江 淦,徐志偉
·臨床研究·
不同的體外循環(huán)溫度和方法對嬰兒外周血CD34+/c-kit+干細(xì)胞表達(dá)的影響
江 淦,徐志偉
目的研究淺低溫(MH)、深低溫停循環(huán)(DHCA)和深低溫停循環(huán)加選擇性腦灌注(DHCA+SCP)三種轉(zhuǎn)流方法對先天性心臟病嬰兒外周血CD34+/c-kit+干細(xì)胞表達(dá)變化的影響。方法33例先天性心臟病手術(shù)患者分為:10例MH組,10例DHCA組和13例DHCA+SCP組。分別于轉(zhuǎn)流前(T0)、轉(zhuǎn)流結(jié)束后12~24 h(T1)、轉(zhuǎn)流結(jié)束后4~5 d(T2)測定外周動(dòng)脈血中CD34+/c-kit+干細(xì)胞含量變化。結(jié)果T0:MH組、DHCA組和DHCA+SCP組患者外周血CD34+/c-kit+干細(xì)胞含量無顯著差異(P>0.05);T1:DHCA組CD34+/c-kit+干細(xì)胞含量顯著高于MH組和DHCA+SCP組(P<0.01);T2:DHCA組CD34+/ckit+干細(xì)胞含量也顯著高于MH組以及DHCA+SCP組(P<0.01)。結(jié)論DHCA方法與MH和DHCA+SCP方法相比會導(dǎo)致外周血CD34+/c-kit+干細(xì)胞表達(dá)的升高,可能存在不同程度骨髓向外周血?jiǎng)訂T修復(fù),為提高臨床治療效果提供新思路。
淺低溫;深低溫停循環(huán);選擇性腦灌注技術(shù);外周血CD34+/c-kit+干細(xì)胞;嬰兒
隨著外科手術(shù)和體外循環(huán)以及術(shù)后監(jiān)護(hù)技術(shù)的進(jìn)步,小兒心外科手術(shù)的預(yù)后得到明顯改善。但是嬰幼兒心內(nèi)直視手術(shù)后的重要臟器并發(fā)癥的發(fā)生率仍然較高,如:神經(jīng)系統(tǒng)功能障礙發(fā)生率高達(dá)10%~ 25%、以及肺、腎、全身炎癥反應(yīng)等[1-5]。深低溫停循環(huán)(deep hypothermia circulatory arrest,DHCA)加選擇性腦灌注(selective cerebral perfusion,SCP)由于手術(shù)視野無血、操作方便是目前修補(bǔ)復(fù)雜先天性心臟畸形的常用體外循環(huán)(extracorporeal circulation,ECC)方法。雖然證實(shí)在低溫下對神經(jīng)系統(tǒng)等器官有保護(hù)效果,但一定時(shí)程的血流阻斷(如DHCA),仍然會引起腦缺血損傷[6-7]。
由于手術(shù)損傷造成的缺血、炎癥等會引起骨髓內(nèi)C-kit+細(xì)胞產(chǎn)生應(yīng)答向外周血?jiǎng)訂T[8-9],且大量研究表明骨髓動(dòng)員的內(nèi)皮祖細(xì)胞對各器官的損傷及缺血的修復(fù)過程也有密切聯(lián)系[10-12]。因此,本研究旨在通過比較淺低溫(mild hypothermia,MH)、DHCA和DHCA+SCP三種不同轉(zhuǎn)流方法對嬰兒外周血內(nèi)CD34+/c-kit+干細(xì)胞表達(dá)水平的影響,比較三種轉(zhuǎn)流術(shù)后的先心病嬰兒是否存在不同程度的骨髓向外周血?jiǎng)訂T修復(fù)的可能性,為將來提高臨床治療效果提供新思路。
1.1 研究對象 33例先天性心臟病嬰幼兒,男20例,女13例。年齡1~16個(gè)月,體重3~12 kg。分為MH組10例,DHCA組10例和DHCA+SCP組13例,(見表1)。本研究符合本院人體試驗(yàn)倫理委員會制定的倫理學(xué)標(biāo)準(zhǔn),所有入選病例均取得家屬的知情同意。
表1 各組患兒的年齡、體重與ECC時(shí)間(±s)
表1 各組患兒的年齡、體重與ECC時(shí)間(±s)
