亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        四足機器人的爬-站運動模式轉(zhuǎn)換研究*

        2013-05-14 22:38:20周坤玲張秀麗龔加慶
        機電工程 2013年1期

        周坤玲,張秀麗,龔加慶

        (北京交通大學 機械與電子控制工程學院,北京 100044)

        0 引 言

        多肢動物的運動模式轉(zhuǎn)換在自然界中非常常見,如貓、狗等四足動物在面對一些突發(fā)情況時,會即刻從四足爬行姿態(tài)轉(zhuǎn)換成雙足站立狀態(tài),以保證自身安全或完成目標動作。從人類行走功能的進化歷程來看,從四足爬行到雙足行走,經(jīng)歷了爬-站轉(zhuǎn)換這一至關(guān)重要的過渡階段。通過研究四足機器人的爬-站運動模式轉(zhuǎn)換不僅可以豐富機器人的運動方式,拓展機器人對環(huán)境的適應(yīng)范圍,而且對于探索人類直立行走的生物學機理同樣具有一定的啟發(fā)意義。

        對于足式機器人爬-站轉(zhuǎn)換的研究最早見于1995年東京大學研制的雙足機器人“Hanzou”[1]。Hanzou是一個具有16個自由度的仿人機器人,每條腿有4個自由度[2]。它通過改變踝關(guān)節(jié)和膝關(guān)節(jié)的角度來調(diào)整機器人的重心位置,通過手臂和腿的協(xié)調(diào)運動改變機器人的加速度,以實現(xiàn)俯臥、仰臥和側(cè)臥3種情況下的爬-站運動模式轉(zhuǎn)換。之后,法國凡爾賽大學[3]、日本產(chǎn)業(yè)技術(shù)綜合研究所、京都大學、中國的西南大學、韓國科技院[4-6]等機構(gòu)均進行過四足-雙足爬站運動模式轉(zhuǎn)換的研究和實驗。

        爬-站轉(zhuǎn)換涉及復雜的運動過程,而軌跡規(guī)劃是其中的關(guān)鍵技術(shù)之一。日本的HRP系列機器人[7-9]通過獨立調(diào)節(jié)機器人各關(guān)節(jié)變量,實現(xiàn)了基于位置模式的爬-站轉(zhuǎn)換軌跡規(guī)劃,國內(nèi)西南大學也進行過類似的研究[10]。這種方法的優(yōu)點是比較直觀,缺點是需要調(diào)節(jié)較多的參數(shù)。另一種方法是建立優(yōu)化目標函數(shù),對參數(shù)進行映射關(guān)聯(lián),通過調(diào)節(jié)少數(shù)幾個參數(shù)實現(xiàn)爬-站轉(zhuǎn)換軌跡規(guī)劃,如京都大學[11-12]和索尼愛立信公司[13]針對雙足機器人所做的研究。這種方法的優(yōu)點是需要調(diào)節(jié)的參數(shù)少,不足之處是建立合理的目標函數(shù)相對困難,特別是對于變量之間還存在耦合的優(yōu)化問題。

        爬-站轉(zhuǎn)換需要從四足支撐狀態(tài)轉(zhuǎn)換到雙足支撐狀態(tài),在這個過程中由于支撐域減小,機器人極易出現(xiàn)失穩(wěn)摔倒,因此轉(zhuǎn)換過程中的平衡控制其關(guān)鍵所在。實現(xiàn)平衡控制的方法可以分為動平衡模式和靜平衡模式兩種。靜態(tài)平衡控制一般應(yīng)用于低速輕載情況下,一般采用CoM(center of mass)穩(wěn)定判據(jù),即將機器人重心控制在支撐域內(nèi);而動態(tài)平衡控制要考慮慣性力,一般采用ZMP(zero moment point)或CoP(center of pressure)作為判據(jù),二者在某些情況下是重合的。索尼公司研制的 SDR[14-16]機器人、本田公司研制的ASIMO系列機器人、法國研制的NAO機器人[17-18]和上海交通大學研制的機器人[19-20]等均采用 ZMP 判據(jù)處理爬-站運動模式轉(zhuǎn)換過程中的平衡控制。

        目前,實現(xiàn)爬-站轉(zhuǎn)換運動的機器人基本都是基于雙足仿人機器人結(jié)構(gòu),而在四足機器人中比較少見。本研究針對一款12自由度仿生四足機器人Babybot,規(guī)劃從四足站立狀態(tài)到雙足站立狀態(tài)的運動轉(zhuǎn)換過程,提出基于仿生和幾何作圖的軌跡規(guī)劃與平衡控制方法。

