亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于外部坐標(biāo)測(cè)量的六自由度并聯(lián)機(jī)構(gòu)標(biāo)定方法

        2013-02-28 08:04:48延皓李長(zhǎng)春張金英
        兵工學(xué)報(bào) 2013年5期
        關(guān)鍵詞:測(cè)量

        延皓,李長(zhǎng)春,張金英

        (北京交通大學(xué) 機(jī)械電子控制工程學(xué)院,北京100044)

        0 引言

        并聯(lián)機(jī)構(gòu)具有良好的剛度特性和承載能力,在武器平臺(tái)運(yùn)動(dòng)模擬領(lǐng)域有著廣泛的應(yīng)用,如自行武器動(dòng)態(tài)試驗(yàn)系統(tǒng)[1]、機(jī)載光機(jī)系統(tǒng)振動(dòng)試驗(yàn)臺(tái)[2]以及艦船運(yùn)動(dòng)模擬器[3]等都以并聯(lián)機(jī)構(gòu)作為主要運(yùn)動(dòng)機(jī)構(gòu)。而在空間對(duì)接地面試驗(yàn)系統(tǒng)中,并聯(lián)機(jī)構(gòu)被用于復(fù)現(xiàn)航天器在失重條件下的相對(duì)運(yùn)動(dòng)[4]。由于不可避免地存在加工和安裝誤差,并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)精度受到的影響難以定量控制,這是限制并聯(lián)機(jī)構(gòu)進(jìn)一步發(fā)展的重要因素之一。對(duì)于位姿精度要求較高的場(chǎng)合,需要尋求一種簡(jiǎn)便而有效的標(biāo)定方法對(duì)并聯(lián)機(jī)構(gòu)進(jìn)行校準(zhǔn)。

        并聯(lián)機(jī)構(gòu)的標(biāo)定方法分為自標(biāo)定法和外標(biāo)定法。自標(biāo)定法不需要外部測(cè)量設(shè)備,利用源于并聯(lián)機(jī)構(gòu)自身的冗余信息來辨識(shí)其幾何參數(shù)。比較典型的自標(biāo)定法有在被動(dòng)關(guān)節(jié)處安裝附加傳感器的半自動(dòng)法[5-6],以及僅依靠作動(dòng)器位移傳感器的全自動(dòng)法[7-8]。自標(biāo)定法面臨的問題是:1)需要在機(jī)構(gòu)設(shè)計(jì)之初就考慮冗余信息的測(cè)量方式;2)不是所有的幾何參數(shù)都能夠辨識(shí)[9]。外標(biāo)定法也稱開環(huán)標(biāo)定,通過外部測(cè)量工具獲取并聯(lián)機(jī)構(gòu)的位姿信息,據(jù)此來辨識(shí)其幾何參數(shù)。外標(biāo)定法的實(shí)現(xiàn)方式取決于測(cè)量設(shè)備,如Besnard 等[10]提出采用兩個(gè)傾角儀檢測(cè)并聯(lián)機(jī)構(gòu)的姿態(tài)角,并用姿態(tài)角構(gòu)造殘差方程。這是一種操作簡(jiǎn)便而且低成本的實(shí)現(xiàn)方案,但是由于獲得的運(yùn)動(dòng)信息不完整,造成6 個(gè)幾何參數(shù)不可辨識(shí)[9]。黃田等[11]提出一種使用末端位移傳感器測(cè)量并聯(lián)機(jī)構(gòu)垂向位移的標(biāo)定方法,然而為了保證所有參數(shù)的可辨識(shí)性,需要在標(biāo)定過程中修改測(cè)量坐標(biāo)系來補(bǔ)充約束條件,標(biāo)定結(jié)果只在新測(cè)量坐標(biāo)系中有效,而對(duì)于很多并聯(lián)機(jī)構(gòu)應(yīng)用而言,坐標(biāo)系的更改將引起與之關(guān)聯(lián)的其他問題。

        為了改善并聯(lián)機(jī)構(gòu)的精度性能,本文提出一種基于外部測(cè)點(diǎn)坐標(biāo)測(cè)量的標(biāo)定方法,利用通用的測(cè)量設(shè)備,如全站儀和棱鏡等,間接獲取并聯(lián)機(jī)構(gòu)的完整位姿信息,通過求解冗余方程對(duì)并聯(lián)機(jī)構(gòu)進(jìn)行標(biāo)定。該方法不再需要其他的高端輔助設(shè)備,并克服了幾何參數(shù)的可辨識(shí)性問題,增加了構(gòu)造辨識(shí)算法的靈活性,而且測(cè)量坐標(biāo)系理論上不受標(biāo)定過程的限制,可以根據(jù)需要確定。