1.2 麻醉及ECC方法 均采用靜吸復(fù)合麻醉,經(jīng)口氣管插管。ECC預(yù)充液由勃脈力A、5%碳酸氫鈉、10%葡糖糖酸鈣、速尿、20%甘露醇、紅細(xì)胞懸液、20%人血白蛋白、甲潑尼龍、肝素、抗生素等組成。MH組以100 ml/(kg·min)的灌注流量,淺低溫(34℃)轉(zhuǎn)流后復(fù)溫;DHCA及DHCA+SCP組的ECC降溫采用體表及快速轉(zhuǎn)流降溫技術(shù),通過調(diào)節(jié)流量與水溫控制降溫速度,降至肛溫18~20℃,鼓膜溫16~18℃,DHCA組停止ECC;DHCA+SCP組將主動(dòng)脈插管移至無名動(dòng)脈內(nèi),灌注流量15~20 ml/(kg·min),主動(dòng)脈手術(shù)修補(bǔ)結(jié)束后將插管退回主動(dòng)脈,復(fù)溫排氣后恢復(fù)ECC。血?dú)夤芾矸绞讲捎忙?穩(wěn)態(tài)及pH穩(wěn)態(tài)相結(jié)合的方式,轉(zhuǎn)流結(jié)束后三組均作改良超濾。
1.3 樣本采集和測定 分別于ECC前(T0),ECC結(jié)束后12~24 h(T1),ECC結(jié)束后4~5 d(T2)三個(gè)時(shí)相點(diǎn)抽取外周動(dòng)脈血行流式細(xì)胞儀(Beckman公司)計(jì)數(shù)檢測。CD34-PE、CD117-APC抗體及溶血素(Beckman公司)。取試管2支分別加入500 μl外周血樣本,各加1支溶血素10 ml,充分混勻,室溫放置15~20 min,至懸液澄清,400 g離心3~5 min,棄上清,加入PBSA 2 ml混勻,400 g離心3~5 min,洗滌一次。棄上清,分別加入PBS 100 μl重懸細(xì)胞備用。在上述兩份已裂紅處理樣本中加入同型對照抗體及CD34、CD117抗體,充分混勻后室溫避光孵育20 min,反應(yīng)結(jié)束后各加入2 ml PBSA混勻,400 g離心3~5 min,洗滌一次。棄上清,加入適量PBSA混勻后上機(jī)檢測,先利用同型對照管調(diào)節(jié)流式細(xì)胞儀的電壓條件,再進(jìn)行測試管的檢測[13]。
1.4 統(tǒng)計(jì)學(xué)處理 采用SPSS 18.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì),實(shí)驗(yàn)結(jié)果均以±標(biāo)準(zhǔn)差(±s)表示。采用單因素方差分析(One-Way ANOVA)進(jìn)行統(tǒng)計(jì)學(xué)顯著性分析,P<0.05為有統(tǒng)計(jì)學(xué)差異。
2.1 T0 MH組,DHCA組和DHCA+SCP組患者的外周血CD34+/c-kit+干細(xì)胞含量分別為(1.71 ±0.10)個(gè)/1 000個(gè)裂紅細(xì)胞、(1.94±0.23)個(gè)/1 000個(gè)裂紅細(xì)胞和(1.79±0.12)個(gè)/1 000個(gè)裂紅細(xì)胞。結(jié)果表明三組患者外周血CD34+/c-kit+干細(xì)胞含量無顯著差異(P>0.05),見圖1。
圖1 T0外周血CD34+/c-kit+干細(xì)胞含量
2.2 T1 MH組,DHCA組和DHCA+SCP組患者的外周血CD34+/c-kit+干細(xì)胞含量分別為(1.51±0.31)個(gè)/1 000個(gè)裂紅細(xì)胞、(2.20±0.36)個(gè)/1 000個(gè)裂紅細(xì)胞和(1.45±0.14)個(gè)/1 000個(gè)裂紅細(xì)胞。結(jié)果表明DHCA組CD34+/c-kit+干細(xì)胞含量較MH組以及DHCA+SCP組顯著升高(P<0.01),見圖2。
2.3 T2 MH組,DHCA組和DHCA+SCP組患者的外周血CD34+/c-kit+干細(xì)胞含量分別為(0.55±0.25)個(gè)/1 000個(gè)裂紅細(xì)胞、(3.46±1.10)個(gè)/1 000個(gè)裂紅細(xì)胞和(0.63±0.28)個(gè)/1 000個(gè)裂紅細(xì)胞。結(jié)果表明DHCA組CD34+/c-kit+干細(xì)胞含量較MH組以及DHCA+SCP組升高更為顯著(P<0.01)。見圖3。
圖2 T1外周血CD34+/c-kit+干細(xì)胞含量
圖3 T2外周血CD34+/c-kit+干細(xì)胞含量
