濾水與存在幽蚊幼蟲的水引起的效果一致但程度減弱,這可能與幽蚊幼蟲產(chǎn)生的信息素具有一定的揮發(fā)性有關(guān)[34].湖泊生態(tài)系統(tǒng)中脊椎和無脊椎捕食者同時(shí)存在,兩者信息素對(duì)溞生活史參數(shù)影響不同[35].一般來說,脊椎捕食者信息素使溞的體長變小,初次產(chǎn)仔時(shí)間縮短[36-37].溞的生活史參數(shù)取決于起主導(dǎo)作用的捕食者[2,38].對(duì)俄羅斯Maly Okunenok 湖的野外研究發(fā)現(xiàn),當(dāng)脊椎捕食者數(shù)量減少而無脊椎捕食者數(shù)量增多時(shí)溞的平均體長顯著變長[23].
作為研究捕食關(guān)系的模式動(dòng)物,幽蚊幼蟲-溞得到廣泛研究,多數(shù)結(jié)果一致,溞可以通過增加頸齒數(shù)量[39-40]、改變身體彎曲度等形態(tài)變化[41],垂直遷移、躲避信息素濃度高的區(qū)域等行為變化[42-44]和增大體長、推遲初次繁殖時(shí)間等生活史變化[6,21]來降低被幽蚊幼蟲捕食的危險(xiǎn).但其他研究出現(xiàn)不同的結(jié)果[37].溞的生活史變化是其在捕食者信息素作用下產(chǎn)生的最顯著反應(yīng),對(duì)其分析將有助于了解溞反捕食的表型可塑性,進(jìn)而更好地了解其對(duì)整個(gè)湖泊生態(tài)系統(tǒng)的影響.
首先,不同物種適應(yīng)環(huán)境能力的差異可造成不同的表型可塑性,溞生活史的可塑性反應(yīng)受其遺傳基因的控制[45].不同溞本身的體長差異會(huì)對(duì)其表型可塑性造成很大影響,如蚤狀溞體長通常比玫瑰溞體長大,條件相同時(shí)在幽蚊幼蟲信息素刺激下玫瑰溞體長顯著變長而蚤狀溞體長并無顯著變化[10].此外不同物種習(xí)性及晝夜垂直遷移模式的不同會(huì)造成其與捕食者偶遇率不同,從而產(chǎn)生不同的表型可塑性[40].其次,同一物種當(dāng)自身體長或處理時(shí)間不同時(shí)表型可塑性不同,如用幽蚊幼蟲信息素分別處理剛出生和出生72 h 的蚤狀溞其初次繁殖時(shí)間分別比對(duì)照推遲1.2 d 和1.7 d[46].對(duì)前五齡期盔形溞(Daphnia galeata)用幽蚊幼蟲信息素處理時(shí)其體長顯著變長[21],而對(duì)第六齡期的盔形溞處理時(shí)其體長無顯著變化[47-48].原因是溞在不同階段對(duì)捕食者信息素的反應(yīng)不同.最后,溞密度[49]及食物質(zhì)量和濃度[50-51]對(duì)其本身生長和繁殖有影響,因此它們會(huì)使溞產(chǎn)生不同的表型可塑性反應(yīng).
雖然不同物種或不同生境下表型可塑性反應(yīng)不同,但被捕食者所做出的決策并不是隨機(jī)和盲目的,而是針對(duì)捕食者、環(huán)境及自身機(jī)能狀況制定的最佳反捕食策略.同形溞在幽蚊幼蟲信息素的作用下產(chǎn)生反捕食的表型可塑性,當(dāng)此可塑性變化適應(yīng)環(huán)境時(shí)便通過自然選擇作用得以積累.這樣一系列細(xì)微、連續(xù)的有利變異由于母體效應(yīng)得以延續(xù),逐漸提高后代的生存能力,所以說表型可塑性不僅會(huì)導(dǎo)致進(jìn)化而且會(huì)決定進(jìn)化的方向[14].
致謝:感謝于謹(jǐn)磊、姬婭嬋、吳虹飛在實(shí)驗(yàn)過程中給予的幫助,感謝審稿人的寶貴意見.
[1]Br?nmark C,Hansson LA.Chemical communication in aquatic systems:an introduction.Oikos,2000,88(1):103-109.
[2]Stibor H,Lampert W.Components of additive variance in life-history traits of Daphnia hyalina:seasonal differences in the response to predator signals.Oikos,2000,88(1):129-138.