        1 并聯(lián)機(jī)構(gòu)的幾何參數(shù)

        對(duì)于通用的并聯(lián)機(jī)構(gòu)而言(見圖1),控制點(diǎn)是定位或者實(shí)現(xiàn)空間運(yùn)動(dòng)軌跡的目標(biāo)點(diǎn)。并聯(lián)機(jī)構(gòu)的校準(zhǔn),就是要保證控制點(diǎn)OE相對(duì)于測(cè)量坐標(biāo)系{OB}的位置和姿態(tài)角精度。在控制點(diǎn)建立笛卡爾坐標(biāo)系{OE},并使其與上平臺(tái)固連,這樣就可以用以下幾何參數(shù)來描述并聯(lián)機(jī)構(gòu):上鉸點(diǎn)在{OE}系中的坐標(biāo)Ai=[aixaiyaiz]T,i =1,2,…,6,下鉸點(diǎn)在{OB}系下的坐標(biāo)Bi=[bixbiybiz]T,6 個(gè)作動(dòng)器的長(zhǎng)度Li=‖AiBi‖,以及{OB}系和{OE}系之間的變換陣BTE,它由OE點(diǎn)相對(duì)于{OB}系的6 維位姿向量確定。以上48 個(gè)變量并非都是獨(dú)立的,當(dāng)Ai、Bi、Li都已經(jīng)確定時(shí),BTE可以計(jì)算得到。把Ai、Bi、Li這42個(gè)變量作為需要辨識(shí)的未知幾何參數(shù),則BTE可以作為參數(shù)辨識(shí)所需要的冗余運(yùn)動(dòng)信息。

        圖1 幾何參數(shù)的定義示意圖Fig.1 Geometry parameters of 6DOF parallel mechanism

        2 并聯(lián)機(jī)構(gòu)標(biāo)定問題的描述

        運(yùn)動(dòng)學(xué)標(biāo)定的目標(biāo)是估計(jì)并聯(lián)機(jī)構(gòu)的實(shí)際幾何參數(shù)以用于補(bǔ)償運(yùn)動(dòng)誤差,所有的標(biāo)定方法在數(shù)學(xué)上可以歸結(jié)為求解某個(gè)龐大的非線性標(biāo)定方程組,此方程組以要辨識(shí)的幾何參數(shù)實(shí)際值作為未知量,還包含了作動(dòng)器伸長(zhǎng)量、外部測(cè)量信息等參數(shù)。一般標(biāo)定方程組的形式為

        式中:pr為未知的42 ×1 幾何參數(shù)向量為第j 個(gè)位姿下外部測(cè)量的物理量;Δlj為6 ×1 的作動(dòng)器伸長(zhǎng)量向量;n 為位姿數(shù);Qm=[()T,…,(qnm)T]T;ΔL=[(Δl1)T,…,(Δln)T]T.

        為了減小測(cè)量噪聲的影響,位姿數(shù)n 必須足夠大,使得標(biāo)定方程組成為超定方程組,于是可以通過優(yōu)化方法來估計(jì)未知的幾何參數(shù)。因而(1)式通常以殘差方程的形式表示為

        式中e 為殘差向量。

        則標(biāo)定問題轉(zhuǎn)化為在殘差向量范數(shù)最小意義下估計(jì)幾何參數(shù)。對(duì)于此非線性優(yōu)化問題,經(jīng)過驗(yàn)證可以采用Levenberg-Marquardt 方法、Newton-Raphson方法或Trust-Region Dogleg 方法等來求解。其中Newton-Raphson 方法效率最簡(jiǎn)單,但收斂速度較慢,而Trust-Region Dogle 方法計(jì)算速度快,但精度相對(duì)較差,本文采用相對(duì)平穩(wěn)的Levenberg-Marquardt 方法。

        與并聯(lián)機(jī)構(gòu)的正解計(jì)算和逆解計(jì)算相對(duì)應(yīng),標(biāo)定方法可以分為基于正解和基于逆解兩種。當(dāng)e 是并聯(lián)機(jī)構(gòu)的位姿或其他外部測(cè)量物理量(如上平臺(tái)繞某軸的傾角、上平臺(tái)某點(diǎn)的平移等)的殘差,殘差方程(2)式中必然含有正解運(yùn)算,由于六自由度并聯(lián)機(jī)構(gòu)的正解沒有解析形式,殘差方程也沒有解析形式,使分析和求解變得困難。基于逆解的方法是將測(cè)量位姿進(jìn)行逆解得到作動(dòng)器的理論伸長(zhǎng)量,用它來構(gòu)造殘差方程,從而避開正解問題,不過如果不能獲得完整的位姿信息,此種方法將無法應(yīng)用。