有文獻(xiàn)報(bào)道低溫對CD34及C-kit干細(xì)胞表達(dá)可能產(chǎn)生一定影響,深低溫環(huán)境下CD34干細(xì)胞會有一定程度的活性及動(dòng)員[14-15],但有關(guān)低溫對CD34+/c-kit+干細(xì)胞含量影響的臨床意義及其機(jī)制尚不清楚。本研究發(fā)現(xiàn)DHCA組患者手術(shù)后5天內(nèi)的外周血CD34+/c-kit+干細(xì)胞含量持續(xù)高表達(dá),但是DHCA+SCP組患者的外周血CD34+/c-kit +干細(xì)胞含量則明顯得到抑制,且與MH組相仿。本實(shí)驗(yàn)研究還發(fā)現(xiàn)MH組與DHCA+SCP組患者的外周血CD34+/c-kit+干細(xì)胞表達(dá)含量無論在T0、T1、T2均無明顯統(tǒng)計(jì)學(xué)變化(P>0.05),而DHCA組患者的外周血CD34+/c-kit+干細(xì)胞表達(dá)含量在這三個(gè)時(shí)相都顯著升高。從低溫的角度看,不同程度的低溫對骨髓動(dòng)員向外周血干細(xì)胞的水平可能存在不同程度的調(diào)節(jié)作用。另一方面,選擇性灌注造成的內(nèi)環(huán)境改變可能對骨髓動(dòng)員也存在一定理化方面的影響。
CD34選擇性表達(dá)于人類及哺乳動(dòng)物造血干細(xì)胞及造血祖細(xì)胞表面,且隨著細(xì)胞的成熟逐漸消失,在介導(dǎo)細(xì)胞黏附、造血干細(xì)胞的運(yùn)輸、炎癥反應(yīng)、淋巴細(xì)胞歸巢等有重要作用。CD117是由c-Kit基因編碼的酪氨酸受體,表達(dá)于造血干細(xì)胞亞群、肥大細(xì)胞等[16-19]。近年來,科學(xué)家將外周血中的干細(xì)胞分成7個(gè)大類,其中CD34+/CD117+的干細(xì)胞屬于早期的內(nèi)皮祖細(xì)胞類(endothelial progenitor cells,EPCs)[20]。現(xiàn)階段有大量的文獻(xiàn)及研究證實(shí)EPC與心腦血管的損傷修復(fù)有著緊密的聯(lián)系,缺血損傷、應(yīng)激、細(xì)胞因子、藥物等因素都可能造成EPC向損傷部位的遷移。EPC可通過自身分化增殖形成新生血管,也可以分泌血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)等細(xì)胞生長因子促進(jìn)本身的血管內(nèi)皮增值改善供血,其具體機(jī)制可能與PI3K/Akt信號通路影響其遷移、Notch/Jagged1信號通路影響其增值分化等有關(guān)[21--24]。
小兒ECC轉(zhuǎn)流對EPC的影響尚無相關(guān)報(bào)道,僅有報(bào)道稱在成人ECC心臟手術(shù)后阿托伐他丁類藥物可能會引起EPC的升高,修復(fù)受損的血管內(nèi)皮[25],該作者通過隨機(jī)雙盲實(shí)驗(yàn)對50例接受過ECC治療的患者研究發(fā)現(xiàn)患者體內(nèi)的各類細(xì)胞因子水平在ECC后均有所升高[白介素(IL)-6,IL-8,粒細(xì)胞集落刺激因子(G-CSF),VEGF等]顯示造成了一定的炎癥及內(nèi)皮損傷,而阿托伐他丁類藥物可以促進(jìn)EPC的動(dòng)員,顯著降低了促炎癥因子的水平。由于小兒生長發(fā)育的特殊性及臨床試驗(yàn)的限制,所以本實(shí)驗(yàn)嘗試通過外周血內(nèi)CD34+/c-kit+干細(xì)胞含量間接反應(yīng)EPC的動(dòng)員情況,通過實(shí)驗(yàn)結(jié)果可以發(fā)現(xiàn)DHCA會造成小兒體內(nèi)此類干細(xì)胞水平的上升,且術(shù)后4-5d更為顯著,而加入SCP的體外轉(zhuǎn)流方式即DHCA+SCP組患者的此類干細(xì)胞的水平與MH組患者的水平一致且都相對較低。從損傷修復(fù)的角度,加入SCP可能減少血管內(nèi)皮的損傷,減輕炎癥,從而降低骨髓動(dòng)員向外周血的CD34+/CD117+干細(xì)胞水平。
DHCA對機(jī)體造成的影響是十分復(fù)雜的,尤其在嬰幼兒生長發(fā)育變化隨年齡有顯著變化的階段,所以,需要進(jìn)一步的動(dòng)物實(shí)驗(yàn)及臨床研究探討其對骨髓動(dòng)員向外周血的CD34+/c-kit+干細(xì)胞的含量變化的原因及機(jī)制,為將來臨床治療提供科學(xué)依據(jù)。
