吳 磊,房 斌,刁麗萍,陳 靜,謝娜娜
1.重慶大學(xué) 計算機學(xué)院,重慶400030
2.第三軍醫(yī)大學(xué)新橋醫(yī)院 健康管理科,重慶400037
近幾年來,數(shù)據(jù)挖掘和機器學(xué)習(xí)等領(lǐng)域的快速發(fā)展和面向數(shù)據(jù)挖掘的軟件的開發(fā)和不斷完善更新(如文獻[1-2]提到的weka),以及諸多學(xué)者對不平衡數(shù)據(jù)集分類的深入研究。在對不平衡數(shù)據(jù)集分類的研究中,樣本數(shù)很少的類往往更會受到關(guān)注,比如疾病診斷、體檢數(shù)據(jù)敏感信息挖掘、網(wǎng)絡(luò)入侵、敏感信息檢索和信用卡欺詐檢測等。上述這些事件的檢測對社會來講意義重大,所以對不平衡數(shù)據(jù)的分類就顯得尤為重要。軟件缺陷預(yù)測是典型的數(shù)據(jù)不平衡應(yīng)用問題,從軟件模塊中抽取特征向量,通過分類器判斷軟件模塊有無缺陷,本文使用了包括開放的NASA MDP數(shù)據(jù)庫[3]和來自PROMIS 的AR 數(shù)據(jù)庫[4]中的總共12 個數(shù)據(jù)集,并且使用了一些早期的預(yù)處理方法和分類器后,實驗結(jié)果顯示某些重采樣方法帶來的效果并不理想,所以需要尋找更好的算法來對不平衡數(shù)據(jù)進行分類。
處理數(shù)據(jù)不平衡問題的方法主要有兩大類:數(shù)據(jù)抽樣方法和代價敏感學(xué)習(xí)算法,本文研究了抽樣方法的改進。數(shù)據(jù)抽樣算法有兩類:過抽樣和欠抽樣。常用的抽樣方法有隨機向上采樣(過抽樣)、隨機向下采樣(欠抽樣)、壓縮最近鄰(CNN)[5-6]、鄰域清理(NCL)、虛擬少數(shù)類向上采樣(SMOTE)[7]、Borderline-SMOTE(BSM)[8]、one-sided selection(OSS)、Cluster-Based Oversampling(CBOS)等。還有一些組合的方法,如Gustavo 等人提出的SMOTE+ENN 和SMOTE+Tomek[9]。
本文主要研究了過抽樣和欠抽樣相結(jié)合的方法,使用BSM、CBOS 分別和Tomek links 及ENN 結(jié)合,即BSM+Tomek、BSM+ENN、CBOS+Tomek 和CBOS+ENN;研究這幾種組合算法是因為對于樣本數(shù)較少的數(shù)據(jù)集,進行單純的過抽樣和欠抽樣會帶來不好的影響,過抽樣會使樣本數(shù)極少的數(shù)據(jù)集中的小類過度擬合,而欠抽樣會使得樣本數(shù)本來就比較少的數(shù)據(jù)集丟失重要的樣本,組合方法能夠比較折中地處理這兩種問題;其次,已有學(xué)者如Gustavo 等人提出過抽樣和欠抽樣結(jié)合的方法,并表現(xiàn)出了良好的效果,本文試圖通過研究這幾種組合方法來發(fā)掘它們的潛能;第三,這幾種算法在單獨執(zhí)行時就表現(xiàn)出了較好的效果,希望通過對其進行組合來發(fā)掘更好的抽樣方法;第四,暫時沒有文獻對這幾種算法進行組合和分析。
本文在預(yù)處理階段采用了14 種采樣方法,其中包括本文提出的四種方法對不平衡數(shù)據(jù)進行分類,并且使用了12種不同不平衡度的數(shù)據(jù)集和11 種分類器(訓(xùn)練過程采用了10-交叉驗證)做比較實驗,期間使用了weka 軟件做了一系列實驗分析,評價標(biāo)準為areaUnderROC(AUC),最后給出各算法預(yù)處理后的分類結(jié)果以及實驗結(jié)論。
圖1 兩種數(shù)據(jù)集的比較
在機器學(xué)習(xí)和數(shù)據(jù)挖掘的研究中,不平衡數(shù)據(jù)集往往表現(xiàn)為各類數(shù)據(jù)極度不平衡、小類和大類重疊等現(xiàn)象,所以使用不平衡數(shù)據(jù)訓(xùn)練分類器變得十分困難,這便導(dǎo)致對不平衡數(shù)據(jù)集的分類也變得非常困難。為了更好地說明問題,文中引用了圖1,其中圖1(a)中有兩個在一定程度上重疊的極為不平衡的類:大類用“-”表示,小類用“+”表示。圖1(b)中則是兩個平衡且分類明確的兩個類。很顯然,圖1(b)更便于訓(xùn)練分類器,本文的目的就是通過對數(shù)據(jù)進行預(yù)處理將圖1(a)中的不便于訓(xùn)練分類器的不平衡數(shù)據(jù)轉(zhuǎn)成圖1(b)中適合訓(xùn)練學(xué)習(xí)的平衡數(shù)據(jù)。