        此外,某些少自由度的并聯(lián)機(jī)構(gòu),其正解和逆解均有解析形式,因此更傾向于運(yùn)用基于正解的標(biāo)定方法,這樣做可以減小計(jì)算量和矩陣計(jì)算引起的誤差。

        另一個(gè)問題是,e 中的諸元素度量單位可能不統(tǒng)一(例如包含位置量和角度量),應(yīng)該對(duì)這些分量進(jìn)行加權(quán)以保證優(yōu)化求解過程中各物理量對(duì)殘差向量范數(shù)的影響是合適的。

        3 基于外部測(cè)量的標(biāo)定方法

        3.1 測(cè)量坐標(biāo)系的建立

        用外部坐標(biāo)測(cè)量設(shè)備建立測(cè)量坐標(biāo)系{OB},一般采用下鉸分布圓圓心作為坐標(biāo)系原點(diǎn)。具體過程如下:在原點(diǎn)、x 軸和y 軸上放置棱鏡(見圖2),用全站儀測(cè)量三點(diǎn)的空間坐標(biāo),然后結(jié)合三點(diǎn)的理論坐標(biāo),就可以通過計(jì)算獲得測(cè)量坐標(biāo)系,使得三點(diǎn)在此坐標(biāo)系中處于理論位置。這個(gè)過程通常由外部測(cè)量設(shè)備自動(dòng)完成,并把坐標(biāo)系方位信息記錄下來,于是只要測(cè)量設(shè)備位置不變,測(cè)量坐標(biāo)系就能確定,而在標(biāo)定過程中測(cè)量得到的所有坐標(biāo)都是基于此坐標(biāo)系的。

        圖2 測(cè)量坐標(biāo)系的建立Fig.2 Construction of measuring coordinate system

        為建立測(cè)量坐標(biāo)系,需要在并聯(lián)機(jī)構(gòu)的原點(diǎn)、x軸和y 軸上設(shè)置棱鏡安裝點(diǎn),其坐標(biāo)是已知且準(zhǔn)確的,這樣可以保證測(cè)量坐標(biāo)系與設(shè)計(jì)坐標(biāo)系的一致性。但由于機(jī)械結(jié)構(gòu)存在誤差,造成這些安裝點(diǎn)可能存在位置不準(zhǔn)確的情況,所以新建立的測(cè)量坐標(biāo)系相對(duì)設(shè)計(jì)坐標(biāo)系可能存在不一致。受此影響,Ai、Bi等結(jié)構(gòu)參數(shù)將產(chǎn)生一定的偏差。但是由于測(cè)量坐標(biāo)系已經(jīng)唯一確定,可以把它作為正常工作的基準(zhǔn)坐標(biāo)系,棱鏡的測(cè)量和并聯(lián)機(jī)構(gòu)的標(biāo)定都在此坐標(biāo)系中完成,則測(cè)量坐標(biāo)系不一致所引起的Ai、Bi坐標(biāo)偏差完全可以作為參數(shù)誤差的一部分通過標(biāo)定過程消除,也就是說標(biāo)定后并聯(lián)機(jī)構(gòu)的定位精度在測(cè)量坐標(biāo)系中將是準(zhǔn)確的。從這個(gè)意義上講,容許測(cè)量坐標(biāo)系相對(duì)于設(shè)計(jì)坐標(biāo)系存在少量偏差。

        3.2 位姿的測(cè)量

        即使控制點(diǎn)在并聯(lián)機(jī)構(gòu)的上平臺(tái)上,直接測(cè)量控制點(diǎn)的位姿一般也比較困難,要想獲取并聯(lián)機(jī)構(gòu)的完整位姿信息,須對(duì)上平臺(tái)的外部測(cè)量點(diǎn)進(jìn)行坐標(biāo)測(cè)量。

        將3 個(gè)棱鏡安裝在上平臺(tái)的固定位置,見圖3.