[3]王松波,謝 平,朱龍喜.養(yǎng)殖水體中的微型裸腹溞對(duì)高濃度魚類化學(xué)信息素的反應(yīng):以生命表研究為例.水生生物學(xué)報(bào),2008,32(6):868-873.
[4]Karlson P,Lüscher M.“Pheromones”:a new term for a class of biologically active substances.Nature,1959,183:55-56.
[5]Kusch J.Behavioural and morphological changes in ciliates induced by the predator Amoeba proteus.Oecologia,1993,96:354-359.
[6]Weetman D,Atkinson D.Antipredator reaction norms for life history traits in Daphnia pulex:dependence on temperature and food.Oikos,2002,98(2):299-307.
[7]De Meester L.Neutral markers,ecologically relevant traits,and the structure of genetic variation in Daphnia.Aquatic Ecology,1997,31:79-87.
[8]Zadereev YS.Maternal effects,conspecific chemical cues,and switching from parthenogenesis to gametogenesis in the cladoceran Moina macrocopa.Aquatic Ecology,2003,37:251-255.
[9]柯志新,黃良民.溞類(Daphnia)反捕食的表型可塑性及其研究進(jìn)展.湖泊科學(xué),2009,21(6):758-767.
[10]Sell AF.Morphological defenses induced in situ by the invertebrate predator Chaoborus:comparison of responses between Daphnia pulex and D.rosea.Oecologia,2000,125:150-160.
[11]Tollrian R.Chaoborus crystallinus predation on Daphnia pulex:can induced morphological changes balance effects of body size on vulnerability?Oecologia,1995,101:151-155.
[12]Vuorinen L,Ketola M,Walls M.Defensive spine formation in Daphnia pulex Leydig and induction by Chaoborus crystallinus De Geer.Limnology and Oceanography,1989,34(1):245-248.
[13]Walls M,Caswell H,Ketola M.Demographic costs of Chaoborus-induced defenses in Daphnia pulex:a sensitivity analysis.Oecologia,1991,87:43-50.
[14]Price TD,Qvarnstr?m A,Irwin DE.The role of phenotypic plasticity in driving genetic evolution.Proceedings of the Royal Society B,2003,270:1433-1440.
[15]Moore MV,Yan ND,Pawson T.Omnivory of the larval phantom midge(Chaoborus spp.)and its potential significance for freshwater planktonic food webs.Canadian Journal of Zoology,1994,72(11):2055-2065.
[16]Yan ND,Keller W,Maclsaac HJ et al.Regulation of zooplankton community structure of an acidified lake by Chaoborus.Ecological Applications,1991,1(1):52-65.
[17]Riessen HP,Sommerville JW,Chiappari C et al.Chaoborus predation,prey vulnerability,and their effect in zooplankton communities.Canadian Journal of Fisheries and Aquatic Sciences,1988,45(11):1912-1920.
[18]Kajak Z,Ranke-Rybickova B.Feeding and production efficiency of Chaoborus flavicans (Meigen)(Diptera,Culicidae)larvae in eutrophic and dystrophic lakes.Hydrobiologia,1970,17:225-232.
[19]Gliwicz ZM,Umana G.Cladoceran body size and vulnerability to copepod predation.Limnology and Oceanography,1994,39:419-424.
[20]李 靜,陳非洲.太湖夏秋季大型枝角類(Daphnia)種群消失的初步分析.湖泊科學(xué),2010,22(4):552-556.
[21]Weber A,Declerck S.Phenotypic plasticity of Daphnia life history traits in response to kairomones:genetic variability and evolutionary potential.Hydrobiologia,1997,360:89-99.
[22]Dodson SI.Zooplankton competition and predation:an experimental test of the size-efficiency hypothesis.Ecology,1974,55:605-613.
[23]Krylov PI.Density-dependent predation of Chaoborus flavicans on Daphnia longispina in a small lake:the effect of prey size.Hydrobiologia,1992,239:131-140.
[24]Swift MC,F(xiàn)edorenko AY.Some aspects of prey capture by Chaoborus larvae.Limnology and Oceanography,1975,18:795-798.
[25]Pastorok RA.Selection of prey by Chaoborus larvae:a review and new evidence for behavioral flexibility.Evolution and E-cology of Zooplankton Communities,1980,3:538-554.