小類中的一些樣本往往會導(dǎo)致一些像K近鄰之類的分類器的分類效果變差。比如由于小類中的某些樣本的最近鄰樣本屬于大類,所以會錯分小類中的許多樣本。在不平衡度很高的數(shù)據(jù)集中,小類的樣本的最近鄰是大類中樣本的概率可能很大,并且分類結(jié)果中把小類分錯的概率高到不可接受。
基于混淆矩陣分析的方法是評價一個分類器性能好壞的最直接的方法。
因為多分類問題通常可以簡化為兩類問題來解決,所以不平衡數(shù)據(jù)集的分類問題的研究重點是提高兩類問題中少數(shù)類的分類性能。當(dāng)使用一般的分類精度準則時,雖然能夠體現(xiàn)出整體數(shù)據(jù)的分類性能,但是它不能正確地評價不平衡數(shù)據(jù)集的分類結(jié)果。這是因為當(dāng)多數(shù)類樣本比少數(shù)類樣本多得多的情況下,分類器把所有的樣本都分類為多數(shù)類,此時它的分類精度仍然很高,比如上述的信用卡欺詐問題中,但此時的分類沒有任何的價值,因為少數(shù)類樣本的識別率為零。也就是說在使用一般的分類精度準則時,少數(shù)類樣本對分類精度的影響小于多數(shù)類樣本,所以用一般的分類精度準則顯然是不合適的。因此應(yīng)當(dāng)要選擇一個合適的準則,使分類器在其分類性能上能體現(xiàn)出少數(shù)類樣本的影響。不平衡數(shù)據(jù)集分類問題中常用的評價準則有:F-values、G-Means、ROC 曲線[10]、F-Measure等。F-values 和G-Means 都是在兩類的數(shù)據(jù)集的混合矩陣的基礎(chǔ)上提出來的。本文主要使用了areaUnderROC 和F-Measure。
首先了解一下ROC曲線,也稱受試者工作特性(Receiver Operating Characteristic,ROC)曲線,獨立于數(shù)據(jù)集類間的分布,對數(shù)據(jù)集的不平衡性有很好的魯棒性,因此可用于不平衡數(shù)據(jù)集分類器性能的評價。ROC 曲線圖縱軸表示真實確定率:TP rate=TP/正例數(shù);橫軸表示虛假確定率:FP rate=FP/負例數(shù)。ROC 曲線有效地反映了在分類器參數(shù)變換時,真實確定率(TP rate)與虛假確定率(FP rate)之間的變化關(guān)系。坐標(biāo)中的(1,1)點對應(yīng)于將所有點歸于正類;直線y=x對應(yīng)于隨機猜測;(0,0)點對應(yīng)于將所有點歸于負類;(0,1)點對應(yīng)于最理想的分類情況,即所有樣本均分類正確。曲線越靠近左上角,分類器性能越好。由于ROC曲線沒有給出具體的數(shù)值,所以不方便評價不同分類器間性能的優(yōu)劣,于是常使用ROC 曲線下的面積(Area Under ROC,AUC)作為評價指標(biāo)。顯然,較大的AUC值對應(yīng)于較優(yōu)的分類器。AUC是基于ROC 曲線的唯一數(shù)值,它與錯分代價無關(guān),不受與規(guī)則應(yīng)用相關(guān)的因素的影響。本文使用了Weka 軟件中的AUC值的估計方法,在后面的實驗結(jié)果里給出了具體的數(shù)值。
處理不平衡數(shù)據(jù)集分類的方法主要可分為兩大類:數(shù)據(jù)抽樣方法和代價敏感分類算法。代價敏感分類算法主要是通過改進傳統(tǒng)的分類算法,提出新的分類思想。例如,傳統(tǒng)的Boosting 算法在處理不平衡數(shù)據(jù)集時效果不佳,沒有考慮到不平衡數(shù)據(jù)集的情況,正分樣本所減少的權(quán)重與錯分樣本所增加的權(quán)重比例是相同的,所以文獻[11]提出的基于Boosting 的支持向量機算法針對不平衡數(shù)據(jù)分類得到較好的效果。文獻[12]提出了一種針對醫(yī)學(xué)數(shù)據(jù)的不平衡數(shù)據(jù)的學(xué)習(xí)算法。數(shù)據(jù)抽樣方法主要有隨機向上采樣、隨機向下采樣、壓縮最近鄰(CNN)、鄰域清理(NCL)、虛擬少數(shù)類向上采樣(SMOTE)等,這里著重介紹以下幾種:
(1)Tomek links