        3 個(gè)棱鏡中心的位置應(yīng)該是已知的,這一點(diǎn)應(yīng)在上平臺(tái)的機(jī)械設(shè)計(jì)中予以考慮。也可先用全站儀在控制點(diǎn)處建立坐標(biāo)系{OE},再測(cè)量3 個(gè)棱鏡在{OE}中的空間坐標(biāo)。設(shè)3 個(gè)棱鏡中心在{OE}中的坐標(biāo)為

        圖3 上平臺(tái)示意圖Fig.3 Top platform

        此時(shí),選擇并聯(lián)機(jī)構(gòu)的n 組位姿,并通過控制系統(tǒng)實(shí)現(xiàn)這些位姿。測(cè)量這些位姿下三點(diǎn)在{OB}中的空間坐標(biāo),如圖4 所示。

        圖4 棱鏡空間坐標(biāo)的測(cè)量Fig.4 Coordinate measurement of prism

        對(duì)第j 個(gè)位姿測(cè)得Pi點(diǎn)的坐標(biāo)為

        每個(gè)位姿下,都得到9 個(gè)空間坐標(biāo)值,它們包含了并聯(lián)機(jī)構(gòu)的完整位姿信息,并且其中3 個(gè)是冗余的。

        為了辨識(shí)出并聯(lián)機(jī)構(gòu)的全部42 個(gè)幾何參數(shù)并進(jìn)行誤差補(bǔ)償,必須選取一定數(shù)量的位姿。由于每個(gè)位姿包含6 個(gè)獨(dú)立的變量,因而至少需要7 個(gè)位姿來構(gòu)造殘差方程。然而,為使標(biāo)定算法具有良好的魯棒性,應(yīng)選取不少于20 個(gè)位姿來構(gòu)造一個(gè)超定的殘差方程。

        值得注意的是,并聯(lián)機(jī)構(gòu)的標(biāo)定位姿彼此間應(yīng)該保持較大區(qū)別,并包括盡可能大的擺動(dòng)角,以降低各幾何參數(shù)的耦合程度,從而減小測(cè)量噪聲對(duì)標(biāo)定結(jié)果的影響[12-14]。

        3.3 殘差方程的構(gòu)造

        可以采用以下3 種方式構(gòu)造度量統(tǒng)一的殘差方程。

        1)用3 個(gè)測(cè)量點(diǎn)的空間坐標(biāo)Bxji構(gòu)造殘差方程。選擇并執(zhí)行n 組位姿,則{OB}系下的測(cè)量點(diǎn)坐標(biāo)可測(cè)量得到,由它們組成的向量為

        對(duì)于六自由度并聯(lián)機(jī)構(gòu)而言,從幾何參數(shù)到{OB}下測(cè)量點(diǎn)坐標(biāo)的非線性映射可以表示為

        式中:Xc為n 個(gè)位姿下測(cè)量點(diǎn)坐標(biāo)的理論值向量;pr為未知的42 ×1 幾何參數(shù)向量;ΔL 為n 個(gè)位姿作動(dòng)器伸長(zhǎng)量實(shí)測(cè)值向量.

        顯然,W 中包含了正解運(yùn)算以及從{OE}系到{OB}系的坐標(biāo)變換。于是可以這樣構(gòu)造殘差方程

        則并聯(lián)機(jī)構(gòu)的參數(shù)辨識(shí)問題轉(zhuǎn)化為關(guān)于幾何參數(shù)pr的優(yōu)化問題,可用Levenberg-Marquardt 算法求解。用這種方法構(gòu)造的殘差方程原理簡(jiǎn)單,形式直觀,但由于優(yōu)化求解過程內(nèi)嵌并聯(lián)機(jī)構(gòu)的正解計(jì)算,二者都是迭代運(yùn)算,使得計(jì)算效率較低。

        2)用作動(dòng)器伸長(zhǎng)量ΔL 構(gòu)造殘差方程。對(duì)第j個(gè)位姿,測(cè)量點(diǎn)在{OE}和{OB}下的坐標(biāo)有如下關(guān)系

        式中:R 為{OE}相對(duì){OB}的旋轉(zhuǎn)矩陣;b 為OE點(diǎn)的位置向量。

        由3.2 節(jié)可知,Ex 是已知或已測(cè)得。方程組(7)式經(jīng)過優(yōu)化求解可以得到并聯(lián)機(jī)構(gòu)位姿Djm.有了并聯(lián)機(jī)構(gòu)的位姿,通過運(yùn)動(dòng)學(xué)逆解可以求得6 個(gè)作動(dòng)器伸長(zhǎng)量的理論值,逆解過程表示為