[1] Ferry PC.Neurologic sequelae of open-heart surgery in children.An'irritating question'[J].Am J Dis Child,1990,144(3):369-373
[2] Fessatidis IT,Thomas VL,Shore DF,et al.Brain damage after profoundly hypothermic circulatory arrest:correlations betweenneurophysiologic and neuropathologic findings:an experimental study in vertebrates[J].J Thorac Cardiavasc Surg,1993,106(1):32-41.
[3] Hirai S.Systemic inflammatory response syndrome after cardiac surgery under cardiopulmonary bypass[J].Ann Thorac Cardiovasc Surg,2003,9(6):365-370.
[4] 蘇肇伉,孫勇,楊艷敏,等.深低溫體外循環(huán)方法對嬰兒肺功能的影響[J].上海第二醫(yī)科大學(xué)學(xué)報(bào),2004,24(1):41-44.
[5] Yang Y,Cai J,Su Z,et al.Better protection of pulmonary surfactant integrity with deep hypothermia and circulatory arrest[J].Ann Thorac Surg,2006,82(1):131-136.
[6] 徐志偉,張志芳,朱德明,等.體外循環(huán)深低溫低流量灌注的腦電圖變化[J].生物醫(yī)學(xué)工程與臨床,1998,2(1):38-42.
[7] Schultz S,Creed J,Schears G,et al.Comparison of low-flow cardiopulmonary bypass and circulatory arrest on brain oxygen and metabolism[J].J Ann Thorac Surg,2004,77(6):2138-2143.
[8] Takemoto Y,Li TS,Kubo M,et al.The mobilization and recruitment of c-kit+cells contribute to wound healing after surgery[J].Plos One,2012,7(11):e48052.
[9] Condon ET,Wang JH,Redmond HP.Surgical injury induces the mobilization of endothelial progenitor cells[J].Surgery,135(6):657-661.
[10] Rafii S,Lyden D.Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration[J].Nat Med,2003,9(6):702-712.
[11] Asahara T,Masuda H,Takahashi T,et al.Bone marrow origin of EPCs responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J].Circ Res,1999,85(3):221-228.
[12] Zhang ZG,Zhang L,Jiang Q,et al.Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse[J].Circ Res,2002,90(3):284-288.
[13] Kalina T,F(xiàn)lores-Montero J,van der Velden VH,et al.Euro-Flow standardization of flow cytometer instrument settings and immunophenotyping protocols[J].Leukemia,2012,26(9):1986-2010.