該方法的基本思想如下:給定兩個樣本(xi,xj)屬于不同的類,它們之間的距離用d(xi,xj)表示。若不存在另一樣本x滿足d(xi,x)<d(xi,xj)或d(x,xj)<d(xi,xj),則樣本對構(gòu)成一個Tomek links。如果兩個樣本構(gòu)成Tomek links,則其中某個樣本為噪點,或者兩個樣本在兩類的邊界上。利用這個性質(zhì),Tomek links 可作為欠抽樣的方法,即去掉構(gòu)成Tomek links的負例。
(2)Edited Nearest Neighbor(ENN)
ENN的基本思想是去掉那些類標(biāo)與離它最近的三個樣本中的兩個類標(biāo)不同的樣本。但多數(shù)類的樣本附近通常都是多數(shù)類的樣本,因此ENN 去掉的樣本是非常有限的。
(3)Cluster-Based Oversampling(CBOS)
CBOS抽樣方法不僅僅考慮到類間不平衡的處理,而且還考慮到了類內(nèi)不平衡的處理。首先采用k-means 對訓(xùn)練數(shù)據(jù)集進行聚類;然后使用隨機過抽樣對大類和小類中的所有cluster進一步聚類,對于大類,除了最大的那個cluster,都要進行進一步聚類直到所有的cluster中的樣本數(shù)量與最大的那個cluster 一樣多;對于小類,對每一個cluster 隨機過抽樣直到每一個cluster中包含max_classized/Nsmallclass個樣本,其中Nsmallclass代表小類中的cluster數(shù)目。
(4)Borderline-SMOTE(BSM)
BSM 是基于SMOTE 的數(shù)據(jù)抽樣算法,與其他抽樣方法不同的是,只對小類的邊緣樣本做過抽樣,并不是對小類中所有樣本進行過抽樣。具體算法如下:首先,找出小類中的邊緣樣本;然后,利用這些邊緣樣本產(chǎn)生人造樣本并將其加入到原始訓(xùn)練樣本中。假設(shè)整個訓(xùn)練數(shù)據(jù)集是T,小類是P,大類是N,pnum和nnum分別是小類和大類的樣本數(shù)。對小類中的每一個樣本pi,計算它與整個數(shù)據(jù)集T中所有樣本的m近鄰,m近鄰中大類樣本的數(shù)量取決于m1(0 <m1<m)。如果m1=m,pi中的所有m近鄰都是大類樣本,pi就被認為是噪聲數(shù)據(jù)不會參加下面的算法;如果,0 ≤m1≤m/2,pi是正確的并且也不會參與下面的算法;如果m/2 ≤m1≤m,pi的最近鄰中,大類樣本數(shù)量多于小類,pi就被認為是誤分并且被放入數(shù)據(jù)集DANGER 中;然后得到一個數(shù)據(jù)集DANGER(假定有dnum個樣本),也就是小類P的邊緣數(shù)據(jù),對于DANGER 中的每一個樣本pii計算它與小類P中樣本pi的K近鄰,從中隨機選擇s個近鄰計算它們與pii的歐氏距離dif,然后通過公式:syntheticj=pii+rj×difj產(chǎn)生s個新的小類樣本,總共產(chǎn)生s×dnum個人造樣本賦給小類。
以上是基于數(shù)據(jù)抽樣的幾種處理不平衡數(shù)據(jù)的基本方法。近幾年專家們針對這些基本方法的不足提出了許多改進的新方法。Gustavo 等人將過抽樣和欠抽樣方法結(jié)合提出SMOTE+Tomek 和SMOTE+ENN 方法;Taeho 等人提出基于聚類的向上采樣方法,可同時處理類間和類內(nèi)不平衡。
Gustavo 等人將過抽樣與欠抽樣方法進行組合取得了比較好的效果,但是對其他算法的組合暫時沒有文獻給出詳細的研究,所以本文就BSM 和CBOS 與Tomek 和ENN 進行組合并驗證這種組合的可行性。通過本文的工作發(fā)現(xiàn)這種組合是可行且有效的,有意義的;本文通過對BSM 和CBOS 進行清洗,提出了四種過抽樣和欠抽樣算法結(jié)合的方法:首先通過BSM 對數(shù)據(jù)集進行過抽樣,然后分別運用Tomek links 和ENN 對數(shù)據(jù)集進行欠抽樣得到兩種抽樣方法:BSM+Tomek,BSM+ENN;同理,通過CBOS對數(shù)據(jù)集進行過抽樣后,使用Tomek links 和ENN 對數(shù)據(jù)集進行欠抽樣,得到兩種抽樣方法:CBOS+Tomek,CBOS+ENN。