        考慮n 個(gè)位姿,殘差方程可以表示為

        由于用這種方法構(gòu)造的殘差方程在優(yōu)化求解過程中不需要進(jìn)行正解運(yùn)算,因而計(jì)算效率較高。

        非線性優(yōu)化問題的求解過程包括線性化和迭代運(yùn)算,(9)式在pr處的線性化形式為

        式中J 為誤差雅可比矩陣。

        可以證明,J 是能夠解析表示的[15]。根據(jù)誤差理論,雅可比陣是否病態(tài)將直接決定測(cè)量誤差對(duì)辨識(shí)結(jié)果的影響程度。一般來說,用矩陣的條件數(shù)(最大奇異值與最小奇異值之比)來衡量矩陣的病態(tài)程度,而J 的條件數(shù)取決于并聯(lián)機(jī)構(gòu)的結(jié)構(gòu)尺寸以及標(biāo)定時(shí)所選取的測(cè)量位姿。所以,用ΔL 構(gòu)造殘差方程的另一個(gè)優(yōu)點(diǎn)是能夠得到解析的誤差雅可比陣,從而可以用J 的條件數(shù)作為測(cè)量位姿選取的依據(jù)。本文的仿真和實(shí)驗(yàn)以此方法為基礎(chǔ)。

        分別采用Levenberg-Marquardt 法和Newton-Raphson 法進(jìn)行迭代求解,結(jié)果表明只要不出現(xiàn)結(jié)構(gòu)奇異,該方法都是收斂的。只有當(dāng)誤差雅可比矩陣的條件數(shù)大于1 000 時(shí),系統(tǒng)求解的誤差會(huì)顯著變大,并逐漸有發(fā)散趨勢(shì)。另外,方程存在多解,因此其初值最好選取在預(yù)期收斂點(diǎn)附近。目前,鑒于并聯(lián)機(jī)構(gòu)的復(fù)雜性,其優(yōu)化求解方法的收斂性還未得到解析的證明。

        3)用一個(gè)測(cè)量點(diǎn)的空間坐標(biāo)B構(gòu)造殘差方程。為了進(jìn)一步簡(jiǎn)化操作過程,提高標(biāo)定過程的自動(dòng)化程度,提出一種設(shè)想,就是只采用一個(gè)測(cè)量點(diǎn),并放置在上平臺(tái)的任意位置,把測(cè)量點(diǎn)在{OE}中的空間坐標(biāo)本身也作為待辨識(shí)的變量。

        此方法克服了某些情況下測(cè)量點(diǎn)在上平臺(tái){OE}系中的坐標(biāo)確定困難問題;此外,當(dāng)前的全站儀或者動(dòng)態(tài)跟蹤儀等測(cè)量設(shè)備能夠跟蹤一個(gè)測(cè)量點(diǎn)進(jìn)行全自動(dòng)測(cè)量,省去了各種人工操作,能夠極大地提高標(biāo)定效率。另一方面,要辨識(shí)的變量個(gè)數(shù)由42個(gè)增加到45 個(gè),由于每次測(cè)量獲得的方程相對(duì)較少且變量個(gè)數(shù)增加,誤差雅可比矩陣的條件數(shù)會(huì)變得惡劣,因此標(biāo)定位姿數(shù)要有所增加。

        經(jīng)過仿真,采用36 個(gè)不同的標(biāo)定位姿,初步證實(shí)了此設(shè)想的可行性。暴露的問題是方程組優(yōu)化求解時(shí)測(cè)量點(diǎn)在{OE}中空間坐標(biāo)的初值一定要在實(shí)際值附近范圍選取,否則容易收斂到某個(gè)對(duì)稱的點(diǎn)上去。其對(duì)噪聲的敏感度等還需要進(jìn)一步驗(yàn)證。

        3.4 誤差的補(bǔ)償及誤差測(cè)量

        將辨識(shí)出的幾何參數(shù)代入并聯(lián)機(jī)構(gòu)控制系統(tǒng)的逆解運(yùn)算模塊中,然后讓并聯(lián)機(jī)構(gòu)實(shí)現(xiàn)一些指定的位姿以檢查標(biāo)定的有效性。顯而易見,并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)的可重復(fù)性決定了標(biāo)定所能達(dá)到的精度上限。

        對(duì)于并聯(lián)機(jī)構(gòu)來說,直接測(cè)量姿態(tài)角存在困難,因此在檢測(cè)運(yùn)動(dòng)精度時(shí),并不直接進(jìn)行位姿測(cè)量。本文采用方法為:測(cè)量指定姿態(tài)時(shí)上平臺(tái)固定棱鏡的空間坐標(biāo),再通過求解非線性方程組求得并聯(lián)機(jī)構(gòu)的當(dāng)前位姿。這樣無論是標(biāo)定過程還是最后的檢測(cè),都是采用同樣的外部測(cè)量設(shè)備,并且在同樣的測(cè)量坐標(biāo)系中完成的,避免了更換測(cè)量設(shè)備帶來的坐標(biāo)系須重新校準(zhǔn)問題。