        1 四足機器人Babybot

        Babybot是一個具有12個自由度的四足機器人,如圖1所示。其軀干是剛性結(jié)構(gòu),每條腿有3個俯仰自由度,分別位于髖關(guān)節(jié)、膝關(guān)節(jié)和踝關(guān)節(jié)處。4條腿采用內(nèi)膝肘式鏡像關(guān)節(jié)配置模式,足底為平面。軀干長305 mm,寬320 mm,大腿長120 mm,小腿長135 mm,足長60 mm。

        圖1 Babybot四足機器人

        由于四足機器人爬-站轉(zhuǎn)換運動僅涉及側(cè)平面的運動,本研究將機器人Babybot簡化為平面內(nèi)的六桿五自由度機構(gòu)(小臂l1、大臂l2、軀干l3、大腿l4、小腿l5和足l6)。四足機器人坐標系如圖2所示,箭頭指向前進方向。

        圖2 四足機器人坐標系

        圖2中,∑0(O0,X0,Y0,Z0)為世界坐標系,依據(jù)D-H法建立各個連桿坐標系。關(guān)節(jié)轉(zhuǎn)角為θj(j=1,2,…,6),連桿長度為li,質(zhì)量為mi,桿件質(zhì)心坐標為(xi,yi)(i=1,2,…,6),足長為l6,機器人雙足站立時高度為h。

        2 爬-站轉(zhuǎn)換控制方法

        通過仿生方法研究人類的爬-站轉(zhuǎn)換運動規(guī)律,可以為四足機器人的爬-站轉(zhuǎn)換軌跡規(guī)劃提供設(shè)計依據(jù)。

        2.1 人類的爬-站轉(zhuǎn)換運動

        將人的軀體結(jié)構(gòu)簡化為平面六桿五自由度機構(gòu),即小臂、大臂、軀干、大腿、小腿和足六部分,肘關(guān)節(jié),肩關(guān)節(jié)、髖關(guān)節(jié)、膝關(guān)節(jié)和踝關(guān)節(jié)5個單自由度關(guān)節(jié)。用攝像機記錄一位成年女性從四肢觸地到雙足站立的爬-站轉(zhuǎn)換過程,提取運動過程中的6個關(guān)鍵幀,標記出關(guān)鍵幀中6根桿的位姿變化,其結(jié)果如圖3所示。

        記錄整個站立過程中5個關(guān)節(jié)角及腕關(guān)節(jié)(小臂與水平地面之間的夾角)隨時間的變化曲線如圖4所示。

        圖3 人從四肢支撐到雙足站立的過程

        圖4 關(guān)節(jié)角的變化曲線

        分析圖3和圖4,可以得到以下規(guī)律:

        (1)站立過程中,肘關(guān)節(jié)角θ2基本不變,手臂姿勢保持不變;

        (2)站立過程中,髖關(guān)節(jié)在豎直方向上有明顯位置變化,先下降后上升,髖關(guān)節(jié)角θ4逐漸增大;

        (3)在髖關(guān)節(jié)下降的過程中,肩關(guān)節(jié)角θ3逐漸減小至零,膝關(guān)節(jié)角θ5先減小后增大;

        (4)站立過程中,踝關(guān)節(jié)角θ6逐漸增大至90°。

        2.2 關(guān)節(jié)轉(zhuǎn)角的軌跡規(guī)劃

        針對爬-站運動轉(zhuǎn)換,四足機器人Babybot與人具有類似的簡化機構(gòu),因此,借鑒2.1節(jié)得出的關(guān)節(jié)變化規(guī)律,可規(guī)劃四足機器人Babybot爬-站運動模式轉(zhuǎn)換過程中各關(guān)節(jié)轉(zhuǎn)角的變化。本研究將機器人的爬-站運動模式轉(zhuǎn)換分為兩個步驟:

        (1)雙臂抬離地面,收至與軀干近似平行的位置,機器人由四足支撐轉(zhuǎn)換為雙足支撐;

        (2)提升身體重心,完成整個站立過程。設(shè)定當h滿足:(l3+l4+l5)×90%h(l3+l4+l5),則:機器人完成了爬-站運動模式轉(zhuǎn)換。