通過實驗結(jié)果發(fā)現(xiàn),這四種抽樣方法在大多數(shù)實驗所用數(shù)據(jù)集和分類器下效果比不做數(shù)據(jù)清洗好,在某些情況下,效果不是很理想,這取決于要使用的數(shù)據(jù)集以及分類方法,當(dāng)然評價標(biāo)準的不同也會引起實驗結(jié)果的差異,本文將在后面的實驗結(jié)果分析中給出詳細介紹。
實驗使用了14 種數(shù)據(jù)抽樣方法,包括本文提出的四種抽樣方法;使用了12 個不平衡數(shù)據(jù)集(表1),為了便于統(tǒng)計比較,使用了僅有兩類的數(shù)據(jù)集;為了更好地說明數(shù)據(jù)抽樣方法的不同對不平衡數(shù)據(jù)集分類的影響,文中使用了11種不同的分類器進行實驗,并且在訓(xùn)練分類器時使用了10-交叉驗證,來處理由于數(shù)據(jù)集過小可能產(chǎn)生的影響。這里選擇使用了12 個常用的軟件缺陷數(shù)據(jù)庫,軟件缺陷預(yù)測是典型的數(shù)據(jù)不平衡應(yīng)用問題,從軟件模塊中抽取出特征向量,通過分類器判斷軟件模塊有無缺陷,屬于二分類問題。本文選擇的軟件缺陷數(shù)據(jù)庫來自NASA MDP 數(shù)據(jù)庫和PROMIS 的AR 數(shù)據(jù)庫中的數(shù)據(jù)集,進行對比實驗。表1中對12 個數(shù)據(jù)集的屬性進行了對比分析,Obj 表示數(shù)據(jù)集的屬性,DS 代表數(shù)據(jù)集(Data Set),Examples 表示數(shù)據(jù)集中樣本數(shù)量,Atrribues 中表示數(shù)據(jù)集有多少屬性,文獻[13]中提出,數(shù)據(jù)集的不平衡度不同,分類的效果也將有所差異,所以本文使用了不平衡度有差異的數(shù)據(jù)集,其中class(%)表示小類占數(shù)據(jù)集的比例(即不平衡度)。
表1 數(shù)據(jù)集
本文采用的實驗環(huán)境是:MATLAB R2007a 以及weka3.5.8,實驗環(huán)境為Pentium?Dual-Core CPU E5200 2.50 GHz,2 048 MB,Windows XP,其中還調(diào)用了weka 的接口來使用weka 自帶的分類方法和評價方法。實驗步驟為:實驗中采用十字交叉驗證法。實驗使用了14 種數(shù)據(jù)抽樣方法,包括本文提出的4 種抽樣方法;12 個不平衡數(shù)據(jù)集(表1)。為了便于統(tǒng)計比較,采用僅有兩類的數(shù)據(jù)集(二分類問題),并選擇11 種不同的分類器進行實驗;這樣就得到了一個三維表,不同的數(shù)據(jù)集,不同的采樣方法和不同的分類器。為了使表格更加直觀明了,文中對此表格做出了簡化,分別將抽樣方法和分類器對應(yīng)的AUC值求平均值,得到兩個二維表,也就是在不同數(shù)據(jù)集下使用不同的重采樣方法之后進行分類,每一個數(shù)據(jù)集在每一個采樣方法下使用11 種分類器后得到了11 個AUC值,將得到的AUC值求平均得到了每一個數(shù)據(jù)集在每一個采樣方法下進行分類后得到的AUC值,也就是表2 中看到的數(shù)據(jù),這里研究采樣方法對不平衡數(shù)據(jù)分類的影響;同理,對于某一個數(shù)據(jù)集使用14 種采樣方法,進而使用某一個分類器得到的14 個AUC值,將這些采樣方法對應(yīng)的AUC值求平均就得到在某一數(shù)據(jù)集下使用某一分類器得到的AUC值,也就是表3 中的數(shù)據(jù),這里研究分類器對不平衡數(shù)據(jù)分類的影響。
通過一系列對比實驗發(fā)現(xiàn),本文提出的四種組合方法在多數(shù)情況下優(yōu)于原抽樣方法,表2 中的行代表不同的軟件缺陷數(shù)據(jù)集,列代表不同的重抽樣方法,每一個值代表著某一采樣方法在某一數(shù)據(jù)集上的AUC值,也就是對某一數(shù)據(jù)集使用某種采樣方法進行重采樣來降低不平衡度,然后再使用分類器進行分類,最后計算AUC值;這里,由于本實驗采用了多個分類器,每一個分類器對應(yīng)一個AUC值,為了使表格更加直觀,本實驗將每個分類器對應(yīng)得到的AUC值求平均值,表格里看到的便是不同分類器下得到的AUC平均值。表2 主要探討數(shù)據(jù)抽樣方法在不平衡數(shù)據(jù)集上的作用。