        4 標(biāo)定仿真

        用外部測(cè)量的方法進(jìn)行并聯(lián)機(jī)構(gòu)標(biāo)定的步驟總結(jié)如下:1)通過設(shè)置若干測(cè)量點(diǎn)(如棱鏡),用測(cè)量設(shè)備(如全站儀)建立測(cè)量坐標(biāo)系{OB};2)在上平臺(tái)便于測(cè)量的位置固定3 個(gè)測(cè)量點(diǎn),并在控制點(diǎn)建立坐標(biāo)系{OE},若此3 點(diǎn)在{OE}中的位置未知,須先進(jìn)行測(cè)量;3)選取能夠使得誤差雅可比陣條件數(shù)盡可能小的20 組位姿(超過20 組對(duì)條件數(shù)的大小影響有限);4)用測(cè)量設(shè)備測(cè)量每個(gè)位姿下測(cè)量點(diǎn)在{OB}中的空間坐標(biāo);5)構(gòu)造殘差方程并進(jìn)行優(yōu)化求解,得到并聯(lián)機(jī)構(gòu)的所有幾何參數(shù)誤差;6)對(duì)控制模塊中的名義幾何參數(shù)進(jìn)行補(bǔ)償,并測(cè)量任意一些位姿以確認(rèn)標(biāo)定的有效性。

        仿真的并聯(lián)機(jī)構(gòu)結(jié)構(gòu)參數(shù)見表1.

        表1 并聯(lián)機(jī)構(gòu)結(jié)構(gòu)參數(shù)Tab.1 Structural parameters of parallel mechanism mm

        為了進(jìn)行標(biāo)定仿真,首先假定并聯(lián)機(jī)構(gòu)的幾何參數(shù)包含誤差,作為參數(shù)辨識(shí)的目標(biāo)(見表2,其中序號(hào)表示支腿編號(hào))。計(jì)算表明,在20 組位姿下(見表3),由幾何參數(shù)誤差引起的并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)的最大位置誤差為2.83 mm,最大姿態(tài)誤差為0.11°.此誤差代表了標(biāo)定前并聯(lián)機(jī)構(gòu)的位姿精度。在不考慮測(cè)量噪聲的情況下,按照上述標(biāo)定步驟進(jìn)行仿真,其中誤差雅可比陣的條件數(shù)為286.經(jīng)過優(yōu)化求解,可以辨識(shí)出并聯(lián)機(jī)構(gòu)的所有幾何參數(shù),表4 列出了各幾何參數(shù)的辨識(shí)精度。

        表2 假定的原始參數(shù)誤差Tab.2 Given original errors of geometry parameters

        仿真表明,當(dāng)不考慮測(cè)量噪聲的影響時(shí),參數(shù)辨識(shí)的精度能夠達(dá)到10-4mm 數(shù)量級(jí),據(jù)此補(bǔ)償后并聯(lián)機(jī)構(gòu)的最大位置和姿態(tài)誤差能減小到5.1×10-4mm和1.2 ×10-5°.然而考慮到全站儀的測(cè)量精度,在仿真過程中添加-0.02 ~0.02 mm 的隨機(jī)測(cè)量噪聲,仿真結(jié)果見表5.仿真顯示,此時(shí)參數(shù)辨識(shí)的偏差比測(cè)量噪聲高一個(gè)數(shù)量級(jí),而標(biāo)定后并聯(lián)機(jī)構(gòu)的最大位置和姿態(tài)誤差分別為1.6 ×10-2mm(與測(cè)量噪聲同一數(shù)量級(jí))和2 ×10-3°,這正體現(xiàn)了并聯(lián)機(jī)構(gòu)對(duì)參數(shù)誤差的敏感性相對(duì)較低的特點(diǎn)。

        表3 仿真位姿Tab.3 Configurations in simulation

        表4 不考慮測(cè)量噪聲的參數(shù)辨識(shí)精度Tab.4 Identification precision of geometry parameters without measurement noise

        表5 考慮噪聲影響的參數(shù)辨識(shí)精度Tab.5 Identification precision of geometry parameters in consideration of measurement noise