        2.2.1 前臂關(guān)節(jié)轉(zhuǎn)角軌跡規(guī)劃

        以∑(Of0,Xf0,Yf0)為參考坐標系,θ1是手與水平地面之間的夾角,不需要考慮。根據(jù)2.1節(jié)仿生學調(diào)查得出的規(guī)律,設(shè)θ2為定值,腕關(guān)節(jié)的位置軌跡為直線,即:

        其中:k1=(l4+l5)/l3。

        通過運動學逆解求肩關(guān)節(jié)轉(zhuǎn)角θ3:

        2.2.2 后腿關(guān)節(jié)轉(zhuǎn)角軌跡規(guī)劃

        以∑(Oh0,Xh0,Yh0)為參考坐標系,采用多變量目標函數(shù)尋優(yōu)方法,依據(jù)ZMP穩(wěn)定判據(jù)建立優(yōu)化目標函數(shù),以求解后腿的關(guān)節(jié)轉(zhuǎn)角θ4、θ5和θ6值。

        計算ZMP點位置坐標為:

        當機器人運動的速度和加速度較低時,接近靜態(tài)運動,公式(3)簡化為重心坐標計算公式:

        機器人四足支撐時,x向支撐邊界為xlim=[-l3,a/2],雙足支撐時,x向支撐邊界為xlim=[-a/2,a/2]。針對爬-站轉(zhuǎn)換的低速準靜態(tài)運動,機器人保持身體平衡的條件是:

        依據(jù)得出的規(guī)律,機器人進一步簡化為五桿四自由度機構(gòu)(手臂l1,2、軀干l3、大腿l4、小腿l5和足l6),則肩關(guān)節(jié)的運動軌跡為直線1(如圖5所示);當θ6=90°時,髖關(guān)節(jié)的運動軌跡為半圓弧線(如圖5所示)。

        坐標系∑f0相對于坐標系∑h0的轉(zhuǎn)換矩陣為:

        圖5 θ6=90°時的機器人位姿

        肩關(guān)節(jié)、肘關(guān)節(jié)、腕關(guān)節(jié)在坐標系∑f0中用xf i表示,在坐標系∑h0中用表示,則:

        肩關(guān)節(jié)和髖關(guān)節(jié)坐標滿足:

        給出的約束條件如下:

        (1)桿件l1、l2和l5在豎直方向上滿足:

        (2)肩關(guān)節(jié)的運動軌跡為水平直線,滿足:

        (3)髖關(guān)節(jié)的運動軌跡是以膝關(guān)節(jié)為圓心的圓弧線,滿足:

        建立目標函數(shù)為:

        聯(lián)立式(7~12),求得使 |Ghx|取得最小值時的θ4、θ5和θ6值。

        若不能在“θ6=90°”的條件下,得到滿足平衡條件的機器人姿態(tài),則調(diào)整θ6值,使小腿l5向后傾斜,即θ690°。θ6≠ 90°時姿態(tài)如圖6所示。肩關(guān)節(jié)的軌跡曲線仍為水平直線1,髖關(guān)節(jié)的軌跡曲線為虛線表示的新圓弧線。

        新圓弧線為:

        圖6 θ6≠ 90°時姿態(tài)

        聯(lián)立式(6~10、12~14),求使 ||Ghx取得最小值時的θ4、θ5和θ6值,得到滿足約束條件的機器人關(guān)鍵姿態(tài)。

        通過上述方法尋優(yōu)求解,可得到第1步調(diào)節(jié)所需的關(guān)節(jié)轉(zhuǎn)角軌跡。機器人雙臂抬離地面,收至與軀干近似平行的位置處,可完成四足支撐到雙足支撐的轉(zhuǎn)換。

        在第2步調(diào)節(jié)中,機器人手臂和軀干無相對運動(θ2=C1,θ3=C2),因此機器人可近一步簡化為四桿三自由度機構(gòu),如圖7所示。

        圖7 四桿三自由度機構(gòu)

        以肩關(guān)節(jié)為末端執(zhí)行器,運動軌跡為直線:

        其中:

        三自由度四桿機構(gòu)運動學逆解公式為:

        通過改變θ6的初始值,調(diào)節(jié)如圖7所示姿態(tài),聯(lián)立式(15~17)求得滿足目標函數(shù)式(12)的θ4、θ5和θ6值,以確定機器人在第2步調(diào)節(jié)中的關(guān)鍵姿態(tài)。

        重復上述過程,得到n個關(guān)鍵位姿:

        對θ11…θ1n,…,θ61…θ6n進行線性插值,實現(xiàn)相鄰兩個關(guān)鍵位姿之間的平穩(wěn)過渡,得到四足機器人爬-站轉(zhuǎn)換的關(guān)節(jié)轉(zhuǎn)角的變化曲線,如圖8所示。