[14] Ivanovic Z,Kovacevic-Filipovic M,Jeanne M,et al.CD34+ cells obtained from"good mobilizers"are more activated and exhibit lower ex vivo expansion efficiency than their counterparts from"poor mobilizers"[J].Transfusion,2010,50(1):120-127.
[15] Lemoli RM,Tafuri A,F(xiàn)ortuna A,et al.Biological characterization of CD34+cells mobilized into peripheral blood[J].Bone Marrow Transplant,1998,22 Suppl 5:S47-50.
[16] Wells SJ,Bray RA,Stempora LL,et al.CD117/CD34 expression in leukemic blasts[J].Am J Clin Pathol,1996,106(2):192-195.
[17] Ieckband d,Prakasam A.Mechanism and dynamics of cadherin adhesion[J].Annu Rev Biomed Eng,2006,8:259-287.
[18] Kirshenbaum AS,Goff JP,Semere T,et al.Demonstration that human mast cells arise from a progenitor cell population that is CD34(+),c-kit(+),and expression aminopeptidase N(CD13).Blood,1999,94(7):2333-2342.
[19] Miettinen M,Lasota J.Kit(CD117):a review on expression in normal and neoplastic tissues,and mutations and their clinicopathologic correlation[J].Appl Immunohistochem Mol Morphol,2005,13(3):205-220.
[20] Zhang Y,Huang B.Peripheral blood stem cells:phenotypic diversity and potential clinical applications[J].Stem Cell Rev,2012,8(3):917-925.
[21] Dimmeler S,Aicher A,Vasa M,et al.HMG-CoA reductase inhibitors(statins)increase endothelial progenitor cells via the PI 3-kinase/Akt pathway[J].J Clin Invest,2001,108(3):391-397.
[22] Taguchi A,Matsuyama T,Moriwaki H,et al.Circulating CD34-positive cells provide an index of cerebrovascular function[J].Circulation,2004,109(24):2872-2875.
[23] Hibbert B,Ma X,Pourdjabbar A,et al.Pre-procedural atorvastatin mobilizes endothelial progenitor cells:clues to the salutary effects of statins on healing of stentend human arteries[J].PLoS One,2011,6(1):e16413.
[24] Hristov M,Weber C.Endothelial progenitor cells:charaterization,pathophysiology and possible clinical relevance[J].J Cell Mol Med,2004,8(4):498-508.
[25] Spadaccio C,Pollari F,Casacalenda A,et al.Atorvastatin increases the number of endothelial progenitor cells after cardiac surgery:a randomized control study[J].J Cardiovasc Pharmacol,2010,55(1):30-38.
The effects of different temperature and perfusion of cardiopulmonary bypass for the expression of the CD34+/c-kit+stem cells in peripheral blood in infants
Jiang Gan,Xu Zhi-wei
Department of Thoracic cardiac surgery,Shanghai Children's Heart center,Shanghai Jiaotong University/School of Medicine,Shanghai 200127,China
Xu Zhi-wei,Email:zwxumd@gmail.com
ObjectiveTo investigate the effect of mild hypothermia,deep hypothermic circulatory arrest(DHCA)and selective cerebral perfusion(SCP)on the expression of CD34+/c-kit+stem cells in peripheral blood in infants.MethodsThirty three infants with congenital cardiac diseases were divided into 3 groups:mild hypothermia group(10 cases),DHCA group(10 cases)and DHCA+SCP group(13 cases).The expression of CD34+/c-kit+stem cells in peripheral blood were measured before institution of cardiopulmonary bypass(CPB)(T0),12-24 h(T1)and 4-5 d(T2)after cessation of CPB respectively.ResultsThe level of CD34 +/c-kit+stem cells in peripheral blood was significantly high in DHCA group compared with that in the other two groups at T1 and T2(P<0.01).ConclusionOur data show that DHCA cause the increase of CD34+/c-kit+stem cells expression in peripheral blood after surgery.
Mild hypothermia;Deep hypothermia circulatory arrest;Selective cerebral perfusion;CD34+/c-kit+stem cells in peripheral blood;Infant
R654.1
A
1672-1403(2013)02-0079-04
2012-12-27)
2013-03-19)
200127上海,上海交通大學(xué)附屬兒童醫(yī)學(xué)中心心胸外科
徐志偉,Email:zwxumd@gmail.com