        5 標(biāo)定實(shí)例

        用上述方法標(biāo)定一個(gè)用于定位的實(shí)際并聯(lián)機(jī)構(gòu)(見圖5),結(jié)構(gòu)參數(shù)見表1.任選11 個(gè)位姿并用并聯(lián)實(shí)現(xiàn),采用全站儀來測(cè)量上平臺(tái)固定棱鏡的空間坐標(biāo),再通過優(yōu)化方法求得控制點(diǎn)的位置和姿態(tài),從而避免了直接測(cè)量角度的困難。標(biāo)定前后并聯(lián)機(jī)構(gòu)的誤差見圖6.對(duì)這些位姿而言,標(biāo)定前最大平動(dòng)誤差為4.28 mm,最大轉(zhuǎn)角誤差為0.44°,標(biāo)定后最大平動(dòng)誤差為0.366 mm,最大轉(zhuǎn)角誤差為0.085°.用此方法標(biāo)定后,并聯(lián)機(jī)構(gòu)的位置精度提高了10 倍以上,姿態(tài)精度也提高了5 倍左右。由于各鉸點(diǎn)本身存在加工誤差,標(biāo)定后的位姿誤差大于仿真結(jié)果。

        圖5 被標(biāo)定的并聯(lián)機(jī)構(gòu)Fig.5 Parallel mechanism calibrated

        6 結(jié)論

        圖6 實(shí)驗(yàn)結(jié)果曲線Fig.6 Experiment results

        通過對(duì)六自由度并聯(lián)機(jī)構(gòu)的外部坐標(biāo)測(cè)量,可以獲得并聯(lián)機(jī)構(gòu)的完整位姿信息,因而能夠辨識(shí)出并聯(lián)機(jī)構(gòu)所有的42 個(gè)幾何參數(shù),這樣測(cè)量坐標(biāo)系可以是非特定的,事實(shí)上容許與下鉸分布圓中心存在一定程度上的偏差,適用于測(cè)量條件不佳的標(biāo)定情況。仿真和實(shí)驗(yàn)表明,用此方法標(biāo)定后的位姿誤差和測(cè)量噪聲處于同一量級(jí),但由于鉸鏈的加工誤差,實(shí)際標(biāo)定后的精度可能會(huì)受到一些影響?;谕獠孔鴺?biāo)測(cè)量的標(biāo)定方法,不需要設(shè)計(jì)制造專門用于標(biāo)定的輔助設(shè)施,能夠降低標(biāo)定工作的復(fù)雜程度,并完全適合于少自由度并聯(lián)機(jī)構(gòu)。在該標(biāo)定方法的基礎(chǔ)上,可以設(shè)計(jì)不同的并聯(lián)機(jī)構(gòu)校準(zhǔn)工程方案。

        References)

        [1]代小林,黃其濤,韓俊偉,等.基于運(yùn)動(dòng)學(xué)正解的三轉(zhuǎn)動(dòng)并聯(lián)機(jī)構(gòu)迭代補(bǔ)償控制[J].機(jī)器人,2009,31(6):518 -522.DAI Xiao-lin,HUANG Qi-tao,HAN Jun-wei,et al.Iterative compensation control of 3-DOF rotational parallel mechanism based on forward kinematics[J].Robot,2009,31(6):518 -522.(in Chinese)

        [2]關(guān)廣豐.液壓驅(qū)動(dòng)六自由度振動(dòng)試驗(yàn)系統(tǒng)控制策略研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2007.GUAN Guang-feng.Control strategy of hydraulically driven 6-DOF vibration test system[D].Harbin:Harbin Institute of Technology,2007.(in Chinese)

        [3]趙強(qiáng),李洪人,張鐵柱.基于遺傳算法的六自由度艦船運(yùn)動(dòng)模擬器的參數(shù)優(yōu)化[J].船舶工程,2004,26(2):58 -61.ZHAO Qiang,LI Hong-ren,ZHANG Tie-zhu.Parameter optimization of ship motion simulator with six degrees of freedom based on genetic algorithm[J].Ship Engineering,2004,26(2):58 -61.(in Chinese)

        [4]延皓,葉正茂,叢大成,等.空間對(duì)接半物理仿真原型試驗(yàn)系統(tǒng)[J].機(jī)械工程學(xué)報(bào),2007,43(9):51 -56.YAN Hao,YE Zheng-mao,CONG Da-cheng,et al.Space docking hybrid simulation prototype experiment system[J].Chinese Journal of Mechanical Engineering,2007,43(9):51-56.(in Chinese)

        [5]Zhuang H.Self-calibration of parallel mechanisms with a case study on Stewart platforms[J].IEEE Transactions on Robotics and Automation,1997,13(3):387 -397.

        [6]Khalil W,Murareci D.Autonomous calibration of parallel robots[C]∥Proceedings of the 5th IFAC Symposium on Robot Control.Nantes:Pergamon Press,1997:425 -428.