        圖8 關(guān)節(jié)夾角變化曲線

        3 動力學仿真

        本研究利用ADAMS軟件對Babybot機器人爬-站運動模式轉(zhuǎn)換進行了動力學仿真研究。筆者設(shè)置足端與地面之間的接觸碰撞模型中各參數(shù)值,以如圖8所示6個關(guān)節(jié)轉(zhuǎn)角的變化曲線作為對應(yīng)關(guān)節(jié)的驅(qū)動函數(shù),在動力學仿真中,Babybot用時9.5 s完成了爬-站運動模式的平滑轉(zhuǎn)換,其結(jié)果如圖9所示。

        軀干質(zhì)心的位移曲線如圖10所示;在X方向上的速度和加速度曲線如圖11所示。本研究通過上述曲線來評價Babybot機器人爬-站運動模式轉(zhuǎn)換過程的穩(wěn)定性。

        圖10中,兩條虛線所夾范圍是雙足支撐穩(wěn)定域,從0到右邊虛線的范圍是四足支撐的穩(wěn)定域。在圓圈所示位置,機器人雙臂抬離地面,由四足支撐轉(zhuǎn)換為雙足支撐,完成第1步調(diào)節(jié)。在第2步調(diào)節(jié)的過程中,軀干中心迅速提升,在X方向的位移波動處于支撐域內(nèi),表明機器人的運動過程是穩(wěn)定的。

        圖11中,手臂抬離地面之前(點劃線左邊),機器人軀干迅速下降導致軀干質(zhì)心的速度變化較大,但在該過程中,機器人處于四足支撐階段,穩(wěn)定域很大,結(jié)合圖10可知,機器人的運動是穩(wěn)定的。機器人雙臂抬離地面造成軀干質(zhì)心的加速度波動較劇烈,運動規(guī)劃過程中,本研究采用了以支撐域為優(yōu)化目標的規(guī)劃方法,可使機器人獲得最大穩(wěn)定域,因此,機器人雖然出現(xiàn)輕微晃動,但是沒有失穩(wěn)。

        圖9 Babybot爬-站轉(zhuǎn)換動力學仿真

        圖10 軀干質(zhì)心位移曲線

        圖11 軀干質(zhì)心在X方向的速度、加速度曲線

        4 結(jié)束語

        本研究首先通過仿生學方法研究了人的爬-站轉(zhuǎn)換運動,并從中提取出了一般規(guī)律,用于四足機器人Babybot爬-站運動模式轉(zhuǎn)換過程的設(shè)計。將四足機器人簡化為平面六桿五自由度機構(gòu),將幾何作圖法和基于ZMP穩(wěn)定判據(jù)的優(yōu)化設(shè)計方法相結(jié)合,進行了四足機器人的多自由度運動軌跡規(guī)劃,以實現(xiàn)四足機器人的爬-站運動模式轉(zhuǎn)換。在動力學仿真中,本研究所用的12自由度仿生四足機器人Babybot用時9.5 s完成了爬-站模式轉(zhuǎn)換,驗證了所提出的方法的有效性。

        本研究提出的四足機器人爬站轉(zhuǎn)換方法不僅可以用于豐富機器人的運動功能,拓展機器人對環(huán)境的適應(yīng)范圍,而且對于探索人類直立行走的生物學機理具有一定啟發(fā)意義。

        ):

        [1]INABA M,KANEHIRO F.Two-armed bipedal robot that can walk,roll over and stand up[C]//Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems.Published by the IEEE Computer Society,1995:297-302.

        [2]KANEHIRO F,INABA M.Development of a two-armed bipedal robot that can walk and carry objects[C]//Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems,1996:23-28.

        [3]GOUAILLIER D,HUGEL V,BLAZEVIC P,et al.The NAO humanoid:a combination of performance and affordability[J].Computing Research Repository,2008(1):1-10.

        [4]KIM J H,OH J H.Walking control of the humanoid platform KHR-1 based on torque feedback control[C]//Proceedings of the 2004 IEEE/ICRA International Conference on Robotics & Automation,2004:623-628.

        [5]KIM J Y,PARK I W.System design and dynamic walking of humanoid robot KHR-2[C]//Proceedings of the 2005 IEEE/ICRA International Conference on Robotics&Automation,2005:1431-1436.