[26]Thomson RL,F(xiàn)orsman JT,M?nkk?nen M et al.Risk taking in natural predation risk gradients:support for risk allocation from breeding pied flycatchers.Animal Behaviour,2011,82:1443-1447.
[27]Hanazato T.Anthropogenic chemicals(insecticides)disturb natural organic chemical communication in the plankton community.Environmental Pollution,1999,105:137-142.
[28]Biro PA,Abrahams MV,Post JR et al.Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates.Journal of Animal Ecology,2006,75:1165-1171.
[29]Pestana JLT,Loureiro S,Baird DJ et al.Fear and loathing in the benthos:Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk.Aquatic Toxicology,2009,93:138-149.
[30]Bettridge C,Lehmann J,Dunbar RIM.Trade-offs between time,predation risk and life history,and their implications for biogeography:A systems modelling approach with a primate case study.Ecological Modelling,2010,221(5):777-790.
[31]Peacor SD,Pangle KL,Vanderploeg HA.Behavioral response of Lake Michigan Daphnia mendotae to Mysis relicta.Journal of Great Lakes Research,2005,31:144-154.
[32]Taylor BE,Gabriel W.To grow or not to grow:optimal resource allocation for Daphnia.The American Naturalist,1992,139:258-266.
[33]Garay-Narváez L,Ramos-Jiliberto R.Induced defenses within food webs:The role of community trade-offs,delayed responses,and defense specificity.Ecological Complexity,2009,6:383-391.
[34]Lass S,Spaak P.Chemically induced anti-predator defences in plankton:a review.Hydrobiologia,2003,491:221-239.
[35]Riessen HP.Predator-induced life history shifts in Daphnia:a synthesis of studies using meta-analysis.Canadian Journal of Fisheries and Aquatic Sciences,1999,56:2487-2494.
[36]Reede T.Effects of neonate size and food concentration on the life history responses of a clone of the hybrid Daphnia hyalina×galeata to fish kairomones.Freshwater Biology,1997,37:389-396.
[37]Spaak P,Vanoverbeke J,Boersma M.Predator-induced life-history changes and the coexistence of five taxa in a Daphnia species complex.Oikos,2000,89:164-174.
[38]Stibor H.Predator induced life-history shifts in a freshwater cladocera.Oecologia,1992,92:162-165.
[39]Repka S,Pihlajamaa K.Predator-induced phenotypic plasticity in Daphnia pulex:uncoupling morphological defenses and life history shifts.Hydrobiologia,1996,339:67-71.
[40]Mirza RS,Pyle GG.Waterborne metals impair inducible defences in Daphnia pulex:morphology,life-history traits and encounters with predators.Freshwater Biology,2008,54:1016-1027.
[41]Weber A,Vesela S.Optimising survival under predation:chemical cues modify curvature in Daphnia galeata.Aquatic E-cology,2002,36:519-527.
[42]Szulkin M,Dawidowicz P,Dodson SI.Behavioural uniformity as a response to cues of predation risk.Animal Behaviour,2006,71:1013-1019.
[43]De Meester L,Cousyn C.The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones:the effect of exposure time.Hydrobiologia,1997,360:169-175.
[44]Michels E,De Meester L.Inter-clonal variation in phototactic behaviour and key life-history traits in a metapopulation of the cyclical parthenogen Daphnia ambigua:the effect of fish kairomones.Hydrobiologia,2004,522:221-233.
[45]Lass S,Vos M,Wolinska J et al.Hatching with the enemy:Daphnia diapausing eggs hatch in the presence of fish kairomones.Chemoecology,2005,15:7-12.
[46]Gorur G,Lomonaco C,Mackenzie A.Phenotypic plasticity in host-plant specialisation in Aphis fabae.Ecological Entomology,2005,30(6):657-664.
[47]Riessen HP,Sprules WG.Demographic costs of antipredator defenses in Daphnia pulex.Ecology,1990,71(4):1536-1546.
[48]Tollrian R.Predator-induced morphological defences:costs,life history shifts,and maternal effects in Daphnia pulex.E-cology,1995,76:1691-1705.
[49]Jeschke JM,Tollrian R.Density-dependent effects of prey defenses.Oecologia,2000,123:391-396.
[50]Gliwicz ZM,Maszczyk P.Daphnia growth is hindered by chemical information on predation risk at high but not at low food levels.Oecologia,2007,150:706-715.
[51]S'lusarczyk M.Food threshold for diapause in Daphnia under the threat of fish predation.Ecology,2001,82(4):1089-1096.