李 偉,欒孟杰
(1.渤海大學數(shù)理學院,遼寧錦州 121013;2.綏化學院信息工程學院,黑龍江綏化 152061)
一類Burgers方程的精確解
李 偉,欒孟杰
(1.渤海大學數(shù)理學院,遼寧錦州 121013;2.綏化學院信息工程學院,黑龍江綏化 152061)
微分方程包含線性和非線性微分方程。微分方程研究的主體是非線性微分方程,特別是非線性偏微分方程。很多意義重大的自然科學和工程技術(shù)問題都可歸結(jié)為非線性偏微分方程的研究。另外,隨著研究的深入,有些原來可用線性偏微分方程近似處理的問題,也必須考慮非線性的影響。從傳統(tǒng)的觀點來看,求偏微分方程的精確解是十分困難的。經(jīng)過幾十年的研究和探索,人們已經(jīng)找到了一些構(gòu)造精確解的方法。借助于Cole-Hope變換,積分變換法和擬解的方法,獲得Burgers方程,(2+1)維Burgers方程,(2+1)維高階Burgers方程的新的精確解。這種方法可以解決一系列的偏微分方程。
Cole-Hope變換;Burgers方程;精確解
非線性偏微分方程的解法受到如數(shù)學、物理學和生物學等各個學科的工作者廣泛重視,為了尋求它們的解法,研究者做了大量工作,得到了一些有效的求解方法,如分離變量法、反散射方法、Backlund變換法、Darboux變換法、雙曲函數(shù)法、齊次平衡法等[1-7]。本文借助于Cole-Hope變換[8-12]獲得Burgers方程、(2+1)維Burgers方程、(2+1)維高階Burgers方程[13-15]的精確解。方程如下:
現(xiàn)求式(1)的解,首先利用Cole-Hope變換,設(shè)
N為正整數(shù),p i,qi任意常數(shù),w(y)為一個關(guān)于y的函數(shù)。將式(22)代入式(12),再代入式(10)得:
w′(y)表示w對y的導數(shù),式(23)為式(3)的新的精確解。
[1]李德生,張鴻慶.一類高維耦合的非線性演化方程的簡單求解[J].物理學報,2004,53(6):1636-1638.
[2]李志斌.非線性數(shù)學物理方程的行波解[M].北京:科技出版社,2006:57-92.
[3]李翊神.孤子與可積系統(tǒng)[M].上海:上海科技教育出版社,1999:45-65.
[4]陳登遠.孤子引論[M].北京:科學出版社,2006:14-44.
[5]谷超豪,胡和生,周子翔.孤立子理論中的達布變換及幾何應用[M].上海:上海科學技術(shù)出版社,1999:3-35.
[6]范恩貴,張鴻慶.非線性孤子方程的齊次平衡法[J].物理學報,1998,47(3):356-362.
[7]桑波,伊繼金,劉健文.常系數(shù)線性微分方程組的解矩陣[J].沈陽師范大學學報:自然科學版,2010,28(3):343-346.
[8]HIROTA R,ITO M.Resonance of solitons in one dimension[J].Phys Soc Japan,1983,52(3):744-748.
[9]ITO M.An extension of nonlinear evolution equations of theK-d V(m K-d V)type to higher order[J].Phys Soc Japan,1980,49(2):771-778.
[10]HIROTA R.Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons[J].Phys Rev Lett,1971,27(18):1192-1194.
[11]WAZWAZ A M.The hirota direct metheod for multiple soliton solutions for model equation of shallow water waves[J].Appl Math Comput,2008,201:489-503.
[12]HIROTA R.The direct method in soliton theory[M].Cambridge:Cambridge Unive-rsity Press,2004:15-25.
[13]BURGERS J M.The nonlinear diffusion equation[M].Dordrecht:Reidel,1974.
[14]PENG Y Z,YOMBA E.New applications of the singular manifold method to the(2+1)-dimensional Burgers equation[J].Appl Math Comput,2006,183:61-67.
[15]WAZWAZ A M.Multiple-front solutions for the Burgers equation and the coupled Burgers equations[J].Appl Math Comput,2007,190:1198-1206.
Exact solutions of a class of Burgers equations
LI Wei,LUAN Mengjie
(1.Department of Mathematics,Bohai University,Jinzhou 121013,China;2.School of Information Engineering,Suihua University,Suihua 152061,China)
Differential equations contain linear and nonlinear differential equations.Research of the nonlinear differential equations is the subject of differential equations,especially nonlinear partial differential equations.Many significant natural science and engineering problems can be attributed to nonlinear partial differential equation.In addition,With the development of research,some problems that may be treated with originally linear partial differential equation approximation problem must also consider nonlinear effects.From the traditional point of view,the exact solutions of partial differential equation is very difficult.After several decades of research and exploration,researchers have found some tectonic exact solution method.In this paper,with the help of Cole-Hope transform,integral method and quasi solution method,some new exact solutions of Burgers equation,(2+1)dimensional Burger equation and(2+1)dimensional higher-order Burgers equation were presented.This method could solve a series of partial differential equations.
Cole-Hope transform;Burger equation;exact solutions
O175.2
A
10.3969/j.issn.1673-5862.2013.02.025
1673-5862(2013)02-0246-03
2012-08-20。
國家自然科學基金資助項目(61070242)。
李 偉(1977-),男,遼寧凌海人,渤海大學講師,碩士。