        [6]PARK I W,KIM J Y.mechanical design of humanoid robot platform KHR-3[C]//Proceedingsofthe 2005 5th IEEE-RAS international Conference on Humanoid Robots,2005:321-326.

        [7]KANEHIRO F,KANEKO K.The first humanoid robot that has the same size as a human and that can lie down and get up[C]//Proceedings of the 2003 IEEE International Conference on Robotics & Automation,2003:1633-1639.

        [8]KANEHIRO F,HIRUKAWA H.Locomotion planning of humanoid robots to pass through narrow spaces[C]//Proceedings of the 2004 IEEE International Conference on Robotics & Automation,2004:604-609.

        [9]TANIE K.Humanoid robot and its Application Possibility[C]//Proceedings of the 2003 IEEE International Conference on Robotics,Intelligent System and Signal Processing,2003.

        [10]蒲昌玖,王宇俊.一種雙足機器人穩(wěn)定起立方法研究[J].西南大學學報:自然科學版,2008,30(11):125-130.

        [11]AOI S,EGI Y.Experimental verification of gait transition from quadrupedal to bipedal locomotion of an oscillator-driven biped robot[C]//Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,2008:1115-1120.

        [12]AOI S,TSUCHIYA K.Transition from quadrupedal to bipedal locomotion[C]//Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:3419-3424.

        [13]ASA K,ISHIMURA K.Behavior transition between biped and quadruped walking by using bifurcation[J].Robotics and Autonomous Systems,2009,57(2):155-160.

        [14]KUROKI Y,F(xiàn)UJITAL M.A small biped entertainment robot exploring attractive applications[C]//Proceedings of the 2003 IEEE International Conference on Robotics&Automation,2003:471-476.

        [15]ISHIDA T,KUROKI Y.Development of mechanical system for a small biped entertainment robot[C]//Proceedings of the 2003 IEEE International Workshop on Robot and Human Interactive Communication,2003:297-302.

        [16]FUJITA M,KUROKI Y.A small humanoid robot sdr-4x for entertainment applications[C]//Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM 2003),2003:938-943.

        [17]GRAF C,HARTL A.A robust closed-loop gait for the standard platform league humanoid[C]//Proceedings of the 4th workshop on humanoid soccer robots.A workshop of the 2009 IEEE-RAS International Conference on Humanoid Robots,2009:30-37.

        [18]GRAF C,ROFER T.A Closed-loop 3D-LIPM Gait for the RoboCup Standard Platform League Humanoid[C].In Proceedings of The Fourth Workshop on Humanoid Soccer Robots,2010.

        [19]劉成剛,蘇劍波.持續(xù)擾動下的仿人機器人站立平衡控制[C]//中國自動化學會控制理論專業(yè)委員會B卷,2011:3506-3511.

        [20]XING Deng-ping,SU Jian-bo.Walking controllers under perturbations[C]//2011 IEEE International Conference on System,Man and Cybernetics,2011:1514-1519.

        亚洲精品无码永久中文字幕| 高清少妇二区三区视频在线观看| 亚洲熟女天堂av一区二区三区| 国产精品女同久久免费观看| 久久99热精品免费观看麻豆| 精品日韩在线观看视频| 女人天堂av人禽交在线观看| 亚洲夜夜性无码| 亚洲爆乳精品无码一区二区| 天天影视色香欲综合久久| 亚洲AV无码精品色欲av| 美女被射视频在线观看91| 性色国产成人久久久精品二区三区 | 99国产精品久久久蜜芽| 国内精品久久久久影院一蜜桃 | 国产成人精品999在线观看| 国产精品密播放国产免费看| 国产美女裸身网站免费观看视频| 手机在线免费看av网站| 亚州无吗一区二区三区| 亚洲av中文无码乱人伦在线视色| 亚洲午夜福利在线视频| 又大又粗弄得我出好多水| 精品亚洲少妇一区二区三区| 最新国产主播一区二区| 亚洲一区亚洲二区视频在线| 欧美肥妇毛多水多bbxx水蜜桃 | 车上震动a级作爱视频| 亚洲嫩模一区二区三区视频| 久久熟女少妇一区二区三区| 亚洲一区二区国产激情| 一区二区三区中文字幕| 久久日本三级韩国三级| 欧美性一区| 蜜桃av一区二区三区| 亚洲视频在线免费不卡| av中文字幕潮喷人妻系列| 久久久久亚洲av无码专区桃色| 国产午夜无码精品免费看动漫| 一本大道加勒比东京热| 久久精品国产色蜜蜜麻豆国语版|