黑體數(shù)字對應(yīng)效果最好的預(yù)處理算法。從表2 中可以很容易看出來,對于大多數(shù)數(shù)據(jù)集來講,BSM+Tomek 的預(yù)處理效果要優(yōu)于BSM;CBOS+ENN 的預(yù)處理效果優(yōu)于CBOS;雖然對BSM 的改進(BSM+Tomek 和BSM+ENN)使得數(shù)據(jù)集的分類效果得以提升,但是效果不如Gustavo 等人提出的SMOTE+Tomek 和SMOTE+ENN;Gustavo 等人提出的SMOTE+Tomek 和SMOTE+ENN 效果非常好;對于數(shù)據(jù)極度不平衡的Mc1 數(shù)據(jù)集,做過抽樣提高了分類效果(SMOTE 和CBOS);對于數(shù)據(jù)不平衡度較小的數(shù)據(jù)集Kc2和Ar4,做完過抽樣后適當(dāng)做一下清洗(欠抽樣)會提高分類效果,BSM+ENN 和BSM+Tomek 都表現(xiàn)出較好的效果,CBOS+ENN 也比CBOS 效果優(yōu)越;效果最佳的預(yù)處理方法是SMOTE 和對SMOTE 的初步改進的算法中,本文對BSM和CBOS的改進算法雖然不及SMOTE和Gustavo提出的改進算法,但是卻分別比BSM 和CBOS 優(yōu)越。
表2 各種采樣方法在不同數(shù)據(jù)集上的AUC 值
表3 各種分類器在不同數(shù)據(jù)集上的AUC 值
表4 各采樣方法的執(zhí)行時間 s
表3 的行代表不同的分類器,列代表不同的抽樣方法,每一個值代表某一采樣方法在不同分類器上的AUC值,探討不同采樣方法與不同的分類器搭配后產(chǎn)生的效果(即AUC值),也就是先通過某種采樣方法對不平衡數(shù)據(jù)集進行重采樣來降低不平衡度,然后在不同的分類器上進行分類,最后計算AUC值,實驗中對多個不平衡數(shù)據(jù)集進行了處理,為了使表格更加直觀,計算了在多個數(shù)據(jù)集下得到的AUC值的平均,這些數(shù)據(jù)集都來自表1 中列出的數(shù)據(jù)集。從圖表中可以看出:對數(shù)據(jù)集進行BSM 和CBOS 處理后,再進行適當(dāng)欠抽樣會提高分類效果;對于不同的分類器,BSM+Tomek 和CBOS+ENN 的效果也比較穩(wěn)定,多數(shù)情況下效果明顯;本文主要探討數(shù)據(jù)抽樣方法對不平衡數(shù)據(jù)集分類的影響,不再深入研究分類器的影響。
在本次實驗中,使用了多種評價標(biāo)準,除了上邊用到的評價指標(biāo)之外,還包括precisionfMeasure,kappa 等。這里僅列出AUC指標(biāo)下的實驗結(jié)果。
在表4 中,本文給出了各采樣方法在同一臺機器上的執(zhí)行時間,作為各采樣方法的計算代價,用同一個數(shù)據(jù)集Mw1進行運行時間的計算,得到了各算法的執(zhí)行時間,很明顯,對于SMOTE、BSM 和CBOS 的改進使得算法的執(zhí)行時間增加接近一百倍,計算代價增大,同時觀察表2,3,AUC值得到了一定程度的提升。
本文通過在多個數(shù)據(jù)集下使用多種數(shù)據(jù)抽樣,并用多個分類器進行訓(xùn)練、分類,用多種評價指標(biāo)比較分類效果,得到了四種較好的數(shù)據(jù)抽樣方法和有意義的結(jié)論,這四種抽樣方法在大多數(shù)實驗所用數(shù)據(jù)集和分類器下效果比不做數(shù)據(jù)清洗時的分類效果好,但是本文還有許多值得改進的地方。首先所使用的數(shù)據(jù)抽樣方法都不能做到適用于每一個數(shù)據(jù)集,沒有找到一種穩(wěn)定的數(shù)據(jù)抽樣方法;其次,本文雖然討論了抽樣方法和分類器對分類效果的影響,但是沒有研究數(shù)據(jù)集對分類效果的影響,希望在下一步的研究中深入研究數(shù)據(jù)集對分類效果的影響;第三,本文提出的四種改進算法研究了BSM、CBOS、Tomek links 及ENN 的組合,沒有研究其他采樣方法組合的合理性,而且這四種算法效果雖然優(yōu)于原來的算法,但是整體效果低于Gustovo的改進算法。
[1] Gewehr J E,Szugat M,Zimmer R.Bio Weka-extending the weak framework for bioinformatics[J].Bioinformatics,2007,23(5):651-653.