        [7]Khalil W,Besnard S.Self calibration of a Stewart-Gough parallel robot without extra sensors[J].IEEE Transactions on Robotics and Automation,1999,15(6):1116 -1121.

        [8]Nahvi A,Hollerbach J M,Hayward V.Calibration of a parallel robot using multiple kinematic closed loops[C]∥Proceedings of the 11th IEEE International Conference on Robotics and Automation.San Diego:IEEE,1994:407 -412.

        [9]Besnard S,Khalil W.Identifiable parameters for parallel robots kinematic calibration[C]∥Proceedings of the 18th IEEE International Conference on Robotics and Automation.Seoul:IEEE,2001:2859 -2866.

        [10]Besnard S,Khalil W.Calibration of parallel robot using two inclinometers[C]∥Proceedings of the 16th IEEE International Conference on Robotics and Automation.Detroit:IEEE,1999:1758 -1763.

        [11]黃田.并聯(lián)構(gòu)型裝備幾何參數(shù)可辨識(shí)性研究[J].機(jī)械工程學(xué)報(bào),2002,38(suppl):1 -6.HUANG Tian.Investigation into the identifiability of geometric parameters of PKM systems using a subset of pose error measurements[J].Chinese Journal of Mechanical Engineering,2002,38(suppl):1 -6.(in Chinese)

        [12]Zhuang H,Wu J,Huang W.Optimal planning of robot calibration experiments by genetic algorithms[C]∥Proceedings of the 13th IEEE International Conference on Robotics and Automation,Minneapolis.Minnesota:IEEE,1996:981 -986.

        [13]Daney D.Optimal measurement configurations for Gough platform calibtation[C]∥Proceedings of the 19th IEEE International Conference on Robotics and Automation.Washington:IEEE,2002:147 -152.

        [14]劉文濤,唐德威,王知行.Stewart 平臺(tái)機(jī)構(gòu)標(biāo)定的雞尾酒法[J].機(jī)械工程學(xué)報(bào),2004,40(12):48 -52.LIU Wen-tao,TANG De-wei,WANG Zhi-xing.Cocktail method for Stewart platform calibration[J].Chinese Journal of Mechanical Engineering,2004,40(12):48 -52.(in Chinese)

        [15]Zhuang H,Yan J.Calibration of Stewart platforms and other parallel manipulators by minimizing inverse kinematic residuals[J].Journal of Robotic Systems,1998,15(7):395 -405.

        猜你喜歡
        測(cè)量
        測(cè)量重量,測(cè)量長(zhǎng)度……
        把握四個(gè)“三” 測(cè)量變簡(jiǎn)單
        滑動(dòng)摩擦力的測(cè)量和計(jì)算
        滑動(dòng)摩擦力的測(cè)量與計(jì)算
        測(cè)量的樂趣
        二十四節(jié)氣簡(jiǎn)易測(cè)量
        日出日落的觀察與測(cè)量
        滑動(dòng)摩擦力的測(cè)量與計(jì)算
        測(cè)量
        測(cè)量水的多少……
        亚洲天堂av中文字幕在线观看| 国产极品大秀在线性色| 激情亚洲一区国产精品| 亚洲一区二区三区四区五区黄| 情头一男一女高冷男女| 亚洲精品国产老熟女久久| 亚洲日韩v无码中文字幕| 成人免费播放视频777777 | 亚洲av纯肉无码精品动漫| 亚洲av永久无码精品古装片| 午夜一区二区三区在线观看| 91国视频| 亚洲日本中文字幕天天更新| 国产成人无码专区| 中文字幕高清视频婷婷| 激,情四虎欧美视频图片| 91在线精品老司机免费播放| 亚洲中文字幕久在线| 无码人妻久久久一区二区三区| 精品人妻一区二区三区不卡毛片| 国产91一区二这在线播放| 国产真实乱人偷精品人妻| 人妻少妇精品视频专区| 国产天堂av在线一二三四| 精品国模人妻视频网站| 91免费国产| 在线精品国内视频秒播| 亚洲美女又黄又爽在线观看| 久久午夜无码鲁丝片午夜精品 | 国产精品高清视亚洲一区二区| 日韩肥熟妇无码一区二区三区| 久久国产精品国产精品日韩区| 国产在线视频一区二区三区| 特黄大片又粗又大又暴| 激情五月婷婷一区二区| 91精品国产自拍视频| av天堂手机在线免费| 99国产精品无码专区| 色综合久久丁香婷婷| 少妇精品久久久一区二区三区| 免费少妇a级毛片人成网|