[2] Hornik K,Zeileis A,Hothorn T,et al.RWeka:an R Interface to Weka[EB/OL].[2011-11-10].http://www.google.com.hk/#newwindow=1&q=+RWeka:+An+R+Interface+to+Weka%EF%BC%8C2009&safe=strict.
[3] Chapman M,Callis P,Jackson W.Metrics data program[R].NASA IV and V Facility,2004.
[4] Shirabad S,Menzies T J.The PROMISE repository of software engineering databases[EB/OL].[2011-11-10].http://www.google.com.hk/#newwindow=1&q=The+PROMISE+Repository+of+Software+Engineering+Databases&safe=strict.
[5] Tomek I.Two modifications of CNN[J].IEEE Trans on Systems Man and Communications,1976,6:769-772.
[6] Hart P E.The condensed nearest neighbor rule[J].IEEE Trans on Information Theory,1968,14(3).
[7] Chawla N V,Bowyer K W,Hall L O,et al.SMOTE:Synthetic Minority Oversampling Technique[J].Journal of Artificial Intelligence Research,2002,16:321-357.
[8] Han Hui,Wang Wenyuan,Mao Binghuan.Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[C]//Lecture Notes in Computer Science,2005:878-887.
[9] Gustavo E A,Batista P A,Ronaldo C,et al.A study of the behavior of several methods for balancing machine learning training data[J].SIGKDD Explorations,2004,6(1):20-29.
[10] 宋花玲.ROC 曲線的評價研究及應(yīng)用[D].上海:第二軍醫(yī)大學(xué),2006.
[11] Wang B X,Japkowicz N.Boosting support vector machines for imbalanced data sets[J].Knowledge and Information Systems,2010,25:1-20.
[12] Li Der-Chiang,Liu Chiao-Wen,Hu S C.A learning method for the class imbalance problem with medical data sets[J].Computers in Biology and Medicine,2010,40(5).
[13] Zhou L G,Lai K K.Benchmarking binary classification models on data sets with different degrees of imbalance[J].Frontiers of Computer Science in China,2009,2(3):205-216.
[14] Anand A,Pugalenthi G,F(xiàn)ogel G B,et al.An approach for classification of highly imbalanced data using weighting and understanding[J].Amino Acids,2010,39:1385-1391.